Merge commit 'origin/master' into next
[deliverable/linux.git] / arch / powerpc / include / asm / pgtable-ppc32.h
CommitLineData
f88df14b
DG
1#ifndef _ASM_POWERPC_PGTABLE_PPC32_H
2#define _ASM_POWERPC_PGTABLE_PPC32_H
3
d1953c88 4#include <asm-generic/pgtable-nopmd.h>
f88df14b
DG
5
6#ifndef __ASSEMBLY__
7#include <linux/sched.h>
8#include <linux/threads.h>
f88df14b 9#include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
f88df14b
DG
10
11extern unsigned long va_to_phys(unsigned long address);
12extern pte_t *va_to_pte(unsigned long address);
13extern unsigned long ioremap_bot, ioremap_base;
b98ac05d
BH
14
15#ifdef CONFIG_44x
16extern int icache_44x_need_flush;
17#endif
18
f88df14b
DG
19#endif /* __ASSEMBLY__ */
20
21/*
22 * The PowerPC MMU uses a hash table containing PTEs, together with
23 * a set of 16 segment registers (on 32-bit implementations), to define
24 * the virtual to physical address mapping.
25 *
26 * We use the hash table as an extended TLB, i.e. a cache of currently
27 * active mappings. We maintain a two-level page table tree, much
28 * like that used by the i386, for the sake of the Linux memory
29 * management code. Low-level assembler code in hashtable.S
30 * (procedure hash_page) is responsible for extracting ptes from the
31 * tree and putting them into the hash table when necessary, and
32 * updating the accessed and modified bits in the page table tree.
33 */
34
35/*
36 * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk.
37 * We also use the two level tables, but we can put the real bits in them
38 * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0,
39 * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has
40 * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit
41 * based upon user/super access. The TLB does not have accessed nor write
42 * protect. We assume that if the TLB get loaded with an entry it is
43 * accessed, and overload the changed bit for write protect. We use
44 * two bits in the software pte that are supposed to be set to zero in
45 * the TLB entry (24 and 25) for these indicators. Although the level 1
46 * descriptor contains the guarded and writethrough/copyback bits, we can
47 * set these at the page level since they get copied from the Mx_TWC
48 * register when the TLB entry is loaded. We will use bit 27 for guard, since
49 * that is where it exists in the MD_TWC, and bit 26 for writethrough.
50 * These will get masked from the level 2 descriptor at TLB load time, and
51 * copied to the MD_TWC before it gets loaded.
52 * Large page sizes added. We currently support two sizes, 4K and 8M.
53 * This also allows a TLB hander optimization because we can directly
54 * load the PMD into MD_TWC. The 8M pages are only used for kernel
55 * mapping of well known areas. The PMD (PGD) entries contain control
56 * flags in addition to the address, so care must be taken that the
57 * software no longer assumes these are only pointers.
58 */
59
60/*
61 * At present, all PowerPC 400-class processors share a similar TLB
62 * architecture. The instruction and data sides share a unified,
63 * 64-entry, fully-associative TLB which is maintained totally under
64 * software control. In addition, the instruction side has a
65 * hardware-managed, 4-entry, fully-associative TLB which serves as a
66 * first level to the shared TLB. These two TLBs are known as the UTLB
67 * and ITLB, respectively (see "mmu.h" for definitions).
68 */
69
70/*
71 * The normal case is that PTEs are 32-bits and we have a 1-page
72 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
73 *
74 * For any >32-bit physical address platform, we can use the following
75 * two level page table layout where the pgdir is 8KB and the MS 13 bits
76 * are an index to the second level table. The combined pgdir/pmd first
77 * level has 2048 entries and the second level has 512 64-bit PTE entries.
78 * -Matt
79 */
f88df14b 80/* PGDIR_SHIFT determines what a top-level page table entry can map */
d1953c88 81#define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
f88df14b
DG
82#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
83#define PGDIR_MASK (~(PGDIR_SIZE-1))
84
85/*
86 * entries per page directory level: our page-table tree is two-level, so
87 * we don't really have any PMD directory.
