powerpc/mm: Split the various pgtable-* headers based on MMU type
[deliverable/linux.git] / arch / powerpc / include / asm / pgtable-ppc32.h
CommitLineData
f88df14b
DG
1#ifndef _ASM_POWERPC_PGTABLE_PPC32_H
2#define _ASM_POWERPC_PGTABLE_PPC32_H
3
d1953c88 4#include <asm-generic/pgtable-nopmd.h>
f88df14b
DG
5
6#ifndef __ASSEMBLY__
7#include <linux/sched.h>
8#include <linux/threads.h>
f88df14b 9#include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */
f88df14b
DG
10
11extern unsigned long va_to_phys(unsigned long address);
12extern pte_t *va_to_pte(unsigned long address);
13extern unsigned long ioremap_bot, ioremap_base;
b98ac05d
BH
14
15#ifdef CONFIG_44x
16extern int icache_44x_need_flush;
17#endif
18
f88df14b
DG
19#endif /* __ASSEMBLY__ */
20
f88df14b
DG
21/*
22 * The normal case is that PTEs are 32-bits and we have a 1-page
23 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
24 *
25 * For any >32-bit physical address platform, we can use the following
26 * two level page table layout where the pgdir is 8KB and the MS 13 bits
27 * are an index to the second level table. The combined pgdir/pmd first
28 * level has 2048 entries and the second level has 512 64-bit PTE entries.
29 * -Matt
30 */
f88df14b 31/* PGDIR_SHIFT determines what a top-level page table entry can map */
d1953c88 32#define PGDIR_SHIFT (PAGE_SHIFT + PTE_SHIFT)
f88df14b
DG
33#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
34#define PGDIR_MASK (~(PGDIR_SIZE-1))
35
36/*
37 * entries per page directory level: our page-table tree is two-level, so
38 * we don't really have any PMD directory.
39 */
bee86f14
KG
40#ifndef __ASSEMBLY__
41#define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_SHIFT)
42#define PGD_TABLE_SIZE (sizeof(pgd_t) << (32 - PGDIR_SHIFT))
43#endif /* __ASSEMBLY__ */
44
f88df14b
DG
45#define PTRS_PER_PTE (1 << PTE_SHIFT)
46#define PTRS_PER_PMD 1
47#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT))
48
49#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
50#define FIRST_USER_ADDRESS 0
51
f88df14b 52#define pte_ERROR(e) \
0aeafb0c
DG
53 printk("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
54 (unsigned long long)pte_val(e))
f88df14b
DG
55#define pgd_ERROR(e) \
56 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
57
58/*
59 * Just any arbitrary offset to the start of the vmalloc VM area: the
60 * current 64MB value just means that there will be a 64MB "hole" after the
61 * physical memory until the kernel virtual memory starts. That means that
62 * any out-of-bounds memory accesses will hopefully be caught.
63 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
64 * area for the same reason. ;)
65 *
66 * We no longer map larger than phys RAM with the BATs so we don't have
67 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
68 * about clashes between our early calls to ioremap() that start growing down
69 * from ioremap_base being run into the VM area allocations (growing upwards
70 * from VMALLOC_START). For this reason we have ioremap_bot to check when
71 * we actually run into our mappings setup in the early boot with the VM
72 * system. This really does become a problem for machines with good amounts
73 * of RAM. -- Cort
74 */
75#define VMALLOC_OFFSET (0x1000000) /* 16M */
76#ifdef PPC_PIN_SIZE
77#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
78#else
79#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
80#endif
81#define VMALLOC_END ioremap_bot
82
83/*
84 * Bits in a linux-style PTE. These match the bits in the
85 * (hardware-defined) PowerPC PTE as closely as possible.
