perf_counter tools: Normalize data using per sample period data
[deliverable/linux.git] / arch / powerpc / kernel / perf_counter.c
CommitLineData
4574910e
PM
1/*
2 * Performance counter support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/perf_counter.h>
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
16#include <asm/reg.h>
17#include <asm/pmc.h>
01d0287f 18#include <asm/machdep.h>
0475f9ea 19#include <asm/firmware.h>
0bbd0d4b 20#include <asm/ptrace.h>
4574910e
PM
21
22struct cpu_hw_counters {
23 int n_counters;
24 int n_percpu;
25 int disabled;
26 int n_added;
ab7ef2e5
PM
27 int n_limited;
28 u8 pmcs_enabled;
4574910e 29 struct perf_counter *counter[MAX_HWCOUNTERS];
ef923214 30 u64 events[MAX_HWCOUNTERS];
ab7ef2e5 31 unsigned int flags[MAX_HWCOUNTERS];
4574910e 32 u64 mmcr[3];
ab7ef2e5
PM
33 struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
34 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
4574910e
PM
35};
36DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
37
38struct power_pmu *ppmu;
39
d095cd46
PM
40/*
41 * Normally, to ignore kernel events we set the FCS (freeze counters
42 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
43 * hypervisor bit set in the MSR, or if we are running on a processor
44 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
45 * then we need to use the FCHV bit to ignore kernel events.
46 */
47static unsigned int freeze_counters_kernel = MMCR0_FCS;
48
7595d63b
PM
49static void perf_counter_interrupt(struct pt_regs *regs);
50
4574910e
PM
51void perf_counter_print_debug(void)
52{
53}
54
4574910e
PM
55/*
56 * Read one performance monitor counter (PMC).
57 */
58static unsigned long read_pmc(int idx)
59{
60 unsigned long val;
61
62 switch (idx) {
63 case 1:
64 val = mfspr(SPRN_PMC1);
65 break;
66 case 2:
67 val = mfspr(SPRN_PMC2);
68 break;
69 case 3:
70 val = mfspr(SPRN_PMC3);
71 break;
72 case 4:
73 val = mfspr(SPRN_PMC4);
74 break;
75 case 5:
76 val = mfspr(SPRN_PMC5);
77 break;
78 case 6:
79 val = mfspr(SPRN_PMC6);
80 break;
81 case 7:
82 val = mfspr(SPRN_PMC7);
83 break;
84 case 8:
85 val = mfspr(SPRN_PMC8);
86 break;
87 default:
88 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
89 val = 0;
90 }
91 return val;
92}
93
94/*
95 * Write one PMC.
96 */
97static void write_pmc(int idx, unsigned long val)
98{
99 switch (idx) {
100 case 1:
101 mtspr(SPRN_PMC1, val);
102 break;
103 case 2:
104 mtspr(SPRN_PMC2, val);
105 break;
106 case 3:
107 mtspr(SPRN_PMC3, val);
108 break;
109 case 4:
110 mtspr(SPRN_PMC4, val);
111 break;
112 case 5:
113 mtspr(SPRN_PMC5, val);
114 break;
115 case 6:
116 mtspr(SPRN_PMC6, val);
117 break;
118 case 7:
119 mtspr(SPRN_PMC7, val);
120 break;
121 case 8:
122 mtspr(SPRN_PMC8, val);
123 break;
124 default:
125 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
126 }
127}
128
129/*
130 * Check if a set of events can all go on the PMU at once.
131 * If they can't, this will look at alternative codes for the events
132 * and see if any combination of alternative codes is feasible.
133 * The feasible set is returned in event[].
134 */
ef923214 135static int power_check_constraints(u64 event[], unsigned int cflags[],
ab7ef2e5 136 int n_ev)
4574910e
PM
137{
138 u64 mask, value, nv;
ef923214 139 u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
4574910e
PM
140 u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
141 u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
142 u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
143 int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
144 int i, j;
145 u64 addf = ppmu->add_fields;
146 u64 tadd = ppmu->test_adder;
147
148 if (n_ev > ppmu->n_counter)
149 return -1;
150
151 /* First see if the events will go on as-is */
152 for (i = 0; i < n_ev; ++i) {
ab7ef2e5
PM
153 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
154 && !ppmu->limited_pmc_event(event[i])) {
155 ppmu->get_alternatives(event[i], cflags[i],
156 alternatives[i]);
157 event[i] = alternatives[i][0];
158 }
4574910e
PM
159 if (ppmu->get_constraint(event[i], &amasks[i][0],
160 &avalues[i][0]))
161 return -1;
4574910e
PM
162 }
163 value = mask = 0;
164 for (i = 0; i < n_ev; ++i) {
165 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
166 if ((((nv + tadd) ^ value) & mask) != 0 ||
167 (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
168 break;
169 value = nv;
170 mask |= amasks[i][0];
171 }
172 if (i == n_ev)
173 return 0; /* all OK */
174
175 /* doesn't work, gather alternatives... */
176 if (!ppmu->get_alternatives)
177 return -1;
178 for (i = 0; i < n_ev; ++i) {
ab7ef2e5
PM
179 choice[i] = 0;
180 n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
181 alternatives[i]);
4574910e
PM
182 for (j = 1; j < n_alt[i]; ++j)
183 ppmu->get_constraint(alternatives[i][j],
184 &amasks[i][j], &avalues[i][j]);
185 }
186
187 /* enumerate all possibilities and see if any will work */
188 i = 0;
189 j = -1;
190 value = mask = nv = 0;
191 while (i < n_ev) {
192 if (j >= 0) {
193 /* we're backtracking, restore context */
194 value = svalues[i];
195 mask = smasks[i];
196 j = choice[i];
197 }
198 /*
199 * See if any alternative k for event i,
200 * where k > j, will satisfy the constraints.