88 */
bee86f14
KG
89#ifndef __ASSEMBLY__
90#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_SHIFT)
91#define PGD_TABLE_SIZE (sizeof(pgd_t) << (32 - PGDIR_SHIFT))
92#endif /* __ASSEMBLY__ */
93
f88df14b
DG
94#define PTRS_PER_PTE (1 << PTE_SHIFT)
95#define PTRS_PER_PMD 1
96#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
97
98#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
99#define FIRST_USER_ADDRESS 0
100
f88df14b 101#define pte_ERROR(e) \
0aeafb0c
DG
102 printk("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
103 (unsigned long long)pte_val(e))
f88df14b
DG
104#define pgd_ERROR(e) \
105 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
106
107/*
108 * Just any arbitrary offset to the start of the vmalloc VM area: the
109 * current 64MB value just means that there will be a 64MB "hole" after the
110 * physical memory until the kernel virtual memory starts. That means that
111 * any out-of-bounds memory accesses will hopefully be caught.
112 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
113 * area for the same reason. ;)
114 *
115 * We no longer map larger than phys RAM with the BATs so we don't have
116 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
117 * about clashes between our early calls to ioremap() that start growing down
118 * from ioremap_base being run into the VM area allocations (growing upwards
119 * from VMALLOC_START). For this reason we have ioremap_bot to check when
120 * we actually run into our mappings setup in the early boot with the VM
121 * system. This really does become a problem for machines with good amounts
122 * of RAM. -- Cort
123 */
124#define VMALLOC_OFFSET (0x1000000) /* 16M */
125#ifdef PPC_PIN_SIZE
126#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
127#else
128#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
129#endif
130#define VMALLOC_END ioremap_bot
131
132/*
133 * Bits in a linux-style PTE. These match the bits in the
134 * (hardware-defined) PowerPC PTE as closely as possible.
135 */
136
137#if defined(CONFIG_40x)
138
139/* There are several potential gotchas here. The 40x hardware TLBLO
140 field looks like this:
141
142 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
143 RPN..................... 0 0 EX WR ZSEL....... W I M G
144
145 Where possible we make the Linux PTE bits match up with this
146
147 - bits 20 and 21 must be cleared, because we use 4k pages (40x can
148 support down to 1k pages), this is done in the TLBMiss exception
149 handler.
150 - We use only zones 0 (for kernel pages) and 1 (for user pages)
151 of the 16 available. Bit 24-26 of the TLB are cleared in the TLB
152 miss handler. Bit 27 is PAGE_USER, thus selecting the correct
153 zone.
154 - PRESENT *must* be in the bottom two bits because swap cache
155 entries use the top 30 bits. Because 40x doesn't support SMP
156 anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30
157 is cleared in the TLB miss handler before the TLB entry is loaded.
158 - All other bits of the PTE are loaded into TLBLO without
159 modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
160 software PTE bits. We actually use use bits 21, 24, 25, and
161 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
162 PRESENT.
163*/
164
165/* Definitions for 40x embedded chips. */
166#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */
167#define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */
168#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */
169#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */
170#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */
171#define _PAGE_USER 0x010 /* matches one of the zone permission bits */
172#define _PAGE_RW 0x040 /* software: Writes permitted */
173#define _PAGE_DIRTY 0x080 /* software: dirty page */
174#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */
175#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */
176#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */
177
178#define _PMD_PRESENT 0x400 /* PMD points to page of PTEs */
179#define _PMD_BAD 0x802
180#define _PMD_SIZE 0x0e0 /* size field, != 0 for large-page PMD entry */
181#define _PMD_SIZE_4M 0x0c0
182#define _PMD_SIZE_16M 0x0e0
183#define PMD_PAGE_SIZE(pmdval) (1024 << (((pmdval) & _PMD_SIZE) >> 4))
184
1bc54c03
BH
185/* Until my rework is finished, 40x still needs atomic PTE updates */
186#define PTE_ATOMIC_UPDATES 1
187
f88df14b
DG
188#elif defined(CONFIG_44x)
189/*
190 * Definitions for PPC440
191 *
192 * Because of the 3 word TLB entries to support 36-bit addressing,
193 * the attribute are difficult to map in such a fashion that they
194 * are easily loaded during exception processing. I decided to
195 * organize the entry so the ERPN is the only portion in the
196 * upper word of the PTE and the attribute bits below are packed
197 * in as sensibly as they can be in the area below a 4KB page size
198 * oriented RPN. This at least makes it easy to load the RPN and
199 * ERPN fields in the TLB. -Matt
200 *
201 * Note that these bits preclude future use of a page size
202 * less than 4KB.