86 */
87
88#if defined(CONFIG_40x)
c605782b 89#include <asm/pte-40x.h>
f88df14b 90#elif defined(CONFIG_44x)
c605782b 91#include <asm/pte-44x.h>
f88df14b 92#elif defined(CONFIG_FSL_BOOKE)
c605782b 93#include <asm/pte-fsl-booke.h>
f88df14b 94#elif defined(CONFIG_8xx)
c605782b 95#include <asm/pte-8xx.h>
f88df14b 96#else /* CONFIG_6xx */
c605782b 97#include <asm/pte-hash32.h>
4ee7084e 98#endif
f88df14b 99
c605782b
BH
100/* If _PAGE_SPECIAL is defined, then we advertise our support for it */
101#ifdef _PAGE_SPECIAL
9a62c051 102#define __HAVE_ARCH_PTE_SPECIAL
f88df14b
DG
103#endif
104
105/*
c605782b
BH
106 * Some bits are only used on some cpu families... Make sure that all
107 * the undefined gets defined as 0
f88df14b
DG
108 */
109#ifndef _PAGE_HASHPTE
110#define _PAGE_HASHPTE 0
111#endif
112#ifndef _PTE_NONE_MASK
113#define _PTE_NONE_MASK 0
114#endif
115#ifndef _PAGE_SHARED
116#define _PAGE_SHARED 0
117#endif
118#ifndef _PAGE_HWWRITE
119#define _PAGE_HWWRITE 0
120#endif
121#ifndef _PAGE_HWEXEC
122#define _PAGE_HWEXEC 0
123#endif
124#ifndef _PAGE_EXEC
125#define _PAGE_EXEC 0
126#endif
a1f242ff
BH
127#ifndef _PAGE_ENDIAN
128#define _PAGE_ENDIAN 0
129#endif
130#ifndef _PAGE_COHERENT
131#define _PAGE_COHERENT 0
132#endif
ff8dc769
KG
133#ifndef _PAGE_WRITETHRU
134#define _PAGE_WRITETHRU 0
135#endif
9a62c051
KG
136#ifndef _PAGE_SPECIAL
137#define _PAGE_SPECIAL 0
138#endif
f88df14b
DG
139#ifndef _PMD_PRESENT_MASK
140#define _PMD_PRESENT_MASK _PMD_PRESENT
141#endif
142#ifndef _PMD_SIZE
143#define _PMD_SIZE 0
144#define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE()
145#endif
146
8d30c14c
BH
147#define _PAGE_HPTEFLAGS _PAGE_HASHPTE
148
fbc78b07
PG
149#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | \
150 _PAGE_SPECIAL)
a1f242ff 151
f5ea64dc
DG
152#define PAGE_PROT_BITS (_PAGE_GUARDED | _PAGE_COHERENT | _PAGE_NO_CACHE | \
153 _PAGE_WRITETHRU | _PAGE_ENDIAN | \
154 _PAGE_USER | _PAGE_ACCESSED | \
155 _PAGE_RW | _PAGE_HWWRITE | _PAGE_DIRTY | \
156 _PAGE_EXEC | _PAGE_HWEXEC)
64b3d0e8 157
f88df14b 158/*
64b3d0e8
BH
159 * We define 2 sets of base prot bits, one for basic pages (ie,
160 * cacheable kernel and user pages) and one for non cacheable
161 * pages. We always set _PAGE_COHERENT when SMP is enabled or
162 * the processor might need it for DMA coherency.
f88df14b 163 */
64b3d0e8
BH
164#if defined(CONFIG_SMP) || defined(CONFIG_PPC_STD_MMU)
165#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
f88df14b
DG
166#else
167#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
168#endif
64b3d0e8
BH
169#define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE)
170
f88df14b
DG
171#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
172#define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE)
64b3d0e8 173#define _PAGE_KERNEL_NC (_PAGE_BASE_NC | _PAGE_SHARED | _PAGE_WRENABLE)
f88df14b
DG
174
175#ifdef CONFIG_PPC_STD_MMU
176/* On standard PPC MMU, no user access implies kernel read/write access,
177 * so to write-protect kernel memory we must turn on user access */
178#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER)
179#else
180#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED)
181#endif
182
64b3d0e8 183#define _PAGE_IO (_PAGE_KERNEL_NC | _PAGE_GUARDED)
f88df14b
DG
184#define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC)
185
221ac329
IN
186#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
187 defined(CONFIG_KPROBES)
f88df14b
DG
188/* We want the debuggers to be able to set breakpoints anywhere, so
189 * don't write protect the kernel text */
190#define _PAGE_RAM_TEXT _PAGE_RAM
191#else
192#define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC)
193#endif
194
195#define PAGE_NONE __pgprot(_PAGE_BASE)
196#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
197#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
198#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
199#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
200#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
201#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
202
203#define PAGE_KERNEL __pgprot(_PAGE_RAM)
204#define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO)
205
206/*
207 * The PowerPC can only do execute protection on a segment (256MB) basis,
208 * not on a page basis. So we consider execute permission the same as read.
