Merge commit 'jwb/next' into next
[deliverable/linux.git] / arch / powerpc / include / asm / pgtable-ppc64.h
CommitLineData
f88df14b
DG
1#ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2#define _ASM_POWERPC_PGTABLE_PPC64_H_
3/*
4 * This file contains the functions and defines necessary to modify and use
5 * the ppc64 hashed page table.
6 */
7
8#ifndef __ASSEMBLY__
9#include <linux/stddef.h>
f88df14b 10#include <asm/tlbflush.h>
f88df14b
DG
11#endif /* __ASSEMBLY__ */
12
13#ifdef CONFIG_PPC_64K_PAGES
14#include <asm/pgtable-64k.h>
15#else
16#include <asm/pgtable-4k.h>
17#endif
18
19#define FIRST_USER_ADDRESS 0
20
21/*
22 * Size of EA range mapped by our pagetables.
23 */
24#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
25 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
3d5134ee 26#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
f88df14b
DG
27
28#if TASK_SIZE_USER64 > PGTABLE_RANGE
29#error TASK_SIZE_USER64 exceeds pagetable range
30#endif
31
32#if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
33#error TASK_SIZE_USER64 exceeds user VSID range
34#endif
35
3d5134ee 36
f88df14b
DG
37/*
38 * Define the address range of the vmalloc VM area.
39 */
40#define VMALLOC_START ASM_CONST(0xD000000000000000)
3d5134ee 41#define VMALLOC_SIZE (PGTABLE_RANGE >> 1)
f88df14b
DG
42#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
43
44/*
3d5134ee
BH
45 * Define the address ranges for MMIO and IO space :
46 *
47 * ISA_IO_BASE = VMALLOC_END, 64K reserved area
48 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
49 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
f88df14b 50 */
3d5134ee
BH
51#define FULL_IO_SIZE 0x80000000ul
52#define ISA_IO_BASE (VMALLOC_END)
53#define ISA_IO_END (VMALLOC_END + 0x10000ul)
54#define PHB_IO_BASE (ISA_IO_END)
55#define PHB_IO_END (VMALLOC_END + FULL_IO_SIZE)
56#define IOREMAP_BASE (PHB_IO_END)
57#define IOREMAP_END (VMALLOC_START + PGTABLE_RANGE)
f88df14b
DG
58
59/*
60 * Region IDs
61 */
62#define REGION_SHIFT 60UL
63#define REGION_MASK (0xfUL << REGION_SHIFT)
64#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
65
66#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
67#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
cec08e7a 68#define VMEMMAP_REGION_ID (0xfUL)
f88df14b
DG
69#define USER_REGION_ID (0UL)
70
d29eff7b 71/*
cec08e7a 72 * Defines the address of the vmemap area, in its own region
d29eff7b 73 */
cec08e7a
BH
74#define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT)
75#define vmemmap ((struct page *)VMEMMAP_BASE)
76
d29eff7b 77
f88df14b
DG
78/*
79 * Common bits in a linux-style PTE. These match the bits in the
80 * (hardware-defined) PowerPC PTE as closely as possible. Additional
81 * bits may be defined in pgtable-*.h
82 */
83#define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */
84#define _PAGE_USER 0x0002 /* matches one of the PP bits */
85#define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */
86#define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */
87#define _PAGE_GUARDED 0x0008
88#define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */
89#define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */
90#define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */
91#define _PAGE_DIRTY 0x0080 /* C: page changed */
92#define _PAGE_ACCESSED 0x0100 /* R: page referenced */
93#define _PAGE_RW 0x0200 /* software: user write access allowed */
f88df14b
DG
94#define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */
95
aba46c50
DK
96/* Strong Access Ordering */
97#define _PAGE_SAO (_PAGE_WRITETHRU | _PAGE_NO_CACHE | _PAGE_COHERENT)
98
f88df14b
DG
99#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT)
100
101#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY)
102
15cb1cc9 103/* __pgprot defined in arch/powerpc/include/asm/page.h */
f88df14b
DG
104#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
105
106#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER)
107#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC)
108#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER)
109#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
110#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER)
111#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
112#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE)
113#define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \
114 _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED)
115#define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC)
116
117#define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE)
118#define HAVE_PAGE_AGP
119
f5ea64dc
DG
120#define PAGE_PROT_BITS (_PAGE_GUARDED | _PAGE_COHERENT | \
121 _PAGE_NO_CACHE | _PAGE_WRITETHRU | \
122 _PAGE_4K_PFN | _PAGE_RW | _PAGE_USER | \
123 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_EXEC)
f88df14b
DG
124/* PTEIDX nibble */
125#define _PTEIDX_SECONDARY 0x8
126#define _PTEIDX_GROUP_IX 0x7
127
8d30c14c
BH
128/* To make some generic powerpc code happy */
129#define _PAGE_HWEXEC 0
f88df14b
DG
130
131/*
132 * POWER4 and newer have per page execute protection, older chips can only
133 * do this on a segment (256MB) basis.