203 *
204 *
205 * PPC 440 core has following TLB attribute fields;
206 *
207 * TLB1:
208 * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
209 * RPN................................. - - - - - - ERPN.......
210 *
211 * TLB2:
212 * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
213 * - - - - - - U0 U1 U2 U3 W I M G E - UX UW UR SX SW SR
214 *
a96df496
SR
215 * Newer 440 cores (440x6 as used on AMCC 460EX/460GT) have additional
216 * TLB2 storage attibute fields. Those are:
217 *
218 * TLB2:
219 * 0...10 11 12 13 14 15 16...31
220 * no change WL1 IL1I IL1D IL2I IL2D no change
221 *
f88df14b
DG
222 * There are some constrains and options, to decide mapping software bits
223 * into TLB entry.
224 *
225 * - PRESENT *must* be in the bottom three bits because swap cache
226 * entries use the top 29 bits for TLB2.
227 *
228 * - FILE *must* be in the bottom three bits because swap cache
229 * entries use the top 29 bits for TLB2.
230 *
64b3d0e8
BH
231 * - CACHE COHERENT bit (M) has no effect on original PPC440 cores,
232 * because it doesn't support SMP. However, some later 460 variants
233 * have -some- form of SMP support and so I keep the bit there for
234 * future use
f88df14b
DG
235 *
236 * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used
237 * for memory protection related functions (see PTE structure in
238 * include/asm-ppc/mmu.h). The _PAGE_XXX definitions in this file map to the
239 * above bits. Note that the bit values are CPU specific, not architecture
240 * specific.
241 *
242 * The kernel PTE entry holds an arch-dependent swp_entry structure under
243 * certain situations. In other words, in such situations some portion of
244 * the PTE bits are used as a swp_entry. In the PPC implementation, the
245 * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still
246 * hold protection values. That means the three protection bits are
247 * reserved for both PTE and SWAP entry at the most significant three
248 * LSBs.
249 *
250 * There are three protection bits available for SWAP entry:
251 * _PAGE_PRESENT
252 * _PAGE_FILE
253 * _PAGE_HASHPTE (if HW has)
254 *
255 * So those three bits have to be inside of 0-2nd LSB of PTE.
256 *
257 */
258
259#define _PAGE_PRESENT 0x00000001 /* S: PTE valid */
1bc54c03 260#define _PAGE_RW 0x00000002 /* S: Write permission */
f88df14b 261#define _PAGE_FILE 0x00000004 /* S: nonlinear file mapping */
1bc54c03 262#define _PAGE_HWEXEC 0x00000004 /* H: Execute permission */
f88df14b 263#define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */
1bc54c03 264#define _PAGE_DIRTY 0x00000010 /* S: Page dirty */
9a62c051 265#define _PAGE_SPECIAL 0x00000020 /* S: Special page */
1bc54c03
BH
266#define _PAGE_USER 0x00000040 /* S: User page */
267#define _PAGE_ENDIAN 0x00000080 /* H: E bit */
268#define _PAGE_GUARDED 0x00000100 /* H: G bit */
269#define _PAGE_COHERENT 0x00000200 /* H: M bit */
270#define _PAGE_NO_CACHE 0x00000400 /* H: I bit */
271#define _PAGE_WRITETHRU 0x00000800 /* H: W bit */
f88df14b
DG
272
273/* TODO: Add large page lowmem mapping support */
274#define _PMD_PRESENT 0
275#define _PMD_PRESENT_MASK (PAGE_MASK)
276#define _PMD_BAD (~PAGE_MASK)
277
278/* ERPN in a PTE never gets cleared, ignore it */
279#define _PTE_NONE_MASK 0xffffffff00000000ULL
280
9a62c051 281#define __HAVE_ARCH_PTE_SPECIAL
1bc54c03 282
f88df14b
DG
283#elif defined(CONFIG_FSL_BOOKE)
284/*
285 MMU Assist Register 3:
286
287 32 33 34 35 36 ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63
288 RPN...................... 0 0 U0 U1 U2 U3 UX SX UW SW UR SR
289
290 - PRESENT *must* be in the bottom three bits because swap cache
291 entries use the top 29 bits.