201 */
202 while (++j < n_alt[i]) {
203 nv = (value | avalues[i][j]) +
204 (value & avalues[i][j] & addf);
205 if ((((nv + tadd) ^ value) & mask) == 0 &&
206 (((nv + tadd) ^ avalues[i][j])
207 & amasks[i][j]) == 0)
208 break;
209 }
210 if (j >= n_alt[i]) {
211 /*
212 * No feasible alternative, backtrack
213 * to event i-1 and continue enumerating its
214 * alternatives from where we got up to.
215 */
216 if (--i < 0)
217 return -1;
218 } else {
219 /*
220 * Found a feasible alternative for event i,
221 * remember where we got up to with this event,
222 * go on to the next event, and start with
223 * the first alternative for it.
224 */
225 choice[i] = j;
226 svalues[i] = value;
227 smasks[i] = mask;
228 value = nv;
229 mask |= amasks[i][j];
230 ++i;
231 j = -1;
232 }
233 }
234
235 /* OK, we have a feasible combination, tell the caller the solution */
236 for (i = 0; i < n_ev; ++i)
237 event[i] = alternatives[i][choice[i]];
238 return 0;
239}
240
0475f9ea
PM
241/*
242 * Check if newly-added counters have consistent settings for
243 * exclude_{user,kernel,hv} with each other and any previously
244 * added counters.
245 */
ab7ef2e5
PM
246static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
247 int n_prev, int n_new)
0475f9ea 248{
ab7ef2e5
PM
249 int eu = 0, ek = 0, eh = 0;
250 int i, n, first;
0475f9ea
PM
251 struct perf_counter *counter;
252
253 n = n_prev + n_new;
254 if (n <= 1)
255 return 0;
256
ab7ef2e5
PM
257 first = 1;
258 for (i = 0; i < n; ++i) {
259 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
260 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
261 continue;
262 }
0475f9ea 263 counter = ctrs[i];
ab7ef2e5 264 if (first) {
0d48696f
PZ
265 eu = counter->attr.exclude_user;
266 ek = counter->attr.exclude_kernel;
267 eh = counter->attr.exclude_hv;
ab7ef2e5 268 first = 0;
0d48696f
PZ
269 } else if (counter->attr.exclude_user != eu ||
270 counter->attr.exclude_kernel != ek ||
271 counter->attr.exclude_hv != eh) {
0475f9ea 272 return -EAGAIN;
ab7ef2e5 273 }
0475f9ea 274 }
ab7ef2e5
PM
275
276 if (eu || ek || eh)
277 for (i = 0; i < n; ++i)
278 if (cflags[i] & PPMU_LIMITED_PMC_OK)
279 cflags[i] |= PPMU_LIMITED_PMC_REQD;
280
0475f9ea
PM
281 return 0;
282}
283
4aeb0b42 284static void power_pmu_read(struct perf_counter *counter)
4574910e
PM
285{
286 long val, delta, prev;
287
288 if (!counter->hw.idx)
289 return;
290 /*
291 * Performance monitor interrupts come even when interrupts
292 * are soft-disabled, as long as interrupts are hard-enabled.
293 * Therefore we treat them like NMIs.
294 */
295 do {
296 prev = atomic64_read(&counter->hw.prev_count);
297 barrier();
298 val = read_pmc(counter->hw.idx);
299 } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
300
301 /* The counters are only 32 bits wide */
302 delta = (val - prev) & 0xfffffffful;
303 atomic64_add(delta, &counter->count);
304 atomic64_sub(delta, &counter->hw.period_left);
305}
306
ab7ef2e5
PM
307/*
308 * On some machines, PMC5 and PMC6 can't be written, don't respect
309 * the freeze conditions, and don't generate interrupts. This tells
310 * us if `counter' is using such a PMC.
311 */
312static int is_limited_pmc(int pmcnum)
313{
0bbd0d4b
PM
314 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
315 && (pmcnum == 5 || pmcnum == 6);
ab7ef2e5
PM
316}
317
318static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
319 unsigned long pmc5, unsigned long pmc6)
320{
321 struct perf_counter *counter;
322 u64 val, prev, delta;
323 int i;
324
325 for (i = 0; i < cpuhw->n_limited; ++i) {
326 counter = cpuhw->limited_counter[i];
327 if (!counter->hw.idx)
328 continue;
329 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
330 prev = atomic64_read(&counter->hw.prev_count);
331 counter->hw.idx = 0;
332 delta = (val - prev) & 0xfffffffful;
333 atomic64_add(delta, &counter->count);
334 }
335}
336
337static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
338 unsigned long pmc5, unsigned long pmc6)
339{
340 struct perf_counter *counter;
341 u64 val;
342 int i;
343
344 for (i = 0; i < cpuhw->n_limited; ++i) {
345 counter = cpuhw->limited_counter[i];
346 counter->hw.idx = cpuhw->limited_hwidx[i];
347 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
348 atomic64_set(&counter->hw.prev_count, val);
349 perf_counter_update_userpage(counter);
350 }
351}
352
353/*
354 * Since limited counters don't respect the freeze conditions, we
355 * have to read them immediately after freezing or unfreezing the
356 * other counters. We try to keep the values from the limited
357 * counters as consistent as possible by keeping the delay (in
358 * cycles and instructions) between freezing/unfreezing and reading
359 * the limited counters as small and consistent as possible.
