powerpc/corenet64: compile with CONFIG_E{5,6}500_CPU well
[deliverable/linux.git] / arch / powerpc / include / asm / ppc_asm.h
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
1da177e4 3 */
5f7c6907
KG
4#ifndef _ASM_POWERPC_PPC_ASM_H
5#define _ASM_POWERPC_PPC_ASM_H
6
9203fc9c 7#include <linux/init.h>
40ef8cbc 8#include <linux/stringify.h>
3ddfbcf1 9#include <asm/asm-compat.h>
9c75a31c 10#include <asm/processor.h>
16c57b36 11#include <asm/ppc-opcode.h>
cf9efce0 12#include <asm/firmware.h>
40ef8cbc 13
3ddfbcf1
DG
14#ifndef __ASSEMBLY__
15#error __FILE__ should only be used in assembler files
16#else
17
18#define SZL (BITS_PER_LONG/8)
1da177e4 19
c6622f63
PM
20/*
21 * Stuff for accurate CPU time accounting.
22 * These macros handle transitions between user and system state
23 * in exception entry and exit and accumulate time to the
24 * user_time and system_time fields in the paca.
25 */
26
abf917cd 27#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
c6622f63
PM
28#define ACCOUNT_CPU_USER_ENTRY(ra, rb)
29#define ACCOUNT_CPU_USER_EXIT(ra, rb)
cf9efce0 30#define ACCOUNT_STOLEN_TIME
c6622f63
PM
31#else
32#define ACCOUNT_CPU_USER_ENTRY(ra, rb) \
cf9efce0
PM
33 MFTB(ra); /* get timebase */ \
34 ld rb,PACA_STARTTIME_USER(r13); \
35 std ra,PACA_STARTTIME(r13); \
c6622f63
PM
36 subf rb,rb,ra; /* subtract start value */ \
37 ld ra,PACA_USER_TIME(r13); \
38 add ra,ra,rb; /* add on to user time */ \
39 std ra,PACA_USER_TIME(r13); \
c6622f63
PM
40
41#define ACCOUNT_CPU_USER_EXIT(ra, rb) \
cf9efce0
PM
42 MFTB(ra); /* get timebase */ \
43 ld rb,PACA_STARTTIME(r13); \
44 std ra,PACA_STARTTIME_USER(r13); \
c6622f63
PM
45 subf rb,rb,ra; /* subtract start value */ \
46 ld ra,PACA_SYSTEM_TIME(r13); \
cf9efce0
PM
47 add ra,ra,rb; /* add on to system time */ \
48 std ra,PACA_SYSTEM_TIME(r13)
49
50#ifdef CONFIG_PPC_SPLPAR
51#define ACCOUNT_STOLEN_TIME \
52BEGIN_FW_FTR_SECTION; \
53 beq 33f; \
54 /* from user - see if there are any DTL entries to process */ \
55 ld r10,PACALPPACAPTR(r13); /* get ptr to VPA */ \
56 ld r11,PACA_DTL_RIDX(r13); /* get log read index */ \
7ffcf8ec
AB
57 addi r10,r10,LPPACA_DTLIDX; \
58 LDX_BE r10,0,r10; /* get log write index */ \
cf9efce0
PM
59 cmpd cr1,r11,r10; \
60 beq+ cr1,33f; \
61 bl .accumulate_stolen_time; \
990118c8
BH
62 ld r12,_MSR(r1); \
63 andi. r10,r12,MSR_PR; /* Restore cr0 (coming from user) */ \
cf9efce0
PM
6433: \
65END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR)
66
67#else /* CONFIG_PPC_SPLPAR */
68#define ACCOUNT_STOLEN_TIME
69
70#endif /* CONFIG_PPC_SPLPAR */
71
abf917cd 72#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
c6622f63 73
1da177e4
LT
74/*
75 * Macros for storing registers into and loading registers from
76 * exception frames.