292
293 - FILE *must* be in the bottom three bits because swap cache
294 entries use the top 29 bits.
295*/
296
297/* Definitions for FSL Book-E Cores */
298#define _PAGE_PRESENT 0x00001 /* S: PTE contains a translation */
299#define _PAGE_USER 0x00002 /* S: User page (maps to UR) */
300#define _PAGE_FILE 0x00002 /* S: when !present: nonlinear file mapping */
6cfd8990
KG
301#define _PAGE_RW 0x00004 /* S: Write permission (SW) */
302#define _PAGE_DIRTY 0x00008 /* S: Page dirty */
303#define _PAGE_HWEXEC 0x00010 /* H: SX permission */
304#define _PAGE_ACCESSED 0x00020 /* S: Page referenced */
f88df14b
DG
305
306#define _PAGE_ENDIAN 0x00040 /* H: E bit */
307#define _PAGE_GUARDED 0x00080 /* H: G bit */
308#define _PAGE_COHERENT 0x00100 /* H: M bit */
309#define _PAGE_NO_CACHE 0x00200 /* H: I bit */
310#define _PAGE_WRITETHRU 0x00400 /* H: W bit */
9a62c051 311#define _PAGE_SPECIAL 0x00800 /* S: Special page */
f88df14b
DG
312
313#ifdef CONFIG_PTE_64BIT
f88df14b
DG
314/* ERPN in a PTE never gets cleared, ignore it */
315#define _PTE_NONE_MASK 0xffffffffffff0000ULL
f88df14b
DG
316#endif
317
318#define _PMD_PRESENT 0
319#define _PMD_PRESENT_MASK (PAGE_MASK)
320#define _PMD_BAD (~PAGE_MASK)
321
9a62c051
KG
322#define __HAVE_ARCH_PTE_SPECIAL
323
f88df14b
DG
324#elif defined(CONFIG_8xx)
325/* Definitions for 8xx embedded chips. */
326#define _PAGE_PRESENT 0x0001 /* Page is valid */
327#define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */
328#define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */
329#define _PAGE_SHARED 0x0004 /* No ASID (context) compare */
330
331/* These five software bits must be masked out when the entry is loaded
332 * into the TLB.
333 */
334#define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */
335#define _PAGE_GUARDED 0x0010 /* software: guarded access */
336#define _PAGE_DIRTY 0x0020 /* software: page changed */
337#define _PAGE_RW 0x0040 /* software: user write access allowed */
338#define _PAGE_ACCESSED 0x0080 /* software: page referenced */
339
340/* Setting any bits in the nibble with the follow two controls will
341 * require a TLB exception handler change. It is assumed unused bits
342 * are always zero.