134 *
135 * Also, write permissions imply read permissions.
136 * This is the closest we can get..
137 *
138 * Note due to the way vm flags are laid out, the bits are XWR
139 */
140#define __P000 PAGE_NONE
141#define __P001 PAGE_READONLY
142#define __P010 PAGE_COPY
143#define __P011 PAGE_COPY
144#define __P100 PAGE_READONLY_X
145#define __P101 PAGE_READONLY_X
146#define __P110 PAGE_COPY_X
147#define __P111 PAGE_COPY_X
148
149#define __S000 PAGE_NONE
150#define __S001 PAGE_READONLY
151#define __S010 PAGE_SHARED
152#define __S011 PAGE_SHARED
153#define __S100 PAGE_READONLY_X
154#define __S101 PAGE_READONLY_X
155#define __S110 PAGE_SHARED_X
156#define __S111 PAGE_SHARED_X
157
94ee815c 158#ifdef CONFIG_PPC_MM_SLICES
f88df14b
DG
159#define HAVE_ARCH_UNMAPPED_AREA
160#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
94ee815c 161#endif /* CONFIG_PPC_MM_SLICES */
f88df14b
DG
162
163#ifndef __ASSEMBLY__
164
165/*
166 * Conversion functions: convert a page and protection to a page entry,
167 * and a page entry and page directory to the page they refer to.
168 *
169 * mk_pte takes a (struct page *) as input
170 */
171#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
172
173static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
174{
175 pte_t pte;
176
177
178 pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot);
179 return pte;
180}
181
182#define pte_modify(_pte, newprot) \
183 (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)))
184
185#define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0)
186#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT)
187
188/* pte_clear moved to later in this file */
189
190#define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT)))
191#define pte_page(x) pfn_to_page(pte_pfn(x))
192
193#define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
194#define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
195
196#define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
197#define pmd_none(pmd) (!pmd_val(pmd))
198#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
199 || (pmd_val(pmd) & PMD_BAD_BITS))
200#define pmd_present(pmd) (pmd_val(pmd) != 0)
201#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
202#define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
203#define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd))
204
205#define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
206#define pud_none(pud) (!pud_val(pud))
207#define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
208 || (pud_val(pud) & PUD_BAD_BITS))
209#define pud_present(pud) (pud_val(pud) != 0)
210#define pud_clear(pudp) (pud_val(*(pudp)) = 0)
211#define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
212#define pud_page(pud) virt_to_page(pud_page_vaddr(pud))
213
214#define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
215
216/*
217 * Find an entry in a page-table-directory. We combine the address region
218 * (the high order N bits) and the pgd portion of the address.
219 */
220/* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
221#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
222
223#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
224
225#define pmd_offset(pudp,addr) \
226 (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
227
228#define pte_offset_kernel(dir,addr) \
229 (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
230
231#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
232#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
233#define pte_unmap(pte) do { } while(0)
234#define pte_unmap_nested(pte) do { } while(0)
235
236/* to find an entry in a kernel page-table-directory */
237/* This now only contains the vmalloc pages */
238#define pgd_offset_k(address) pgd_offset(&init_mm, address)
239
240/*
241 * The following only work if pte_present() is true.
242 * Undefined behaviour if not..