209 * Also, write permissions imply read permissions.
210 * This is the closest we can get..
211 */
212#define __P000 PAGE_NONE
213#define __P001 PAGE_READONLY_X
214#define __P010 PAGE_COPY
215#define __P011 PAGE_COPY_X
216#define __P100 PAGE_READONLY
217#define __P101 PAGE_READONLY_X
218#define __P110 PAGE_COPY
219#define __P111 PAGE_COPY_X
220
221#define __S000 PAGE_NONE
222#define __S001 PAGE_READONLY_X
223#define __S010 PAGE_SHARED
224#define __S011 PAGE_SHARED_X
225#define __S100 PAGE_READONLY
226#define __S101 PAGE_READONLY_X
227#define __S110 PAGE_SHARED
228#define __S111 PAGE_SHARED_X
229
230#ifndef __ASSEMBLY__
231/* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a
232 * kernel without large page PMD support */
233extern unsigned long bad_call_to_PMD_PAGE_SIZE(void);
234
235/*
236 * Conversions between PTE values and page frame numbers.
237 */
238
239/* in some case we want to additionaly adjust where the pfn is in the pte to
240 * allow room for more flags */
241#if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
242#define PFN_SHIFT_OFFSET (PAGE_SHIFT + 8)
243#else
244#define PFN_SHIFT_OFFSET (PAGE_SHIFT)
245#endif
246
247#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET)
248#define pte_page(x) pfn_to_page(pte_pfn(x))
249
250#define pfn_pte(pfn, prot) __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\
251 pgprot_val(prot))
252#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
f88df14b
DG
253#endif /* __ASSEMBLY__ */
254
255#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
256#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
9bf2b5cd
KG
257#define pte_clear(mm, addr, ptep) \
258 do { pte_update(ptep, ~_PAGE_HASHPTE, 0); } while (0)
f88df14b
DG
259
260#define pmd_none(pmd) (!pmd_val(pmd))
261#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
262#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
263#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0)
264
265#ifndef __ASSEMBLY__
f88df14b
DG
266/*
267 * The following only work if pte_present() is true.
268 * Undefined behaviour if not..
269 */
f88df14b 270static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
f88df14b
DG
271static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
272static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
273static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
9a62c051 274static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
f88df14b 275
f88df14b
DG
276static inline pte_t pte_wrprotect(pte_t pte) {
277 pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
f88df14b
DG
278static inline pte_t pte_mkclean(pte_t pte) {
279 pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
280static inline pte_t pte_mkold(pte_t pte) {
281 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
282
f88df14b
DG
283static inline pte_t pte_mkwrite(pte_t pte) {
284 pte_val(pte) |= _PAGE_RW; return pte; }
285static inline pte_t pte_mkdirty(pte_t pte) {
286 pte_val(pte) |= _PAGE_DIRTY; return pte; }
287static inline pte_t pte_mkyoung(pte_t pte) {
288 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
7e675137 289static inline pte_t pte_mkspecial(pte_t pte) {
9a62c051 290 pte_val(pte) |= _PAGE_SPECIAL; return pte; }
f5ea64dc 291static inline pgprot_t pte_pgprot(pte_t pte)
a1f242ff 292{
f5ea64dc 293 return __pgprot(pte_val(pte) & PAGE_PROT_BITS);
a1f242ff 294}
f88df14b
DG
295
296static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
297{
298 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
299 return pte;
300}
301
302/*
303 * When flushing the tlb entry for a page, we also need to flush the hash
304 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S.