343 */
344#define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */
345#define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */
346
347#define _PMD_PRESENT 0x0001
348#define _PMD_BAD 0x0ff0
349#define _PMD_PAGE_MASK 0x000c
350#define _PMD_PAGE_8M 0x000c
351
f88df14b
DG
352#define _PTE_NONE_MASK _PAGE_ACCESSED
353
1bc54c03
BH
354/* Until my rework is finished, 8xx still needs atomic PTE updates */
355#define PTE_ATOMIC_UPDATES 1
356
f88df14b
DG
357#else /* CONFIG_6xx */
358/* Definitions for 60x, 740/750, etc. */
359#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */
360#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */
361#define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */
362#define _PAGE_USER 0x004 /* usermode access allowed */
363#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */
364#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */
365#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */
366#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */
367#define _PAGE_DIRTY 0x080 /* C: page changed */
368#define _PAGE_ACCESSED 0x100 /* R: page referenced */
369#define _PAGE_EXEC 0x200 /* software: i-cache coherency required */
370#define _PAGE_RW 0x400 /* software: user write access allowed */
9a62c051 371#define _PAGE_SPECIAL 0x800 /* software: Special page */
f88df14b 372
4ee7084e
BB
373#ifdef CONFIG_PTE_64BIT
374/* We never clear the high word of the pte */
375#define _PTE_NONE_MASK (0xffffffff00000000ULL | _PAGE_HASHPTE)
376#else
f88df14b 377#define _PTE_NONE_MASK _PAGE_HASHPTE
4ee7084e 378#endif
f88df14b
DG
379
380#define _PMD_PRESENT 0
381#define _PMD_PRESENT_MASK (PAGE_MASK)
382#define _PMD_BAD (~PAGE_MASK)
1bc54c03
BH
383
384/* Hash table based platforms need atomic updates of the linux PTE */
385#define PTE_ATOMIC_UPDATES 1
386
9a62c051
KG
387#define __HAVE_ARCH_PTE_SPECIAL
388
f88df14b
DG
389#endif
390
391/*
392 * Some bits are only used on some cpu families...
393 */
394#ifndef _PAGE_HASHPTE
395#define _PAGE_HASHPTE 0
396#endif
397#ifndef _PTE_NONE_MASK
398#define _PTE_NONE_MASK 0
399#endif
400#ifndef _PAGE_SHARED
401#define _PAGE_SHARED 0
402#endif
403#ifndef _PAGE_HWWRITE
404#define _PAGE_HWWRITE 0
405#endif
406#ifndef _PAGE_HWEXEC
407#define _PAGE_HWEXEC 0
408#endif
409#ifndef _PAGE_EXEC
410#define _PAGE_EXEC 0
411#endif
a1f242ff
BH
412#ifndef _PAGE_ENDIAN
413#define _PAGE_ENDIAN 0
414#endif
415#ifndef _PAGE_COHERENT
416#define _PAGE_COHERENT 0
417#endif
ff8dc769
KG
418#ifndef _PAGE_WRITETHRU
419#define _PAGE_WRITETHRU 0
420#endif
9a62c051
KG
421#ifndef _PAGE_SPECIAL
422#define _PAGE_SPECIAL 0
423#endif
f88df14b
DG
424#ifndef _PMD_PRESENT_MASK
425#define _PMD_PRESENT_MASK _PMD_PRESENT
426#endif
427#ifndef _PMD_SIZE
428#define _PMD_SIZE 0
429#define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE()
430#endif
431
8d30c14c
BH
432#define _PAGE_HPTEFLAGS _PAGE_HASHPTE
433
fbc78b07
PG
434#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | \
435 _PAGE_SPECIAL)
a1f242ff 436
f5ea64dc
DG
437#define PAGE_PROT_BITS (_PAGE_GUARDED | _PAGE_COHERENT | _PAGE_NO_CACHE | \
438 _PAGE_WRITETHRU | _PAGE_ENDIAN | \
439 _PAGE_USER | _PAGE_ACCESSED | \
440 _PAGE_RW | _PAGE_HWWRITE | _PAGE_DIRTY | \
441 _PAGE_EXEC | _PAGE_HWEXEC)
64b3d0e8 442
f88df14b 443/*
64b3d0e8
BH
444 * We define 2 sets of base prot bits, one for basic pages (ie,
445 * cacheable kernel and user pages) and one for non cacheable
446 * pages. We always set _PAGE_COHERENT when SMP is enabled or
447 * the processor might need it for DMA coherency.