77 */
5f7c6907
KG
78#ifdef __powerpc64__
79#define SAVE_GPR(n, base) std n,GPR0+8*(n)(base)
80#define REST_GPR(n, base) ld n,GPR0+8*(n)(base)
81#define SAVE_NVGPRS(base) SAVE_8GPRS(14, base); SAVE_10GPRS(22, base)
82#define REST_NVGPRS(base) REST_8GPRS(14, base); REST_10GPRS(22, base)
83#else
1da177e4 84#define SAVE_GPR(n, base) stw n,GPR0+4*(n)(base)
5f7c6907
KG
85#define REST_GPR(n, base) lwz n,GPR0+4*(n)(base)
86#define SAVE_NVGPRS(base) SAVE_GPR(13, base); SAVE_8GPRS(14, base); \
87 SAVE_10GPRS(22, base)
88#define REST_NVGPRS(base) REST_GPR(13, base); REST_8GPRS(14, base); \
89 REST_10GPRS(22, base)
90#endif
91
1da177e4
LT
92#define SAVE_2GPRS(n, base) SAVE_GPR(n, base); SAVE_GPR(n+1, base)
93#define SAVE_4GPRS(n, base) SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base)
94#define SAVE_8GPRS(n, base) SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base)
95#define SAVE_10GPRS(n, base) SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base)
1da177e4
LT
96#define REST_2GPRS(n, base) REST_GPR(n, base); REST_GPR(n+1, base)
97#define REST_4GPRS(n, base) REST_2GPRS(n, base); REST_2GPRS(n+2, base)
98#define REST_8GPRS(n, base) REST_4GPRS(n, base); REST_4GPRS(n+4, base)
99#define REST_10GPRS(n, base) REST_8GPRS(n, base); REST_2GPRS(n+8, base)
100
de79f7b9 101#define SAVE_FPR(n, base) stfd n,8*TS_FPRWIDTH*(n)(base)
1da177e4
LT
102#define SAVE_2FPRS(n, base) SAVE_FPR(n, base); SAVE_FPR(n+1, base)
103#define SAVE_4FPRS(n, base) SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
104#define SAVE_8FPRS(n, base) SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
105#define SAVE_16FPRS(n, base) SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
106#define SAVE_32FPRS(n, base) SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
de79f7b9 107#define REST_FPR(n, base) lfd n,8*TS_FPRWIDTH*(n)(base)
1da177e4
LT
108#define REST_2FPRS(n, base) REST_FPR(n, base); REST_FPR(n+1, base)
109#define REST_4FPRS(n, base) REST_2FPRS(n, base); REST_2FPRS(n+2, base)
110#define REST_8FPRS(n, base) REST_4FPRS(n, base); REST_4FPRS(n+4, base)
111#define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base)
112#define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base)
113
de79f7b9 114#define SAVE_VR(n,b,base) li b,16*(n); stvx n,base,b
5f7c6907
KG
115#define SAVE_2VRS(n,b,base) SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
116#define SAVE_4VRS(n,b,base) SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
117#define SAVE_8VRS(n,b,base) SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
118#define SAVE_16VRS(n,b,base) SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
119#define SAVE_32VRS(n,b,base) SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
de79f7b9 120#define REST_VR(n,b,base) li b,16*(n); lvx n,base,b
5f7c6907
KG
121#define REST_2VRS(n,b,base) REST_VR(n,b,base); REST_VR(n+1,b,base)
122#define REST_4VRS(n,b,base) REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
123#define REST_8VRS(n,b,base) REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
124#define REST_16VRS(n,b,base) REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
