powerpc: Shield code specific to 64-bit server processors
[deliverable/linux.git] / arch / powerpc / include / asm / pgtable-ppc64.h
CommitLineData
f88df14b
DG
1#ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2#define _ASM_POWERPC_PGTABLE_PPC64_H_
3/*
4 * This file contains the functions and defines necessary to modify and use
5 * the ppc64 hashed page table.
6 */
7
8#ifndef __ASSEMBLY__
9#include <linux/stddef.h>
f88df14b 10#include <asm/tlbflush.h>
f88df14b
DG
11#endif /* __ASSEMBLY__ */
12
13#ifdef CONFIG_PPC_64K_PAGES
c605782b 14#include <asm/pgtable-ppc64-64k.h>
f88df14b 15#else
c605782b 16#include <asm/pgtable-ppc64-4k.h>
f88df14b
DG
17#endif
18
19#define FIRST_USER_ADDRESS 0
20
21/*
22 * Size of EA range mapped by our pagetables.
23 */
24#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
25 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
3d5134ee 26#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
f88df14b 27
c605782b
BH
28
29/* Some sanity checking */
f88df14b
DG
30#if TASK_SIZE_USER64 > PGTABLE_RANGE
31#error TASK_SIZE_USER64 exceeds pagetable range
32#endif
33
94491685 34#ifdef CONFIG_PPC_STD_MMU_64
f88df14b
DG
35#if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT))
36#error TASK_SIZE_USER64 exceeds user VSID range
37#endif
94491685 38#endif
f88df14b
DG
39
40/*
41 * Define the address range of the vmalloc VM area.
42 */
43#define VMALLOC_START ASM_CONST(0xD000000000000000)
3d5134ee 44#define VMALLOC_SIZE (PGTABLE_RANGE >> 1)
f88df14b
DG
45#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE)
46
47/*
3d5134ee
BH
48 * Define the address ranges for MMIO and IO space :
49 *
50 * ISA_IO_BASE = VMALLOC_END, 64K reserved area
51 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
52 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
f88df14b 53 */
3d5134ee
BH
54#define FULL_IO_SIZE 0x80000000ul
55#define ISA_IO_BASE (VMALLOC_END)
56#define ISA_IO_END (VMALLOC_END + 0x10000ul)
57#define PHB_IO_BASE (ISA_IO_END)
58#define PHB_IO_END (VMALLOC_END + FULL_IO_SIZE)
59#define IOREMAP_BASE (PHB_IO_END)
60#define IOREMAP_END (VMALLOC_START + PGTABLE_RANGE)
f88df14b
DG
61
62/*
63 * Region IDs
64 */
65#define REGION_SHIFT 60UL
66#define REGION_MASK (0xfUL << REGION_SHIFT)
67#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT)
68
69#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START))
70#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET))
cec08e7a 71#define VMEMMAP_REGION_ID (0xfUL)
f88df14b
DG
72#define USER_REGION_ID (0UL)
73
d29eff7b 74/*
cec08e7a 75 * Defines the address of the vmemap area, in its own region
d29eff7b 76 */
cec08e7a
BH
77#define VMEMMAP_BASE (VMEMMAP_REGION_ID << REGION_SHIFT)
78#define vmemmap ((struct page *)VMEMMAP_BASE)
79
d29eff7b 80
f88df14b 81/*
c605782b 82 * Include the PTE bits definitions
f88df14b 83 */
c605782b 84#include <asm/pte-hash64.h>
71087002 85#include <asm/pte-common.h>
c605782b 86
f88df14b 87
94ee815c 88#ifdef CONFIG_PPC_MM_SLICES
f88df14b
DG
89#define HAVE_ARCH_UNMAPPED_AREA
90#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
94ee815c 91#endif /* CONFIG_PPC_MM_SLICES */
f88df14b
DG
92
93#ifndef __ASSEMBLY__
94
c605782b
BH
95/*
96 * This is the default implementation of various PTE accessors, it's
97 * used in all cases except Book3S with 64K pages where we have a
98 * concept of sub-pages
99 */
100#ifndef __real_pte
101
102#ifdef STRICT_MM_TYPECHECKS
103#define __real_pte(e,p) ((real_pte_t){(e)})
104#define __rpte_to_pte(r) ((r).pte)
105#else
106#define __real_pte(e,p) (e)
107#define __rpte_to_pte(r) (__pte(r))
108#endif
109#define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> 12)
110
111#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
112 do { \
113 index = 0; \
114 shift = mmu_psize_defs[psize].shift; \
115
116#define pte_iterate_hashed_end() } while(0)
117
118#ifdef CONFIG_PPC_HAS_HASH_64K
119#define pte_pagesize_index(mm, addr, pte) get_slice_psize(mm, addr)
120#else
121#define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
122#endif
123
124#endif /* __real_pte */
125
126
f88df14b
DG
127/* pte_clear moved to later in this file */
128
f88df14b
DG
129#define PMD_BAD_BITS (PTE_TABLE_SIZE-1)