f88df14b 448 */
64b3d0e8
BH
449#if defined(CONFIG_SMP) || defined(CONFIG_PPC_STD_MMU)
450#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
f88df14b
DG
451#else
452#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
453#endif
64b3d0e8
BH
454#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE)
455
f88df14b
DG
456#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
457#define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE)
64b3d0e8 458#define _PAGE_KERNEL_NC (_PAGE_BASE_NC | _PAGE_SHARED | _PAGE_WRENABLE)
f88df14b
DG
459
460#ifdef CONFIG_PPC_STD_MMU
461/* On standard PPC MMU, no user access implies kernel read/write access,
462 * so to write-protect kernel memory we must turn on user access */
463#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER)
464#else
465#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED)
466#endif
467
64b3d0e8 468#define _PAGE_IO (_PAGE_KERNEL_NC | _PAGE_GUARDED)
f88df14b
DG
469#define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC)
470
221ac329
IN
471#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
472 defined(CONFIG_KPROBES)
f88df14b
DG
473/* We want the debuggers to be able to set breakpoints anywhere, so
474 * don't write protect the kernel text */
475#define _PAGE_RAM_TEXT _PAGE_RAM
476#else
477#define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC)
478#endif
479
480#define PAGE_NONE __pgprot(_PAGE_BASE)
481#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
482#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
483#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
484#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
485#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
486#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
487
488#define PAGE_KERNEL __pgprot(_PAGE_RAM)
489#define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO)
490
491/*
492 * The PowerPC can only do execute protection on a segment (256MB) basis,
493 * not on a page basis. So we consider execute permission the same as read.
494 * Also, write permissions imply read permissions.
495 * This is the closest we can get..
496 */
497#define __P000 PAGE_NONE
498#define __P001 PAGE_READONLY_X
499#define __P010 PAGE_COPY
500#define __P011 PAGE_COPY_X
501#define __P100 PAGE_READONLY
502#define __P101 PAGE_READONLY_X
503#define __P110 PAGE_COPY
504#define __P111 PAGE_COPY_X
505
506#define __S000 PAGE_NONE
507#define __S001 PAGE_READONLY_X
508#define __S010 PAGE_SHARED
509#define __S011 PAGE_SHARED_X
510#define __S100 PAGE_READONLY
511#define __S101 PAGE_READONLY_X
512#define __S110 PAGE_SHARED
513#define __S111 PAGE_SHARED_X
514
515#ifndef __ASSEMBLY__
516/* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a
517 * kernel without large page PMD support */
518extern unsigned long bad_call_to_PMD_PAGE_SIZE(void);
519
520/*
521 * Conversions between PTE values and page frame numbers.
522 */
523
524/* in some case we want to additionaly adjust where the pfn is in the pte to
525 * allow room for more flags */
526#if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
527#define PFN_SHIFT_OFFSET (PAGE_SHIFT + 8)
528#else
529#define PFN_SHIFT_OFFSET (PAGE_SHIFT)
530#endif
531
532#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
533#define pte_page(x) pfn_to_page(pte_pfn(x))
534
535#define pfn_pte(pfn, prot) __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\
536 pgprot_val(prot))
537#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
f88df14b
DG
538#endif /* __ASSEMBLY__ */
539
540#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
541#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
9bf2b5cd
KG
542#define pte_clear(mm, addr, ptep) \
543 do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
f88df14b
DG
544
545#define pmd_none(pmd) (!pmd_val(pmd))
546#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
547#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
548#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
549
550#ifndef __ASSEMBLY__
f88df14b
DG
551/*
552 * The following only work if pte_present() is true.
553 * Undefined behaviour if not..