360 * Therefore, if any limited counters are in use, we read them
361 * both, and always in the same order, to minimize variability,
362 * and do it inside the same asm that writes MMCR0.
363 */
364static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
365{
366 unsigned long pmc5, pmc6;
367
368 if (!cpuhw->n_limited) {
369 mtspr(SPRN_MMCR0, mmcr0);
370 return;
371 }
372
373 /*
374 * Write MMCR0, then read PMC5 and PMC6 immediately.
dcd945e0
PM
375 * To ensure we don't get a performance monitor interrupt
376 * between writing MMCR0 and freezing/thawing the limited
377 * counters, we first write MMCR0 with the counter overflow
378 * interrupt enable bits turned off.
ab7ef2e5
PM
379 */
380 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
381 : "=&r" (pmc5), "=&r" (pmc6)
dcd945e0
PM
382 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
383 "i" (SPRN_MMCR0),
ab7ef2e5
PM
384 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
385
386 if (mmcr0 & MMCR0_FC)
387 freeze_limited_counters(cpuhw, pmc5, pmc6);
388 else
389 thaw_limited_counters(cpuhw, pmc5, pmc6);
dcd945e0
PM
390
391 /*
392 * Write the full MMCR0 including the counter overflow interrupt
393 * enable bits, if necessary.
394 */
395 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
396 mtspr(SPRN_MMCR0, mmcr0);
ab7ef2e5
PM
397}
398
4574910e
PM
399/*
400 * Disable all counters to prevent PMU interrupts and to allow
401 * counters to be added or removed.
402 */
9e35ad38 403void hw_perf_disable(void)
4574910e
PM
404{
405 struct cpu_hw_counters *cpuhw;
406 unsigned long ret;
407 unsigned long flags;
408
409 local_irq_save(flags);
410 cpuhw = &__get_cpu_var(cpu_hw_counters);
411
412 ret = cpuhw->disabled;
413 if (!ret) {
414 cpuhw->disabled = 1;
415 cpuhw->n_added = 0;
416
01d0287f
PM
417 /*
418 * Check if we ever enabled the PMU on this cpu.
419 */
420 if (!cpuhw->pmcs_enabled) {
421 if (ppc_md.enable_pmcs)
422 ppc_md.enable_pmcs();
423 cpuhw->pmcs_enabled = 1;
424 }
425
f708223d
PM
426 /*
427 * Disable instruction sampling if it was enabled
428 */
429 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
430 mtspr(SPRN_MMCRA,
431 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
432 mb();
433 }
434
4574910e
PM
435 /*
436 * Set the 'freeze counters' bit.
437 * The barrier is to make sure the mtspr has been
438 * executed and the PMU has frozen the counters
439 * before we return.
440 */
ab7ef2e5 441 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
4574910e
PM
442 mb();
443 }
444 local_irq_restore(flags);
4574910e
PM
445}
446
447/*
448 * Re-enable all counters if disable == 0.
449 * If we were previously disabled and counters were added, then
450 * put the new config on the PMU.
451 */
9e35ad38 452void hw_perf_enable(void)
4574910e
PM
453{
454 struct perf_counter *counter;
455 struct cpu_hw_counters *cpuhw;
456 unsigned long flags;
457 long i;
458 unsigned long val;
459 s64 left;
460 unsigned int hwc_index[MAX_HWCOUNTERS];
ab7ef2e5
PM
461 int n_lim;
462 int idx;
4574910e 463
4574910e 464 local_irq_save(flags);
c0daaf3f 465 cpuhw = &__get_cpu_var(cpu_hw_counters);
9e35ad38
PZ
466 if (!cpuhw->disabled) {
467 local_irq_restore(flags);
468 return;
469 }
4574910e
PM
470 cpuhw->disabled = 0;
471
472 /*
473 * If we didn't change anything, or only removed counters,
474 * no need to recalculate MMCR* settings and reset the PMCs.
475 * Just reenable the PMU with the current MMCR* settings
476 * (possibly updated for removal of counters).
477 */
478 if (!cpuhw->n_added) {
f708223d 479 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e 480 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
01d0287f
PM
481 if (cpuhw->n_counters == 0)
482 get_lppaca()->pmcregs_in_use = 0;
f708223d 483 goto out_enable;
4574910e
PM
484 }
485
486 /*
487 * Compute MMCR* values for the new set of counters
488 */
489 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
490 cpuhw->mmcr)) {
491 /* shouldn't ever get here */
492 printk(KERN_ERR "oops compute_mmcr failed\n");
493 goto out;
494 }
495
0475f9ea
PM
496 /*
497 * Add in MMCR0 freeze bits corresponding to the
0d48696f 498 * attr.exclude_* bits for the first counter.
0475f9ea
PM
499 * We have already checked that all counters have the
500 * same values for these bits as the first counter.