125#define REST_32VRS(n,b,base) REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
1da177e4 126
926f160f
AB
127#ifdef __BIG_ENDIAN__
128#define STXVD2X_ROT(n,b,base) STXVD2X(n,b,base)
129#define LXVD2X_ROT(n,b,base) LXVD2X(n,b,base)
130#else
131#define STXVD2X_ROT(n,b,base) XXSWAPD(n,n); \
132 STXVD2X(n,b,base); \
133 XXSWAPD(n,n)
134
135#define LXVD2X_ROT(n,b,base) LXVD2X(n,b,base); \
136 XXSWAPD(n,n)
137#endif
72ffff5b 138/* Save the lower 32 VSRs in the thread VSR region */
3ad26e5c 139#define SAVE_VSR(n,b,base) li b,16*(n); STXVD2X_ROT(n,R##base,R##b)
72ffff5b
MN
140#define SAVE_2VSRS(n,b,base) SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
141#define SAVE_4VSRS(n,b,base) SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
142#define SAVE_8VSRS(n,b,base) SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
143#define SAVE_16VSRS(n,b,base) SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
144#define SAVE_32VSRS(n,b,base) SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
3ad26e5c 145#define REST_VSR(n,b,base) li b,16*(n); LXVD2X_ROT(n,R##base,R##b)
72ffff5b
MN
146#define REST_2VSRS(n,b,base) REST_VSR(n,b,base); REST_VSR(n+1,b,base)
147#define REST_4VSRS(n,b,base) REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
148#define REST_8VSRS(n,b,base) REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
149#define REST_16VSRS(n,b,base) REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
150#define REST_32VSRS(n,b,base) REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
72ffff5b 151
c51584d5
SW
152/*
153 * b = base register for addressing, o = base offset from register of 1st EVR
154 * n = first EVR, s = scratch
155 */
156#define SAVE_EVR(n,s,b,o) evmergehi s,s,n; stw s,o+4*(n)(b)
157#define SAVE_2EVRS(n,s,b,o) SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
158#define SAVE_4EVRS(n,s,b,o) SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
159#define SAVE_8EVRS(n,s,b,o) SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
160#define SAVE_16EVRS(n,s,b,o) SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
161#define SAVE_32EVRS(n,s,b,o) SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
162#define REST_EVR(n,s,b,o) lwz s,o+4*(n)(b); evmergelo n,s,n
163#define REST_2EVRS(n,s,b,o) REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
164#define REST_4EVRS(n,s,b,o) REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
165#define REST_8EVRS(n,s,b,o) REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
166#define REST_16EVRS(n,s,b,o) REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
167#define REST_32EVRS(n,s,b,o) REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
5f7c6907 168
8c71632f
ME
169/* Macros to adjust thread priority for hardware multithreading */
170#define HMT_VERY_LOW or 31,31,31 # very low priority
171#define HMT_LOW or 1,1,1
172#define HMT_MEDIUM_LOW or 6,6,6 # medium low priority
173#define HMT_MEDIUM or 2,2,2
174#define HMT_MEDIUM_HIGH or 5,5,5 # medium high priority
175#define HMT_HIGH or 3,3,3
50fb8ebe 176#define HMT_EXTRA_HIGH or 7,7,7 # power7 only
5f7c6907 177
d72be892
MN
178#ifdef CONFIG_PPC64