554 */
f88df14b 555static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
f88df14b
DG
556static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
557static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
558static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
9a62c051 559static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
f88df14b 560
f88df14b
DG
561static inline pte_t pte_wrprotect(pte_t pte) {
562 pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
f88df14b
DG
563static inline pte_t pte_mkclean(pte_t pte) {
564 pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
565static inline pte_t pte_mkold(pte_t pte) {
566 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
567
f88df14b
DG
568static inline pte_t pte_mkwrite(pte_t pte) {
569 pte_val(pte) |= _PAGE_RW; return pte; }
570static inline pte_t pte_mkdirty(pte_t pte) {
571 pte_val(pte) |= _PAGE_DIRTY; return pte; }
572static inline pte_t pte_mkyoung(pte_t pte) {
573 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
7e675137 574static inline pte_t pte_mkspecial(pte_t pte) {
9a62c051 575 pte_val(pte) |= _PAGE_SPECIAL; return pte; }
f5ea64dc 576static inline pgprot_t pte_pgprot(pte_t pte)
a1f242ff 577{
f5ea64dc 578 return __pgprot(pte_val(pte) & PAGE_PROT_BITS);
a1f242ff 579}
f88df14b
DG
580
581static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
582{
583 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
584 return pte;
585}
586
587/*
588 * When flushing the tlb entry for a page, we also need to flush the hash
589 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
590 */
591extern int flush_hash_pages(unsigned context, unsigned long va,
592 unsigned long pmdval, int count);
593
594/* Add an HPTE to the hash table */
595extern void add_hash_page(unsigned context, unsigned long va,
596 unsigned long pmdval);
597
4ee7084e
BB
598/* Flush an entry from the TLB/hash table */
599extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
600 unsigned long address);
601
f88df14b
DG
602/*
603 * Atomic PTE updates.
604 *
605 * pte_update clears and sets bit atomically, and returns
606 * the old pte value. In the 64-bit PTE case we lock around the
607 * low PTE word since we expect ALL flag bits to be there
608 */
609#ifndef CONFIG_PTE_64BIT
1bc54c03
BH
610static inline unsigned long pte_update(pte_t *p,
611 unsigned long clr,
f88df14b
DG
612 unsigned long set)
613{
1bc54c03 614#ifdef PTE_ATOMIC_UPDATES
f88df14b
DG
615 unsigned long old, tmp;
616
617 __asm__ __volatile__("\
6181: lwarx %0,0,%3\n\
619 andc %1,%0,%4\n\
620 or %1,%1,%5\n"
621 PPC405_ERR77(0,%3)
622" stwcx. %1,0,%3\n\
623 bne- 1b"
624 : "=&r" (old), "=&r" (tmp), "=m" (*p)
625 : "r" (p), "r" (clr), "r" (set), "m" (*p)
626 : "cc" );
1bc54c03
BH
627#else /* PTE_ATOMIC_UPDATES */
628 unsigned long old = pte_val(*p);
629 *p = __pte((old & ~clr) | set);
630#endif /* !PTE_ATOMIC_UPDATES */
631
b98ac05d
BH
632#ifdef CONFIG_44x
633 if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
634 icache_44x_need_flush = 1;
635#endif
f88df14b
DG
636 return old;
637}
1bc54c03 638#else /* CONFIG_PTE_64BIT */
1bc54c03
BH
639static inline unsigned long long pte_update(pte_t *p,
640 unsigned long clr,
641 unsigned long set)
f88df14b 642{
1bc54c03 643#ifdef PTE_ATOMIC_UPDATES
f88df14b
DG
644 unsigned long long old;
645 unsigned long tmp;
646
647 __asm__ __volatile__("\
6481: lwarx %L0,0,%4\n\
649 lwzx %0,0,%3\n\
650 andc %1,%L0,%5\n\
651 or %1,%1,%6\n"
652 PPC405_ERR77(0,%3)
653" stwcx. %1,0,%4\n\
654 bne- 1b"
655 : "=&r" (old), "=&r" (tmp), "=m" (*p)
656 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
657 : "cc" );
1bc54c03
BH
658#else /* PTE_ATOMIC_UPDATES */
659 unsigned long long old = pte_val(*p);
585583d9 660 *p = __pte((old & ~(unsigned long long)clr) | set);
1bc54c03
BH
661#endif /* !PTE_ATOMIC_UPDATES */
662
b98ac05d
BH
663#ifdef CONFIG_44x
664 if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
665 icache_44x_need_flush = 1;
666#endif
f88df14b
DG
667 return old;
668}
1bc54c03 669#endif /* CONFIG_PTE_64BIT */
f88df14b 670
f88df14b 671/*
bf2737f7
BB
672 * 2.6 calls this without flushing the TLB entry; this is wrong
673 * for our hash-based implementation, we fix that up here.