305 */
306extern int flush_hash_pages(unsigned context, unsigned long va,
307 unsigned long pmdval, int count);
308
309/* Add an HPTE to the hash table */
310extern void add_hash_page(unsigned context, unsigned long va,
311 unsigned long pmdval);
312
4ee7084e
BB
313/* Flush an entry from the TLB/hash table */
314extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
315 unsigned long address);
316
f88df14b 317/*
c605782b
BH
318 * PTE updates. This function is called whenever an existing
319 * valid PTE is updated. This does -not- include set_pte_at()
320 * which nowadays only sets a new PTE.
321 *
322 * Depending on the type of MMU, we may need to use atomic updates
323 * and the PTE may be either 32 or 64 bit wide. In the later case,
324 * when using atomic updates, only the low part of the PTE is
325 * accessed atomically.
f88df14b 326 *
c605782b
BH
327 * In addition, on 44x, we also maintain a global flag indicating
328 * that an executable user mapping was modified, which is needed
329 * to properly flush the virtually tagged instruction cache of
330 * those implementations.
f88df14b
DG
331 */
332#ifndef CONFIG_PTE_64BIT
1bc54c03
BH
333static inline unsigned long pte_update(pte_t *p,
334 unsigned long clr,
f88df14b
DG
335 unsigned long set)
336{
1bc54c03 337#ifdef PTE_ATOMIC_UPDATES
f88df14b
DG
338 unsigned long old, tmp;
339
340 __asm__ __volatile__("\
3411: lwarx %0,0,%3\n\
342 andc %1,%0,%4\n\
343 or %1,%1,%5\n"
344 PPC405_ERR77(0,%3)
345" stwcx. %1,0,%3\n\
346 bne- 1b"
347 : "=&r" (old), "=&r" (tmp), "=m" (*p)
348 : "r" (p), "r" (clr), "r" (set), "m" (*p)
349 : "cc" );
1bc54c03
BH
350#else /* PTE_ATOMIC_UPDATES */
351 unsigned long old = pte_val(*p);
352 *p = __pte((old & ~clr) | set);
353#endif /* !PTE_ATOMIC_UPDATES */
354
b98ac05d
BH
355#ifdef CONFIG_44x
356 if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
357 icache_44x_need_flush = 1;
358#endif
f88df14b
DG
359 return old;
360}
1bc54c03 361#else /* CONFIG_PTE_64BIT */
1bc54c03
BH
362static inline unsigned long long pte_update(pte_t *p,
363 unsigned long clr,
364 unsigned long set)
f88df14b 365{
1bc54c03 366#ifdef PTE_ATOMIC_UPDATES
f88df14b
DG
367 unsigned long long old;
368 unsigned long tmp;
369
370 __asm__ __volatile__("\
3711: lwarx %L0,0,%4\n\
372 lwzx %0,0,%3\n\
373 andc %1,%L0,%5\n\
374 or %1,%1,%6\n"
375 PPC405_ERR77(0,%3)
376" stwcx. %1,0,%4\n\
377 bne- 1b"
378 : "=&r" (old), "=&r" (tmp), "=m" (*p)
379 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p)
380 : "cc" );
1bc54c03
BH
381#else /* PTE_ATOMIC_UPDATES */
382 unsigned long long old = pte_val(*p);
585583d9 383 *p = __pte((old & ~(unsigned long long)clr) | set);
1bc54c03
BH
384#endif /* !PTE_ATOMIC_UPDATES */
385
b98ac05d
BH
386#ifdef CONFIG_44x
387 if ((old & _PAGE_USER) && (old & _PAGE_HWEXEC))
388 icache_44x_need_flush = 1;
389#endif
f88df14b
DG
390 return old;
391}
1bc54c03 392#endif /* CONFIG_PTE_64BIT */
f88df14b 393
f88df14b 394/*
bf2737f7
BB
395 * 2.6 calls this without flushing the TLB entry; this is wrong
396 * for our hash-based implementation, we fix that up here.