179#define ULONG_SIZE 8
180#else
181#define ULONG_SIZE 4
182#endif
0b7673c3
MN
183#define __VCPU_GPR(n) (VCPU_GPRS + (n * ULONG_SIZE))
184#define VCPU_GPR(n) __VCPU_GPR(__REG_##n)
d72be892 185
88ced031 186#ifdef __KERNEL__
40ef8cbc
PM
187#ifdef CONFIG_PPC64
188
44ce6a5e 189#define STACKFRAMESIZE 256
0b7673c3
MN
190#define __STK_REG(i) (112 + ((i)-14)*8)
191#define STK_REG(i) __STK_REG(__REG_##i)
44ce6a5e 192
0b7673c3
MN
193#define __STK_PARAM(i) (48 + ((i)-3)*8)
194#define STK_PARAM(i) __STK_PARAM(__REG_##i)
44ce6a5e 195
40ef8cbc
PM
196#define XGLUE(a,b) a##b
197#define GLUE(a,b) XGLUE(a,b)
198
199#define _GLOBAL(name) \
200 .section ".text"; \
201 .align 2 ; \
202 .globl name; \
203 .globl GLUE(.,name); \
204 .section ".opd","aw"; \
205name: \
206 .quad GLUE(.,name); \
207 .quad .TOC.@tocbase; \
208 .quad 0; \
209 .previous; \
210 .type GLUE(.,name),@function; \
211GLUE(.,name):
212
fc68e869 213#define _INIT_GLOBAL(name) \
9203fc9c 214 __REF; \
fc68e869
SR
215 .align 2 ; \
216 .globl name; \
217 .globl GLUE(.,name); \
218 .section ".opd","aw"; \
219name: \
220 .quad GLUE(.,name); \
221 .quad .TOC.@tocbase; \
222 .quad 0; \
223 .previous; \
224 .type GLUE(.,name),@function; \
225GLUE(.,name):
226
40ef8cbc
PM
227#define _KPROBE(name) \
228 .section ".kprobes.text","a"; \
229 .align 2 ; \
230 .globl name; \
231 .globl GLUE(.,name); \
232 .section ".opd","aw"; \
233name: \
234 .quad GLUE(.,name); \
235 .quad .TOC.@tocbase; \
236 .quad 0; \
237 .previous; \
238 .type GLUE(.,name),@function; \
239GLUE(.,name):
240
241#define _STATIC(name) \
242 .section ".text"; \
243 .align 2 ; \
244 .section ".opd","aw"; \
245name: \
246 .quad GLUE(.,name); \
247 .quad .TOC.@tocbase; \
248 .quad 0; \
249 .previous; \
250 .type GLUE(.,name),@function; \
c40b91b5
SR
251GLUE(.,name):
252
253#define _INIT_STATIC(name) \
9203fc9c 254 __REF; \
c40b91b5
SR
255 .align 2 ; \
256 .section ".opd","aw"; \
257name: \
258 .quad GLUE(.,name); \
259 .quad .TOC.@tocbase; \
260 .quad 0; \
261 .previous; \
262 .type GLUE(.,name),@function; \
40ef8cbc
PM
263GLUE(.,name):
264
265#else /* 32-bit */
266
748a7683
KG
267#define _ENTRY(n) \
268 .globl n; \
269n:
270
40ef8cbc
PM
271#define _GLOBAL(n) \
272 .text; \
273 .stabs __stringify(n:F-1),N_FUN,0,0,n;\
274 .globl n; \
275n:
276
277#define _KPROBE(n) \
278 .section ".kprobes.text","a"; \
279 .globl n; \
280n:
281
282#endif
283
5f7c6907 284/*
e58c3495
DG
285 * LOAD_REG_IMMEDIATE(rn, expr)
286 * Loads the value of the constant expression 'expr' into register 'rn'
287 * using immediate instructions only. Use this when it's important not
288 * to reference other data (i.e. on ppc64 when the TOC pointer is not
e31aa453 289 * valid) and when 'expr' is a constant or absolute address.
5f7c6907 290 *
e58c3495
DG
291 * LOAD_REG_ADDR(rn, name)
292 * Loads the address of label 'name' into register 'rn'. Use this when
293 * you don't particularly need immediate instructions only, but you need
294 * the whole address in one register (e.g. it's a structure address and
295 * you want to access various offsets within it). On ppc32 this is
296 * identical to LOAD_REG_IMMEDIATE.