130#define PUD_BAD_BITS (PMD_TABLE_SIZE-1)
131
132#define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval))
133#define pmd_none(pmd) (!pmd_val(pmd))
134#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \
135 || (pmd_val(pmd) & PMD_BAD_BITS))
136#define pmd_present(pmd) (pmd_val(pmd) != 0)
137#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0)
138#define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS)
139#define pmd_page(pmd) virt_to_page(pmd_page_vaddr(pmd))
140
141#define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval))
142#define pud_none(pud) (!pud_val(pud))
143#define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \
144 || (pud_val(pud) & PUD_BAD_BITS))
145#define pud_present(pud) (pud_val(pud) != 0)
146#define pud_clear(pudp) (pud_val(*(pudp)) = 0)
147#define pud_page_vaddr(pud) (pud_val(pud) & ~PUD_MASKED_BITS)
148#define pud_page(pud) virt_to_page(pud_page_vaddr(pud))
149
150#define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
151
152/*
153 * Find an entry in a page-table-directory. We combine the address region
154 * (the high order N bits) and the pgd portion of the address.
155 */
156/* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */
157#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff)
158
159#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
160
161#define pmd_offset(pudp,addr) \
162 (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
163
164#define pte_offset_kernel(dir,addr) \
165 (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
166
167#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
168#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr))
169#define pte_unmap(pte) do { } while(0)
170#define pte_unmap_nested(pte) do { } while(0)
171
172/* to find an entry in a kernel page-table-directory */
173/* This now only contains the vmalloc pages */
174#define pgd_offset_k(address) pgd_offset(&init_mm, address)
175
f88df14b
DG
176
177/* Atomic PTE updates */
178static inline unsigned long pte_update(struct mm_struct *mm,
179 unsigned long addr,
180 pte_t *ptep, unsigned long clr,
181 int huge)
182{
a033a487 183#ifdef PTE_ATOMIC_UPDATES
f88df14b
DG
184 unsigned long old, tmp;
185
186 __asm__ __volatile__(
187 "1: ldarx %0,0,%3 # pte_update\n\
188 andi. %1,%0,%6\n\
189 bne- 1b \n\
190 andc %1,%0,%4 \n\
191 stdcx. %1,0,%3 \n\
192 bne- 1b"
193 : "=&r" (old), "=&r" (tmp), "=m" (*ptep)
194 : "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY)
195 : "cc" );
a033a487
BH
196#else
197 unsigned long old = pte_val(*ptep);
198 *ptep = __pte(old & ~clr);
199#endif
8d30c14c
BH
200 /* huge pages use the old page table lock */
201 if (!huge)
202 assert_pte_locked(mm, addr);
203
94491685 204#ifdef CONFIG_PPC_STD_MMU_64
f88df14b
DG
205 if (old & _PAGE_HASHPTE)
206 hpte_need_flush(mm, addr, ptep, old, huge);
94491685
BH
207#endif
208
f88df14b
DG
209 return old;
210}
211
212static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
213 unsigned long addr, pte_t *ptep)
214{
215 unsigned long old;
216
217 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
218 return 0;
219 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0);
220 return (old & _PAGE_ACCESSED) != 0;
221}
222#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
223#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
224({ \
225 int __r; \
226 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
227 __r; \
228})
229
f88df14b
DG
230#define __HAVE_ARCH_PTEP_SET_WRPROTECT
231static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
232 pte_t *ptep)
233{
234 unsigned long old;
235
236 if ((pte_val(*ptep) & _PAGE_RW) == 0)
237 return;
238 old = pte_update(mm, addr, ptep, _PAGE_RW, 0);
239}
240
016b33c4
AW
241static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
242 unsigned long addr, pte_t *ptep)
243{
244 unsigned long old;
245
86df8642
DG
246 if ((pte_val(*ptep) & _PAGE_RW) == 0)
247 return;
016b33c4
AW
248 old = pte_update(mm, addr, ptep, _PAGE_RW, 1);
249}
f88df14b
DG
250
251/*
252 * We currently remove entries from the hashtable regardless of whether
253 * the entry was young or dirty. The generic routines only flush if the
254 * entry was young or dirty which is not good enough.