f88df14b
DG
397 */
398#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
399static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep)
400{
401 unsigned long old;
402 old = pte_update(ptep, _PAGE_ACCESSED, 0);
403#if _PAGE_HASHPTE != 0
404 if (old & _PAGE_HASHPTE) {
405 unsigned long ptephys = __pa(ptep) & PAGE_MASK;
406 flush_hash_pages(context, addr, ptephys, 1);
407 }
408#endif
409 return (old & _PAGE_ACCESSED) != 0;
410}
411#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
412 __ptep_test_and_clear_young((__vma)->vm_mm->context.id, __addr, __ptep)
413
f88df14b
DG
414#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
415static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
416 pte_t *ptep)
417{
418 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
419}
420
421#define __HAVE_ARCH_PTEP_SET_WRPROTECT
422static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
423 pte_t *ptep)
424{
425 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
426}
016b33c4
AW
427static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
428 unsigned long addr, pte_t *ptep)
429{
430 ptep_set_wrprotect(mm, addr, ptep);
431}
432
f88df14b 433
8d30c14c 434static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
f88df14b
DG
435{
436 unsigned long bits = pte_val(entry) &
8d30c14c
BH
437 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW |
438 _PAGE_HWEXEC | _PAGE_EXEC);
f88df14b
DG
439 pte_update(ptep, 0, bits);
440}
441
f88df14b
DG
442#define __HAVE_ARCH_PTE_SAME
443#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
444
445/*
446 * Note that on Book E processors, the pmd contains the kernel virtual
447 * (lowmem) address of the pte page. The physical address is less useful
448 * because everything runs with translation enabled (even the TLB miss
449 * handler). On everything else the pmd contains the physical address
450 * of the pte page. -- paulus
451 */
452#ifndef CONFIG_BOOKE
453#define pmd_page_vaddr(pmd) \
454 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
455#define pmd_page(pmd) \
456 (mem_map + (pmd_val(pmd) >> PAGE_SHIFT))
457#else
458#define pmd_page_vaddr(pmd) \
459 ((unsigned long) (pmd_val(pmd) & PAGE_MASK))
460#define pmd_page(pmd) \
af892e0f 461 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
f88df14b
DG
462#endif
463
464/* to find an entry in a kernel page-table-directory */
465#define pgd_offset_k(address) pgd_offset(&init_mm, address)
466
467/* to find an entry in a page-table-directory */
468#define pgd_index(address) ((address) >> PGDIR_SHIFT)
469#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
470
f88df14b
DG
471/* Find an entry in the third-level page table.. */
472#define pte_index(address) \
473 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
474#define pte_offset_kernel(dir, addr) \
475 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
476#define pte_offset_map(dir, addr) \
477 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr))
478#define pte_offset_map_nested(dir, addr) \
479 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr))
480
481#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
482#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
483
f88df14b
DG
484/*
485 * Encode and decode a swap entry.
486 * Note that the bits we use in a PTE for representing a swap entry
487 * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the
488 *_PAGE_HASHPTE bit (if used). -- paulus
489 */
490#define __swp_type(entry) ((entry).val & 0x1f)
491#define __swp_offset(entry) ((entry).val >> 5)
492#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
493#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
494#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
495
496/* Encode and decode a nonlinear file mapping entry */
497#define PTE_FILE_MAX_BITS 29
498#define pte_to_pgoff(pte) (pte_val(pte) >> 3)
499#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE })
500
f88df14b
DG
501/*
502 * No page table caches to initialise
503 */
504#define pgtable_cache_init() do { } while (0)
505
506extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep,
507 pmd_t **pmdp);
508
509#endif /* !__ASSEMBLY__ */
510
511#endif /* _ASM_POWERPC_PGTABLE_PPC32_H */
This page took 0.203699 seconds and 5 git commands to generate.