501 */
502 counter = cpuhw->counter[0];
0d48696f 503 if (counter->attr.exclude_user)
0475f9ea 504 cpuhw->mmcr[0] |= MMCR0_FCP;
0d48696f 505 if (counter->attr.exclude_kernel)
d095cd46 506 cpuhw->mmcr[0] |= freeze_counters_kernel;
0d48696f 507 if (counter->attr.exclude_hv)
0475f9ea
PM
508 cpuhw->mmcr[0] |= MMCR0_FCHV;
509
4574910e
PM
510 /*
511 * Write the new configuration to MMCR* with the freeze
512 * bit set and set the hardware counters to their initial values.
513 * Then unfreeze the counters.
514 */
01d0287f 515 get_lppaca()->pmcregs_in_use = 1;
f708223d 516 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e
PM
517 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
518 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
519 | MMCR0_FC);
520
521 /*
522 * Read off any pre-existing counters that need to move
523 * to another PMC.
524 */
525 for (i = 0; i < cpuhw->n_counters; ++i) {
526 counter = cpuhw->counter[i];
527 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
4aeb0b42 528 power_pmu_read(counter);
4574910e
PM
529 write_pmc(counter->hw.idx, 0);
530 counter->hw.idx = 0;
531 }
532 }
533
534 /*
535 * Initialize the PMCs for all the new and moved counters.
536 */
ab7ef2e5 537 cpuhw->n_limited = n_lim = 0;
4574910e
PM
538 for (i = 0; i < cpuhw->n_counters; ++i) {
539 counter = cpuhw->counter[i];
540 if (counter->hw.idx)
541 continue;
ab7ef2e5
PM
542 idx = hwc_index[i] + 1;
543 if (is_limited_pmc(idx)) {
544 cpuhw->limited_counter[n_lim] = counter;
545 cpuhw->limited_hwidx[n_lim] = idx;
546 ++n_lim;
547 continue;
548 }
4574910e 549 val = 0;
b23f3325 550 if (counter->hw.sample_period) {
4574910e
PM
551 left = atomic64_read(&counter->hw.period_left);
552 if (left < 0x80000000L)
553 val = 0x80000000L - left;
554 }
555 atomic64_set(&counter->hw.prev_count, val);
ab7ef2e5
PM
556 counter->hw.idx = idx;
557 write_pmc(idx, val);
7b732a75 558 perf_counter_update_userpage(counter);
4574910e 559 }
ab7ef2e5 560 cpuhw->n_limited = n_lim;
4574910e 561 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
f708223d
PM
562
563 out_enable:
564 mb();
ab7ef2e5 565 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 566
f708223d
PM
567 /*
568 * Enable instruction sampling if necessary
569 */
570 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
571 mb();
572 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
573 }
574
4574910e
PM
575 out:
576 local_irq_restore(flags);
577}
578
579static int collect_events(struct perf_counter *group, int max_count,
ef923214 580 struct perf_counter *ctrs[], u64 *events,
ab7ef2e5 581 unsigned int *flags)
4574910e
PM
582{
583 int n = 0;
584 struct perf_counter *counter;
585
586 if (!is_software_counter(group)) {
587 if (n >= max_count)
588 return -1;
589 ctrs[n] = group;
ab7ef2e5 590 flags[n] = group->hw.counter_base;
4574910e
PM
591 events[n++] = group->hw.config;
592 }
593 list_for_each_entry(counter, &group->sibling_list, list_entry) {
594 if (!is_software_counter(counter) &&
595 counter->state != PERF_COUNTER_STATE_OFF) {
596 if (n >= max_count)
597 return -1;
598 ctrs[n] = counter;
ab7ef2e5 599 flags[n] = counter->hw.counter_base;
4574910e
PM
600 events[n++] = counter->hw.config;
601 }
602 }
603 return n;
604}
605
606static void counter_sched_in(struct perf_counter *counter, int cpu)
607{
608 counter->state = PERF_COUNTER_STATE_ACTIVE;
609 counter->oncpu = cpu;
dc66270b 610 counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
4574910e 611 if (is_software_counter(counter))
4aeb0b42 612 counter->pmu->enable(counter);
4574910e
PM
613}
614
615/*
616 * Called to enable a whole group of counters.
617 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
618 * Assumes the caller has disabled interrupts and has
619 * frozen the PMU with hw_perf_save_disable.
620 */
621int hw_perf_group_sched_in(struct perf_counter *group_leader,
622 struct perf_cpu_context *cpuctx,
623 struct perf_counter_context *ctx, int cpu)
624{
625 struct cpu_hw_counters *cpuhw;
626 long i, n, n0;
627 struct perf_counter *sub;
628
629 cpuhw = &__get_cpu_var(cpu_hw_counters);
630 n0 = cpuhw->n_counters;
631 n = collect_events(group_leader, ppmu->n_counter - n0,
ab7ef2e5
PM
632 &cpuhw->counter[n0], &cpuhw->events[n0],
633 &cpuhw->flags[n0]);
4574910e
PM
634 if (n < 0)
635 return -EAGAIN;
ab7ef2e5 636 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
0475f9ea 637 return -EAGAIN;
ab7ef2e5
PM
638 i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
639 if (i < 0)
4574910e
PM
640 return -EAGAIN;
641 cpuhw->n_counters = n0 + n;
642 cpuhw->n_added += n;
643
644 /*
645 * OK, this group can go on; update counter states etc.,
646 * and enable any software counters
647 */
648 for (i = n0; i < n0 + n; ++i)
649 cpuhw->counter[i]->hw.config = cpuhw->events[i];
3b6f9e5c 650 cpuctx->active_oncpu += n;
4574910e
PM
651 n = 1;
652 counter_sched_in(group_leader, cpu);
653 list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
654 if (sub->state != PERF_COUNTER_STATE_OFF) {
655 counter_sched_in(sub, cpu);
656 ++n;
657 }
658 }
4574910e
PM
659 ctx->nr_active += n;
660
661 return 1;
662}
663
664/*
665 * Add a counter to the PMU.