297 *
298 * LOAD_REG_ADDRBASE(rn, name)
299 * ADDROFF(name)
300 * LOAD_REG_ADDRBASE loads part of the address of label 'name' into
301 * register 'rn'. ADDROFF(name) returns the remainder of the address as
302 * a constant expression. ADDROFF(name) is a signed expression < 16 bits
303 * in size, so is suitable for use directly as an offset in load and store
304 * instructions. Use this when loading/storing a single word or less as:
305 * LOAD_REG_ADDRBASE(rX, name)
306 * ld rY,ADDROFF(name)(rX)
5f7c6907
KG
307 */
308#ifdef __powerpc64__
e58c3495 309#define LOAD_REG_IMMEDIATE(reg,expr) \
564aa5cf
MN
310 lis reg,(expr)@highest; \
311 ori reg,reg,(expr)@higher; \
312 rldicr reg,reg,32,31; \
313 oris reg,reg,(expr)@h; \
314 ori reg,reg,(expr)@l;
e58c3495
DG
315
316#define LOAD_REG_ADDR(reg,name) \
564aa5cf 317 ld reg,name@got(r2)
e58c3495
DG
318
319#define LOAD_REG_ADDRBASE(reg,name) LOAD_REG_ADDR(reg,name)
320#define ADDROFF(name) 0
b85a046a 321
f78541dc
PM
322/* offsets for stack frame layout */
323#define LRSAVE 16
b85a046a
PM
324
325#else /* 32-bit */
70620186 326
e58c3495 327#define LOAD_REG_IMMEDIATE(reg,expr) \
564aa5cf
MN
328 lis reg,(expr)@ha; \
329 addi reg,reg,(expr)@l;
e58c3495
DG
330
331#define LOAD_REG_ADDR(reg,name) LOAD_REG_IMMEDIATE(reg, name)
b85a046a 332
564aa5cf 333#define LOAD_REG_ADDRBASE(reg, name) lis reg,name@ha
e58c3495 334#define ADDROFF(name) name@l
b85a046a 335
f78541dc
PM
336/* offsets for stack frame layout */
337#define LRSAVE 4
b85a046a 338
5f7c6907 339#endif
1da177e4 340
5f7c6907 341/* various errata or part fixups */
1da177e4
LT
342#ifdef CONFIG_PPC601_SYNC_FIX
343#define SYNC \
344BEGIN_FTR_SECTION \
345 sync; \
346 isync; \
347END_FTR_SECTION_IFSET(CPU_FTR_601)
348#define SYNC_601 \
349BEGIN_FTR_SECTION \
350 sync; \
351END_FTR_SECTION_IFSET(CPU_FTR_601)
352#define ISYNC_601 \
353BEGIN_FTR_SECTION \
354 isync; \
355END_FTR_SECTION_IFSET(CPU_FTR_601)
356#else
357#define SYNC
358#define SYNC_601
359#define ISYNC_601
360#endif
361
d52459ca 362#if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_FSL_BOOK3E)
859deea9 363#define MFTB(dest) \
beb2dc0a 36490: mfspr dest, SPRN_TBRL; \
859deea9
BH
365BEGIN_FTR_SECTION_NESTED(96); \
366 cmpwi dest,0; \
367 beq- 90b; \
368END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
369#else
beb2dc0a 370#define MFTB(dest) mfspr dest, SPRN_TBRL
859deea9 371#endif
5f7c6907 372
1da177e4
LT
373#ifndef CONFIG_SMP
374#define TLBSYNC
375#else /* CONFIG_SMP */
376/* tlbsync is not implemented on 601 */
377#define TLBSYNC \
378BEGIN_FTR_SECTION \
379 tlbsync; \
380 sync; \
381END_FTR_SECTION_IFCLR(CPU_FTR_601)
382#endif
383
694caf02
AB
384#ifdef CONFIG_PPC64
385#define MTOCRF(FXM, RS) \
386 BEGIN_FTR_SECTION_NESTED(848); \
86e32fdc 387 mtcrf (FXM), RS; \
694caf02 388 FTR_SECTION_ELSE_NESTED(848); \
86e32fdc 389 mtocrf (FXM), RS; \
694caf02 390 ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
13e7a8e8
HM
391
392/*
393 * PPR restore macros used in entry_64.S
394 * Used for P7 or later processors
395 */
396#define HMT_MEDIUM_LOW_HAS_PPR \
397BEGIN_FTR_SECTION_NESTED(944) \
398 HMT_MEDIUM_LOW; \
399END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,944)
400
401#define SET_DEFAULT_THREAD_PPR(ra, rb) \
402BEGIN_FTR_SECTION_NESTED(945) \
403 lis ra,INIT_PPR@highest; /* default ppr=3 */ \
404 ld rb,PACACURRENT(r13); \
405 sldi ra,ra,32; /* 11- 13 bits are used for ppr */ \
406 std ra,TASKTHREADPPR(rb); \
407END_FTR_SECTION_NESTED(CPU_FTR_HAS_PPR,CPU_FTR_HAS_PPR,945)
408
694caf02
AB
409#endif
410
1da177e4
LT
411/*
412 * This instruction is not implemented on the PPC 603 or 601; however, on
413 * the 403GCX and 405GP tlbia IS defined and tlbie is not.