255 *
256 * We should be more intelligent about this but for the moment we override
257 * these functions and force a tlb flush unconditionally
258 */
259#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
260#define ptep_clear_flush_young(__vma, __address, __ptep) \
261({ \
262 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
263 __ptep); \
264 __young; \
265})
266
f88df14b
DG
267#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
268static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
269 unsigned long addr, pte_t *ptep)
270{
271 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0);
272 return __pte(old);
273}
274
275static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
276 pte_t * ptep)
277{
278 pte_update(mm, addr, ptep, ~0UL, 0);
279}
280
f88df14b
DG
281
282/* Set the dirty and/or accessed bits atomically in a linux PTE, this
283 * function doesn't need to flush the hash entry
284 */
8d30c14c 285static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
f88df14b
DG
286{
287 unsigned long bits = pte_val(entry) &
8d1cf34e
BH
288 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW |
289 _PAGE_EXEC | _PAGE_HWEXEC);
a033a487
BH
290
291#ifdef PTE_ATOMIC_UPDATES
f88df14b
DG
292 unsigned long old, tmp;
293
294 __asm__ __volatile__(
295 "1: ldarx %0,0,%4\n\
296 andi. %1,%0,%6\n\
297 bne- 1b \n\
298 or %0,%3,%0\n\
299 stdcx. %0,0,%4\n\
300 bne- 1b"
301 :"=&r" (old), "=&r" (tmp), "=m" (*ptep)
302 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
303 :"cc");
a033a487
BH
304#else
305 unsigned long old = pte_val(*ptep);
306 *ptep = __pte(old | bits);
307#endif
f88df14b 308}
f88df14b 309
f88df14b
DG
310#define __HAVE_ARCH_PTE_SAME
311#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
312
313#define pte_ERROR(e) \
314 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
315#define pmd_ERROR(e) \
316 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
317#define pgd_ERROR(e) \
318 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
319
f88df14b
DG
320/* Encode and de-code a swap entry */
321#define __swp_type(entry) (((entry).val >> 1) & 0x3f)
322#define __swp_offset(entry) ((entry).val >> 8)
323#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
324#define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
325#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT })
326#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT)
327#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE})
328#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT)
329
f88df14b
DG
330void pgtable_cache_init(void);
331
332/*
333 * find_linux_pte returns the address of a linux pte for a given
334 * effective address and directory. If not found, it returns zero.
335 */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea)
336{
337 pgd_t *pg;
338 pud_t *pu;
339 pmd_t *pm;
340 pte_t *pt = NULL;
341
342 pg = pgdir + pgd_index(ea);
343 if (!pgd_none(*pg)) {
344 pu = pud_offset(pg, ea);
345 if (!pud_none(*pu)) {
346 pm = pmd_offset(pu, ea);
347 if (pmd_present(*pm))
348 pt = pte_offset_kernel(pm, ea);
349 }
350 }
351 return pt;
352}
353
ce0ad7f0
NP
354pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long address);
355
f88df14b
DG
356#endif /* __ASSEMBLY__ */
357
358#endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */
This page took 0.231 seconds and 5 git commands to generate.