666 * If all counters are not already frozen, then we disable and
9e35ad38 667 * re-enable the PMU in order to get hw_perf_enable to do the
4574910e
PM
668 * actual work of reconfiguring the PMU.
669 */
4aeb0b42 670static int power_pmu_enable(struct perf_counter *counter)
4574910e
PM
671{
672 struct cpu_hw_counters *cpuhw;
673 unsigned long flags;
4574910e
PM
674 int n0;
675 int ret = -EAGAIN;
676
677 local_irq_save(flags);
9e35ad38 678 perf_disable();
4574910e
PM
679
680 /*
681 * Add the counter to the list (if there is room)
682 * and check whether the total set is still feasible.
683 */
684 cpuhw = &__get_cpu_var(cpu_hw_counters);
685 n0 = cpuhw->n_counters;
686 if (n0 >= ppmu->n_counter)
687 goto out;
688 cpuhw->counter[n0] = counter;
689 cpuhw->events[n0] = counter->hw.config;
ab7ef2e5
PM
690 cpuhw->flags[n0] = counter->hw.counter_base;
691 if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
0475f9ea 692 goto out;
ab7ef2e5 693 if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
4574910e
PM
694 goto out;
695
696 counter->hw.config = cpuhw->events[n0];
697 ++cpuhw->n_counters;
698 ++cpuhw->n_added;
699
700 ret = 0;
701 out:
9e35ad38 702 perf_enable();
4574910e
PM
703 local_irq_restore(flags);
704 return ret;
705}
706
707/*
708 * Remove a counter from the PMU.
709 */
4aeb0b42 710static void power_pmu_disable(struct perf_counter *counter)
4574910e
PM
711{
712 struct cpu_hw_counters *cpuhw;
713 long i;
4574910e
PM
714 unsigned long flags;
715
716 local_irq_save(flags);
9e35ad38 717 perf_disable();
4574910e 718
4aeb0b42 719 power_pmu_read(counter);
4574910e
PM
720
721 cpuhw = &__get_cpu_var(cpu_hw_counters);
722 for (i = 0; i < cpuhw->n_counters; ++i) {
723 if (counter == cpuhw->counter[i]) {
724 while (++i < cpuhw->n_counters)
725 cpuhw->counter[i-1] = cpuhw->counter[i];
726 --cpuhw->n_counters;
727 ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
ab7ef2e5
PM
728 if (counter->hw.idx) {
729 write_pmc(counter->hw.idx, 0);
730 counter->hw.idx = 0;
731 }
7b732a75 732 perf_counter_update_userpage(counter);
4574910e
PM
733 break;
734 }
735 }
ab7ef2e5
PM
736 for (i = 0; i < cpuhw->n_limited; ++i)
737 if (counter == cpuhw->limited_counter[i])
738 break;
739 if (i < cpuhw->n_limited) {
740 while (++i < cpuhw->n_limited) {
741 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
742 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
743 }
744 --cpuhw->n_limited;
745 }
4574910e
PM
746 if (cpuhw->n_counters == 0) {
747 /* disable exceptions if no counters are running */
748 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
749 }
750
9e35ad38 751 perf_enable();
4574910e
PM
752 local_irq_restore(flags);
753}
754
8a7b8cb9
PM
755/*
756 * Re-enable interrupts on a counter after they were throttled
757 * because they were coming too fast.
758 */
759static void power_pmu_unthrottle(struct perf_counter *counter)
760{
761 s64 val, left;
762 unsigned long flags;
763
b23f3325 764 if (!counter->hw.idx || !counter->hw.sample_period)
8a7b8cb9
PM
765 return;
766 local_irq_save(flags);
767 perf_disable();
768 power_pmu_read(counter);
b23f3325 769 left = counter->hw.sample_period;
8a7b8cb9
PM
770 val = 0;
771 if (left < 0x80000000L)
772 val = 0x80000000L - left;
773 write_pmc(counter->hw.idx, val);
774 atomic64_set(&counter->hw.prev_count, val);
775 atomic64_set(&counter->hw.period_left, left);
776 perf_counter_update_userpage(counter);
777 perf_enable();
778 local_irq_restore(flags);
779}
780
4aeb0b42
RR
781struct pmu power_pmu = {
782 .enable = power_pmu_enable,
783 .disable = power_pmu_disable,
784 .read = power_pmu_read,
8a7b8cb9 785 .unthrottle = power_pmu_unthrottle,
4574910e
PM
786};
787
ab7ef2e5
PM
788/*
789 * Return 1 if we might be able to put counter on a limited PMC,
790 * or 0 if not.