414 * All of these instructions exist in the 8xx, they have magical powers,
415 * and they must be used.
416 */
417
418#if !defined(CONFIG_4xx) && !defined(CONFIG_8xx)
419#define tlbia \
420 li r4,1024; \
421 mtctr r4; \
422 lis r4,KERNELBASE@h; \
4230: tlbie r4; \
424 addi r4,r4,0x1000; \
425 bdnz 0b
426#endif
427
5f7c6907 428
5f7c6907
KG
429#ifdef CONFIG_IBM440EP_ERR42
430#define PPC440EP_ERR42 isync
431#else
432#define PPC440EP_ERR42
433#endif
434
a515348f
MN
435/* The following stops all load and store data streams associated with stream
436 * ID (ie. streams created explicitly). The embedded and server mnemonics for
437 * dcbt are different so we use machine "power4" here explicitly.
438 */
439#define DCBT_STOP_ALL_STREAM_IDS(scratch) \
440.machine push ; \
441.machine "power4" ; \
442 lis scratch,0x60000000@h; \
443 dcbt r0,scratch,0b01010; \
444.machine pop
445
44c58ccc
BH
446/*
447 * toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
448 * keep the address intact to be compatible with code shared with
449 * 32-bit classic.
450 *
451 * On the other hand, I find it useful to have them behave as expected
452 * by their name (ie always do the addition) on 64-bit BookE
453 */
454#if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
6316222e
PM
455#define toreal(rd)
456#define fromreal(rd)
457
2ca7633d
RM
458/*
459 * We use addis to ensure compatibility with the "classic" ppc versions of
460 * these macros, which use rs = 0 to get the tophys offset in rd, rather than
461 * converting the address in r0, and so this version has to do that too
462 * (i.e. set register rd to 0 when rs == 0).
463 */
1da177e4
LT
464#define tophys(rd,rs) \
465 addis rd,rs,0
466
467#define tovirt(rd,rs) \
468 addis rd,rs,0
469
5f7c6907 470#elif defined(CONFIG_PPC64)
6316222e
PM
471#define toreal(rd) /* we can access c000... in real mode */
472#define fromreal(rd)
473
5f7c6907 474#define tophys(rd,rs) \
6316222e 475 clrldi rd,rs,2
5f7c6907
KG
476
477#define tovirt(rd,rs) \
6316222e
PM
478 rotldi rd,rs,16; \
479 ori rd,rd,((KERNELBASE>>48)&0xFFFF);\
480 rotldi rd,rd,48
5f7c6907 481#else
1da177e4
LT
482/*
483 * On APUS (Amiga PowerPC cpu upgrade board), we don't know the
484 * physical base address of RAM at compile time.