243 */
f88df14b 244static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;}
f88df14b
DG
245static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;}
246static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;}
247static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;}
83ac6a1e 248static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; }
f88df14b 249
f88df14b
DG
250static inline pte_t pte_wrprotect(pte_t pte) {
251 pte_val(pte) &= ~(_PAGE_RW); return pte; }
252static inline pte_t pte_mkclean(pte_t pte) {
253 pte_val(pte) &= ~(_PAGE_DIRTY); return pte; }
254static inline pte_t pte_mkold(pte_t pte) {
255 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
f88df14b
DG
256static inline pte_t pte_mkwrite(pte_t pte) {
257 pte_val(pte) |= _PAGE_RW; return pte; }
258static inline pte_t pte_mkdirty(pte_t pte) {
259 pte_val(pte) |= _PAGE_DIRTY; return pte; }
260static inline pte_t pte_mkyoung(pte_t pte) {
261 pte_val(pte) |= _PAGE_ACCESSED; return pte; }
262static inline pte_t pte_mkhuge(pte_t pte) {
263 return pte; }
7e675137 264static inline pte_t pte_mkspecial(pte_t pte) {
83ac6a1e 265 pte_val(pte) |= _PAGE_SPECIAL; return pte; }
f5ea64dc 266static inline pgprot_t pte_pgprot(pte_t pte)
a1f242ff 267{
f5ea64dc 268 return __pgprot(pte_val(pte) & PAGE_PROT_BITS);
a1f242ff 269}
f88df14b
DG
270
271/* Atomic PTE updates */
272static inline unsigned long pte_update(struct mm_struct *mm,
273 unsigned long addr,
274 pte_t *ptep, unsigned long clr,
275 int huge)
276{
277 unsigned long old, tmp;
278
279 __asm__ __volatile__(
280 "1: ldarx %0,0,%3 # pte_update\n\
281 andi. %1,%0,%6\n\
282 bne- 1b \n\
283 andc %1,%0,%4 \n\
284 stdcx. %1,0,%3 \n\
285 bne- 1b"
286 : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
287 : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
288 : "cc" );
289
8d30c14c
BH
290 /* huge pages use the old page table lock */
291 if (!huge)
292 assert_pte_locked(mm, addr);
293
f88df14b
DG
294 if (old & _PAGE_HASHPTE)
295 hpte_need_flush(mm, addr, ptep, old, huge);
296 return old;
297}
298
299static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
300 unsigned long addr, pte_t *ptep)
301{
302 unsigned long old;
303
304 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
305 return 0;
306 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
307 return (old & _PAGE_ACCESSED) != 0;
308}
309#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
310#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
311({ \
312 int __r; \
313 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
314 __r; \
315})
316
f88df14b
DG
317#define __HAVE_ARCH_PTEP_SET_WRPROTECT
318static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
319 pte_t *ptep)
320{
321 unsigned long old;
322
323 if ((pte_val(*ptep) & _PAGE_RW) == 0)
324 return;
325 old = pte_update(mm, addr, ptep, _PAGE_RW, 0);
326}
327
016b33c4
AW
328static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
329 unsigned long addr, pte_t *ptep)
330{
331 unsigned long old;
332
86df8642
DG
333 if ((pte_val(*ptep) & _PAGE_RW) == 0)
334 return;
016b33c4
AW
335 old = pte_update(mm, addr, ptep, _PAGE_RW, 1);
336}
f88df14b
DG
337
338/*
339 * We currently remove entries from the hashtable regardless of whether
340 * the entry was young or dirty. The generic routines only flush if the
341 * entry was young or dirty which is not good enough.
342 *
343 * We should be more intelligent about this but for the moment we override
344 * these functions and force a tlb flush unconditionally
345 */
346#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
347#define ptep_clear_flush_young(__vma, __address, __ptep) \
348({ \
349 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
350 __ptep); \
351 __young; \
352})
353
f88df14b
DG
354#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
355static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
356 unsigned long addr, pte_t *ptep)
357{
358 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
359 return __pte(old);
360}
361
362static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
363 pte_t * ptep)
364{
365 pte_update(mm, addr, ptep, ~0UL, 0);
366}
367
f88df14b
DG
368
369/* Set the dirty and/or accessed bits atomically in a linux PTE, this
370 * function doesn't need to flush the hash entry
371 */
8d30c14c 372static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
f88df14b
DG
373{
374 unsigned long bits = pte_val(entry) &
375 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
376 unsigned long old, tmp;
377
378 __asm__ __volatile__(
379 "1: ldarx %0,0,%4\n\
380 andi. %1,%0,%6\n\
381 bne- 1b \n\
382 or %0,%3,%0\n\
383 stdcx. %0,0,%4\n\
384 bne- 1b"
385 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
386 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
387 :"cc");
388}
f88df14b 389
f88df14b
DG
390#define __HAVE_ARCH_PTE_SAME
391#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
392
393#define pte_ERROR(e) \
394 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
395#define pmd_ERROR(e) \
396 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
397#define pgd_ERROR(e) \
398 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
399
f88df14b
DG
400/* Encode and de-code a swap entry */
401#define __swp_type(entry) (((entry).val >> 1) & 0x3f)
402#define __swp_offset(entry) ((entry).val >> 8)
403#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
404#define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
405#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
406#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
407#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
408#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
409
f88df14b
DG
410void pgtable_cache_init(void);
411
412/*
413 * find_linux_pte returns the address of a linux pte for a given
414 * effective address and directory. If not found, it returns zero.
415 */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
416{
417 pgd_t *pg;
418 pud_t *pu;
419 pmd_t *pm;
420 pte_t *pt = NULL;
421
422 pg = pgdir + pgd_index(ea);
423 if (!pgd_none(*pg)) {
424 pu = pud_offset(pg, ea);
425 if (!pud_none(*pu)) {
426 pm = pmd_offset(pu, ea);
427 if (pmd_present(*pm))
428 pt = pte_offset_kernel(pm, ea);
429 }
430 }
431 return pt;
432}
433
ce0ad7f0
NP
434pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long address);
435
f88df14b
DG
436#endif /* __ASSEMBLY__ */
437
438#endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */
This page took 0.219354 seconds and 5 git commands to generate.