791 * A counter can only go on a limited PMC if it counts something
792 * that a limited PMC can count, doesn't require interrupts, and
793 * doesn't exclude any processor mode.
794 */
ef923214 795static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev,
ab7ef2e5
PM
796 unsigned int flags)
797{
798 int n;
ef923214 799 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5 800
0d48696f
PZ
801 if (counter->attr.exclude_user
802 || counter->attr.exclude_kernel
803 || counter->attr.exclude_hv
804 || counter->attr.sample_period)
ab7ef2e5
PM
805 return 0;
806
807 if (ppmu->limited_pmc_event(ev))
808 return 1;
809
810 /*
811 * The requested event isn't on a limited PMC already;
812 * see if any alternative code goes on a limited PMC.
813 */
814 if (!ppmu->get_alternatives)
815 return 0;
816
817 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
818 n = ppmu->get_alternatives(ev, flags, alt);
ab7ef2e5 819
ef923214 820 return n > 0;
ab7ef2e5
PM
821}
822
823/*
824 * Find an alternative event that goes on a normal PMC, if possible,
825 * and return the event code, or 0 if there is no such alternative.
826 * (Note: event code 0 is "don't count" on all machines.)
827 */
ef923214 828static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
ab7ef2e5 829{
ef923214 830 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5
PM
831 int n;
832
833 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
834 n = ppmu->get_alternatives(ev, flags, alt);
835 if (!n)
836 return 0;
837 return alt[0];
838}
839
7595d63b
PM
840/* Number of perf_counters counting hardware events */
841static atomic_t num_counters;
842/* Used to avoid races in calling reserve/release_pmc_hardware */
843static DEFINE_MUTEX(pmc_reserve_mutex);
844
845/*
846 * Release the PMU if this is the last perf_counter.
847 */
848static void hw_perf_counter_destroy(struct perf_counter *counter)
849{
850 if (!atomic_add_unless(&num_counters, -1, 1)) {
851 mutex_lock(&pmc_reserve_mutex);
852 if (atomic_dec_return(&num_counters) == 0)
853 release_pmc_hardware();
854 mutex_unlock(&pmc_reserve_mutex);
855 }
856}
857
4aeb0b42 858const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
4574910e 859{
ef923214
PM
860 u64 ev;
861 unsigned long flags;
4574910e 862 struct perf_counter *ctrs[MAX_HWCOUNTERS];
ef923214 863 u64 events[MAX_HWCOUNTERS];
ab7ef2e5 864 unsigned int cflags[MAX_HWCOUNTERS];
4574910e 865 int n;
7595d63b 866 int err;
4574910e
PM
867
868 if (!ppmu)
d5d2bc0d 869 return ERR_PTR(-ENXIO);
a21ca2ca
IM
870 if (counter->attr.type != PERF_TYPE_RAW) {
871 ev = counter->attr.config;
9aaa131a 872 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
d5d2bc0d 873 return ERR_PTR(-EOPNOTSUPP);
4574910e 874 ev = ppmu->generic_events[ev];
9aaa131a 875 } else {
a21ca2ca 876 ev = counter->attr.config;
4574910e
PM
877 }
878 counter->hw.config_base = ev;
879 counter->hw.idx = 0;
880
0475f9ea
PM
881 /*
882 * If we are not running on a hypervisor, force the
883 * exclude_hv bit to 0 so that we don't care what
d095cd46 884 * the user set it to.
0475f9ea
PM
885 */
886 if (!firmware_has_feature(FW_FEATURE_LPAR))
0d48696f 887 counter->attr.exclude_hv = 0;
ab7ef2e5
PM
888
889 /*
890 * If this is a per-task counter, then we can use
891 * PM_RUN_* events interchangeably with their non RUN_*
892 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
893 * XXX we should check if the task is an idle task.
894 */
895 flags = 0;
896 if (counter->ctx->task)
897 flags |= PPMU_ONLY_COUNT_RUN;
898
899 /*
900 * If this machine has limited counters, check whether this
901 * event could go on a limited counter.
902 */
0bbd0d4b 903 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
ab7ef2e5
PM
904 if (can_go_on_limited_pmc(counter, ev, flags)) {
905 flags |= PPMU_LIMITED_PMC_OK;
906 } else if (ppmu->limited_pmc_event(ev)) {
907 /*
908 * The requested event is on a limited PMC,
909 * but we can't use a limited PMC; see if any
910 * alternative goes on a normal PMC.
911 */
912 ev = normal_pmc_alternative(ev, flags);
913 if (!ev)
914 return ERR_PTR(-EINVAL);
915 }
916 }
917
4574910e
PM
918 /*
919 * If this is in a group, check if it can go on with all the
920 * other hardware counters in the group. We assume the counter
921 * hasn't been linked into its leader's sibling list at this point.
922 */
923 n = 0;
924 if (counter->group_leader != counter) {
925 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
ab7ef2e5 926 ctrs, events, cflags);
4574910e 927 if (n < 0)
d5d2bc0d 928 return ERR_PTR(-EINVAL);
4574910e 929 }
0475f9ea 930 events[n] = ev;
86028598 931 ctrs[n] = counter;
ab7ef2e5
PM
932 cflags[n] = flags;
933 if (check_excludes(ctrs, cflags, n, 1))
d5d2bc0d 934 return ERR_PTR(-EINVAL);
ab7ef2e5 935 if (power_check_constraints(events, cflags, n + 1))
d5d2bc0d 936 return ERR_PTR(-EINVAL);
4574910e 937
0475f9ea 938 counter->hw.config = events[n];
ab7ef2e5 939 counter->hw.counter_base = cflags[n];
b23f3325 940 atomic64_set(&counter->hw.period_left, counter->hw.sample_period);
7595d63b
PM
941
942 /*
943 * See if we need to reserve the PMU.