485 */
6316222e
PM
486#define toreal(rd) tophys(rd,rd)
487#define fromreal(rd) tovirt(rd,rd)
488
1da177e4 489#define tophys(rd,rs) \
ccdcef72 4900: addis rd,rs,-PAGE_OFFSET@h; \
1da177e4
LT
491 .section ".vtop_fixup","aw"; \
492 .align 1; \
493 .long 0b; \
494 .previous
495
496#define tovirt(rd,rs) \
ccdcef72 4970: addis rd,rs,PAGE_OFFSET@h; \
1da177e4
LT
498 .section ".ptov_fixup","aw"; \
499 .align 1; \
500 .long 0b; \
501 .previous
5f7c6907 502#endif
1da177e4 503
44c58ccc 504#ifdef CONFIG_PPC_BOOK3S_64
40ef8cbc
PM
505#define RFI rfid
506#define MTMSRD(r) mtmsrd r
b38c77d8 507#define MTMSR_EERI(reg) mtmsrd reg,1
1da177e4
LT
508#else
509#define FIX_SRR1(ra, rb)
510#ifndef CONFIG_40x
511#define RFI rfi
512#else
513#define RFI rfi; b . /* Prevent prefetch past rfi */
514#endif
515#define MTMSRD(r) mtmsr r
b38c77d8 516#define MTMSR_EERI(reg) mtmsr reg
1da177e4 517#define CLR_TOP32(r)
c9cf73ae
MP
518#endif
519
88ced031
AB
520#endif /* __KERNEL__ */
521
1da177e4
LT
522/* The boring bits... */
523
524/* Condition Register Bit Fields */
525
526#define cr0 0
527#define cr1 1
528#define cr2 2
529#define cr3 3
530#define cr4 4
531#define cr5 5
532#define cr6 6
533#define cr7 7
534
535
9a13a524
MN
536/*
537 * General Purpose Registers (GPRs)
538 *
539 * The lower case r0-r31 should be used in preference to the upper
540 * case R0-R31 as they provide more error checking in the assembler.
541 * Use R0-31 only when really nessesary.
542 */
543
544#define r0 %r0
545#define r1 %r1
546#define r2 %r2
547#define r3 %r3
548#define r4 %r4
549#define r5 %r5
550#define r6 %r6
551#define r7 %r7
552#define r8 %r8
553#define r9 %r9
554#define r10 %r10
555#define r11 %r11
556#define r12 %r12
557#define r13 %r13
558#define r14 %r14
559#define r15 %r15
560#define r16 %r16
561#define r17 %r17
562#define r18 %r18
563#define r19 %r19
564#define r20 %r20
565#define r21 %r21
566#define r22 %r22
567#define r23 %r23
568#define r24 %r24
569#define r25 %r25
570#define r26 %r26
571#define r27 %r27
572#define r28 %r28
573#define r29 %r29
574#define r30 %r30
575#define r31 %r31
1da177e4
LT
576
577
578/* Floating Point Registers (FPRs) */
579
580#define fr0 0
581#define fr1 1
582#define fr2 2
583#define fr3 3
584#define fr4 4
585#define fr5 5
586#define fr6 6
587#define fr7 7
588#define fr8 8
589#define fr9 9
590#define fr10 10
591#define fr11 11
592#define fr12 12
593#define fr13 13
594#define fr14 14
595#define fr15 15
596#define fr16 16
597#define fr17 17
598#define fr18 18
599#define fr19 19
600#define fr20 20
601#define fr21 21
602#define fr22 22
603#define fr23 23
604#define fr24 24
605#define fr25 25
606#define fr26 26
607#define fr27 27
608#define fr28 28
609#define fr29 29
610#define fr30 30
611#define fr31 31
612
5f7c6907
KG
613/* AltiVec Registers (VPRs) */
614
1da177e4
LT
615#define vr0 0
616#define vr1 1
617#define vr2 2
618#define vr3 3
619#define vr4 4
620#define vr5 5
621#define vr6 6
622#define vr7 7
623#define vr8 8
624#define vr9 9
625#define vr10 10
626#define vr11 11
627#define vr12 12
628#define vr13 13
629#define vr14 14
630#define vr15 15
631#define vr16 16
632#define vr17 17
633#define vr18 18
634#define vr19 19
635#define vr20 20
636#define vr21 21
637#define vr22 22
638#define vr23 23
639#define vr24 24
640#define vr25 25
641#define vr26 26
642#define vr27 27
643#define vr28 28
644#define vr29 29
645#define vr30 30