f88df14b
DG
674 */
675#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
676static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
677{
678 unsigned long old;
679 old = pte_update(ptep, _PAGE_ACCESSED, 0);
680#if _PAGE_HASHPTE != 0
681 if (old & _PAGE_HASHPTE) {
682 unsigned long ptephys = __pa(ptep) & PAGE_MASK;
683 flush_hash_pages(context, addr, ptephys, 1);
684 }
685#endif
686 return (old & _PAGE_ACCESSED) != 0;
687}
688#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
689 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
690
f88df14b
DG
691#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
692static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
693 pte_t *ptep)
694{
695 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
696}
697
698#define __HAVE_ARCH_PTEP_SET_WRPROTECT
699static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
700 pte_t *ptep)
701{
702 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
703}
016b33c4
AW
704static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
705 unsigned long addr, pte_t *ptep)
706{
707 ptep_set_wrprotect(mm, addr, ptep);
708}
709
f88df14b 710
8d30c14c 711static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
f88df14b
DG
712{
713 unsigned long bits = pte_val(entry) &
8d30c14c
BH
714 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW |
715 _PAGE_HWEXEC | _PAGE_EXEC);
f88df14b
DG
716 pte_update(ptep, 0, bits);
717}
718
f88df14b
DG
719#define __HAVE_ARCH_PTE_SAME
720#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
721
722/*
723 * Note that on Book E processors, the pmd contains the kernel virtual
724 * (lowmem) address of the pte page. The physical address is less useful
725 * because everything runs with translation enabled (even the TLB miss
726 * handler). On everything else the pmd contains the physical address
727 * of the pte page. -- paulus
728 */
729#ifndef CONFIG_BOOKE
730#define pmd_page_vaddr(pmd) \
731 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
732#define pmd_page(pmd) \
733 (mem_map + (pmd_val(pmd) >> PAGE_SHIFT))
734#else
735#define pmd_page_vaddr(pmd) \
736 ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
737#define pmd_page(pmd) \
af892e0f 738 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
f88df14b
DG
739#endif
740
741/* to find an entry in a kernel page-table-directory */
742#define pgd_offset_k(address) pgd_offset(&init_mm, address)
743
744/* to find an entry in a page-table-directory */
745#define pgd_index(address) ((address) >> PGDIR_SHIFT)
746#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
747
f88df14b
DG
748/* Find an entry in the third-level page table.. */
749#define pte_index(address) \
750 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
751#define pte_offset_kernel(dir, addr) \
752 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
753#define pte_offset_map(dir, addr) \
754 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
755#define pte_offset_map_nested(dir, addr) \
756 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
757
758#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
759#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
760
f88df14b
DG
761/*
762 * Encode and decode a swap entry.
763 * Note that the bits we use in a PTE for representing a swap entry
764 * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
765 *_PAGE_HASHPTE bit (if used). -- paulus
766 */
767#define __swp_type(entry) ((entry).val & 0x1f)
768#define __swp_offset(entry) ((entry).val >> 5)
769#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
770#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
771#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
772
773/* Encode and decode a nonlinear file mapping entry */
774#define PTE_FILE_MAX_BITS 29
775#define pte_to_pgoff(pte) (pte_val(pte) >> 3)
776#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
777
f88df14b
DG
778/*
779 * No page table caches to initialise
780 */
781#define pgtable_cache_init() do { } while (0)
782
783extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
784 pmd_t **pmdp);
785
786#endif /* !__ASSEMBLY__ */
787
788#endif /* _ASM_POWERPC_PGTABLE_PPC32_H */
This page took 0.27246 seconds and 5 git commands to generate.