944 * If no counters are currently in use, then we have to take a
945 * mutex to ensure that we don't race with another task doing
946 * reserve_pmc_hardware or release_pmc_hardware.
947 */
948 err = 0;
949 if (!atomic_inc_not_zero(&num_counters)) {
950 mutex_lock(&pmc_reserve_mutex);
951 if (atomic_read(&num_counters) == 0 &&
952 reserve_pmc_hardware(perf_counter_interrupt))
953 err = -EBUSY;
954 else
955 atomic_inc(&num_counters);
956 mutex_unlock(&pmc_reserve_mutex);
957 }
958 counter->destroy = hw_perf_counter_destroy;
959
960 if (err)
d5d2bc0d 961 return ERR_PTR(err);
4aeb0b42 962 return &power_pmu;
4574910e
PM
963}
964
4574910e
PM
965/*
966 * A counter has overflowed; update its count and record
967 * things if requested. Note that interrupts are hard-disabled
968 * here so there is no possibility of being interrupted.
969 */
970static void record_and_restart(struct perf_counter *counter, long val,
ca8f2d7f 971 struct pt_regs *regs, int nmi)
4574910e 972{
b23f3325 973 u64 period = counter->hw.sample_period;
4574910e
PM
974 s64 prev, delta, left;
975 int record = 0;
0bbd0d4b 976 u64 addr, mmcra, sdsync;
4574910e
PM
977
978 /* we don't have to worry about interrupts here */
979 prev = atomic64_read(&counter->hw.prev_count);
980 delta = (val - prev) & 0xfffffffful;
981 atomic64_add(delta, &counter->count);
982
983 /*
984 * See if the total period for this counter has expired,
985 * and update for the next period.
986 */
987 val = 0;
988 left = atomic64_read(&counter->hw.period_left) - delta;
60db5e09 989 if (period) {
4574910e 990 if (left <= 0) {
60db5e09 991 left += period;
4574910e 992 if (left <= 0)
60db5e09 993 left = period;
4574910e
PM
994 record = 1;
995 }
996 if (left < 0x80000000L)
997 val = 0x80000000L - left;
998 }
4574910e
PM
999
1000 /*
1001 * Finally record data if requested.
1002 */
0bbd0d4b
PM
1003 if (record) {
1004 addr = 0;
1b58c251 1005 if (counter->attr.sample_type & PERF_SAMPLE_ADDR) {
0bbd0d4b
PM
1006 /*
1007 * The user wants a data address recorded.
1008 * If we're not doing instruction sampling,
1009 * give them the SDAR (sampled data address).
1010 * If we are doing instruction sampling, then only
1011 * give them the SDAR if it corresponds to the
1012 * instruction pointed to by SIAR; this is indicated
1013 * by the [POWER6_]MMCRA_SDSYNC bit in MMCRA.
1014 */
1015 mmcra = regs->dsisr;
1016 sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
1017 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
1018 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
1019 addr = mfspr(SPRN_SDAR);
1020 }
8a7b8cb9
PM
1021 if (perf_counter_overflow(counter, nmi, regs, addr)) {
1022 /*
1023 * Interrupts are coming too fast - throttle them
1024 * by setting the counter to 0, so it will be
1025 * at least 2^30 cycles until the next interrupt
1026 * (assuming each counter counts at most 2 counts
1027 * per cycle).
1028 */
1029 val = 0;
1030 left = ~0ULL >> 1;
1031 }
0bbd0d4b 1032 }
8a7b8cb9
PM
1033
1034 write_pmc(counter->hw.idx, val);
1035 atomic64_set(&counter->hw.prev_count, val);
1036 atomic64_set(&counter->hw.period_left, left);
1037 perf_counter_update_userpage(counter);
0bbd0d4b
PM
1038}
1039
1040/*
1041 * Called from generic code to get the misc flags (i.e. processor mode)
1042 * for an event.
1043 */
1044unsigned long perf_misc_flags(struct pt_regs *regs)
1045{
1046 unsigned long mmcra;
1047
1048 if (TRAP(regs) != 0xf00) {
1049 /* not a PMU interrupt */
1050 return user_mode(regs) ? PERF_EVENT_MISC_USER :
1051 PERF_EVENT_MISC_KERNEL;
1052 }
1053
1054 mmcra = regs->dsisr;
1055 if (ppmu->flags & PPMU_ALT_SIPR) {
1056 if (mmcra & POWER6_MMCRA_SIHV)
1057 return PERF_EVENT_MISC_HYPERVISOR;
1058 return (mmcra & POWER6_MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1059 PERF_EVENT_MISC_KERNEL;
1060 }
1061 if (mmcra & MMCRA_SIHV)
1062 return PERF_EVENT_MISC_HYPERVISOR;
1063 return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1064 PERF_EVENT_MISC_KERNEL;
1065}
1066
1067/*
1068 * Called from generic code to get the instruction pointer
1069 * for an event.