646#define vr31 31
647
72ffff5b
MN
648/* VSX Registers (VSRs) */
649
650#define vsr0 0
651#define vsr1 1
652#define vsr2 2
653#define vsr3 3
654#define vsr4 4
655#define vsr5 5
656#define vsr6 6
657#define vsr7 7
658#define vsr8 8
659#define vsr9 9
660#define vsr10 10
661#define vsr11 11
662#define vsr12 12
663#define vsr13 13
664#define vsr14 14
665#define vsr15 15
666#define vsr16 16
667#define vsr17 17
668#define vsr18 18
669#define vsr19 19
670#define vsr20 20
671#define vsr21 21
672#define vsr22 22
673#define vsr23 23
674#define vsr24 24
675#define vsr25 25
676#define vsr26 26
677#define vsr27 27
678#define vsr28 28
679#define vsr29 29
680#define vsr30 30
681#define vsr31 31
682#define vsr32 32
683#define vsr33 33
684#define vsr34 34
685#define vsr35 35
686#define vsr36 36
687#define vsr37 37
688#define vsr38 38
689#define vsr39 39
690#define vsr40 40
691#define vsr41 41
692#define vsr42 42
693#define vsr43 43
694#define vsr44 44
695#define vsr45 45
696#define vsr46 46
697#define vsr47 47
698#define vsr48 48
699#define vsr49 49
700#define vsr50 50
701#define vsr51 51
702#define vsr52 52
703#define vsr53 53
704#define vsr54 54
705#define vsr55 55
706#define vsr56 56
707#define vsr57 57
708#define vsr58 58
709#define vsr59 59
710#define vsr60 60
711#define vsr61 61
712#define vsr62 62
713#define vsr63 63
714
5f7c6907
KG
715/* SPE Registers (EVPRs) */
716
1da177e4
LT
717#define evr0 0
718#define evr1 1
719#define evr2 2
720#define evr3 3
721#define evr4 4
722#define evr5 5
723#define evr6 6
724#define evr7 7
725#define evr8 8
726#define evr9 9
727#define evr10 10
728#define evr11 11
729#define evr12 12
730#define evr13 13
731#define evr14 14
732#define evr15 15
733#define evr16 16
734#define evr17 17
735#define evr18 18
736#define evr19 19
737#define evr20 20
738#define evr21 21
739#define evr22 22
740#define evr23 23
741#define evr24 24
742#define evr25 25
743#define evr26 26
744#define evr27 27
745#define evr28 28
746#define evr29 29
747#define evr30 30
748#define evr31 31
749
750/* some stab codes */
751#define N_FUN 36
752#define N_RSYM 64
753#define N_SLINE 68
754#define N_SO 100
5f7c6907 755
5c0484e2
BH
756/*
757 * Create an endian fixup trampoline
758 *
759 * This starts with a "tdi 0,0,0x48" instruction which is
760 * essentially a "trap never", and thus akin to a nop.
761 *
762 * The opcode for this instruction read with the wrong endian
763 * however results in a b . + 8
764 *
765 * So essentially we use that trick to execute the following
766 * trampoline in "reverse endian" if we are running with the
767 * MSR_LE bit set the "wrong" way for whatever endianness the
768 * kernel is built for.
769 */
5f7c6907 770
5c0484e2
BH
771#ifdef CONFIG_PPC_BOOK3E
772#define FIXUP_ENDIAN
773#else
774#define FIXUP_ENDIAN \
775 tdi 0,0,0x48; /* Reverse endian of b . + 8 */ \
776 b $+36; /* Skip trampoline if endian is good */ \
777 .long 0x05009f42; /* bcl 20,31,$+4 */ \
778 .long 0xa602487d; /* mflr r10 */ \
779 .long 0x1c004a39; /* addi r10,r10,28 */ \
780 .long 0xa600607d; /* mfmsr r11 */ \
781 .long 0x01006b69; /* xori r11,r11,1 */ \
782 .long 0xa6035a7d; /* mtsrr0 r10 */ \
783 .long 0xa6037b7d; /* mtsrr1 r11 */ \
784 .long 0x2400004c /* rfid */
785#endif /* !CONFIG_PPC_BOOK3E */
786#endif /* __ASSEMBLY__ */
5f7c6907 787#endif /* _ASM_POWERPC_PPC_ASM_H */
This page took 0.658524 seconds and 5 git commands to generate.