1070 */
1071unsigned long perf_instruction_pointer(struct pt_regs *regs)
1072{
1073 unsigned long mmcra;
1074 unsigned long ip;
1075 unsigned long slot;
1076
1077 if (TRAP(regs) != 0xf00)
1078 return regs->nip; /* not a PMU interrupt */
1079
1080 ip = mfspr(SPRN_SIAR);
1081 mmcra = regs->dsisr;
1082 if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
1083 slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
1084 if (slot > 1)
1085 ip += 4 * (slot - 1);
1086 }
1087 return ip;
4574910e
PM
1088}
1089
1090/*
1091 * Performance monitor interrupt stuff
1092 */
1093static void perf_counter_interrupt(struct pt_regs *regs)
1094{
1095 int i;
1096 struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
1097 struct perf_counter *counter;
1098 long val;
925d519a 1099 int found = 0;
ca8f2d7f
PM
1100 int nmi;
1101
ab7ef2e5
PM
1102 if (cpuhw->n_limited)
1103 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1104 mfspr(SPRN_PMC6));
1105
0bbd0d4b
PM
1106 /*
1107 * Overload regs->dsisr to store MMCRA so we only need to read it once.
1108 */
1109 regs->dsisr = mfspr(SPRN_MMCRA);
1110
ca8f2d7f
PM
1111 /*
1112 * If interrupts were soft-disabled when this PMU interrupt
1113 * occurred, treat it as an NMI.
1114 */
1115 nmi = !regs->softe;
1116 if (nmi)
1117 nmi_enter();
1118 else
1119 irq_enter();
4574910e
PM
1120
1121 for (i = 0; i < cpuhw->n_counters; ++i) {
1122 counter = cpuhw->counter[i];
dcd945e0 1123 if (!counter->hw.idx || is_limited_pmc(counter->hw.idx))
ab7ef2e5 1124 continue;
4574910e
PM
1125 val = read_pmc(counter->hw.idx);
1126 if ((int)val < 0) {
1127 /* counter has overflowed */
1128 found = 1;
ca8f2d7f 1129 record_and_restart(counter, val, regs, nmi);
4574910e
PM
1130 }
1131 }
1132
1133 /*
1134 * In case we didn't find and reset the counter that caused
1135 * the interrupt, scan all counters and reset any that are
1136 * negative, to avoid getting continual interrupts.
1137 * Any that we processed in the previous loop will not be negative.
1138 */
1139 if (!found) {
1140 for (i = 0; i < ppmu->n_counter; ++i) {
ab7ef2e5
PM
1141 if (is_limited_pmc(i + 1))
1142 continue;
4574910e
PM
1143 val = read_pmc(i + 1);
1144 if ((int)val < 0)
1145 write_pmc(i + 1, 0);
1146 }
1147 }
1148
1149 /*
1150 * Reset MMCR0 to its normal value. This will set PMXE and
1151 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1152 * and thus allow interrupts to occur again.
1153 * XXX might want to use MSR.PM to keep the counters frozen until
1154 * we get back out of this interrupt.
1155 */
ab7ef2e5 1156 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 1157
ca8f2d7f
PM
1158 if (nmi)
1159 nmi_exit();
1160 else
db4fb5ac 1161 irq_exit();
4574910e
PM
1162}
1163
01d0287f
PM
1164void hw_perf_counter_setup(int cpu)
1165{
1166 struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
1167
1168 memset(cpuhw, 0, sizeof(*cpuhw));
1169 cpuhw->mmcr[0] = MMCR0_FC;
1170}
1171
880860e3 1172extern struct power_pmu power4_pmu;
16b06799 1173extern struct power_pmu ppc970_pmu;
742bd95b 1174extern struct power_pmu power5_pmu;
aabbaa60 1175extern struct power_pmu power5p_pmu;
f7862837 1176extern struct power_pmu power6_pmu;
16b06799 1177
4574910e
PM
1178static int init_perf_counters(void)
1179{
16b06799
PM
1180 unsigned long pvr;
1181
16b06799
PM
1182 /* XXX should get this from cputable */
1183 pvr = mfspr(SPRN_PVR);
1184 switch (PVR_VER(pvr)) {
880860e3
PM
1185 case PV_POWER4:
1186 case PV_POWER4p:
1187 ppmu = &power4_pmu;
1188 break;
16b06799
PM
1189 case PV_970:
1190 case PV_970FX:
1191 case PV_970MP:
1192 ppmu = &ppc970_pmu;
1193 break;
742bd95b
PM
1194 case PV_POWER5:
1195 ppmu = &power5_pmu;
1196 break;
aabbaa60
PM
1197 case PV_POWER5p:
1198 ppmu = &power5p_pmu;
1199 break;
f7862837
PM
1200 case 0x3e:
1201 ppmu = &power6_pmu;
1202 break;
16b06799 1203 }
d095cd46
PM
1204
1205 /*
1206 * Use FCHV to ignore kernel events if MSR.HV is set.
1207 */
1208 if (mfmsr() & MSR_HV)
1209 freeze_counters_kernel = MMCR0_FCHV;
1210
4574910e
PM
1211 return 0;
1212}
1213
1214arch_initcall(init_perf_counters);
This page took 0.093131 seconds and 5 git commands to generate.