powerpc/mm/radix: Update LPCR only if it is powernv
[deliverable/linux.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
14cf11af
PM
28#include <linux/prctl.h>
29#include <linux/init_task.h>
4b16f8e2 30#include <linux/export.h>
14cf11af
PM
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
06d67d54 34#include <linux/utsname.h>
6794c782 35#include <linux/ftrace.h>
79741dd3 36#include <linux/kernel_stat.h>
d839088c
AB
37#include <linux/personality.h>
38#include <linux/random.h>
5aae8a53 39#include <linux/hw_breakpoint.h>
7b051f66 40#include <linux/uaccess.h>
7f92bc56 41#include <linux/elf-randomize.h>
14cf11af
PM
42
43#include <asm/pgtable.h>
14cf11af
PM
44#include <asm/io.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/prom.h>
76032de8 48#include <asm/machdep.h>
c6622f63 49#include <asm/time.h>
ae3a197e 50#include <asm/runlatch.h>
a7f31841 51#include <asm/syscalls.h>
ae3a197e 52#include <asm/switch_to.h>
fb09692e 53#include <asm/tm.h>
ae3a197e 54#include <asm/debug.h>
06d67d54
PM
55#ifdef CONFIG_PPC64
56#include <asm/firmware.h>
06d67d54 57#endif
7cedd601 58#include <asm/code-patching.h>
7f92bc56 59#include <asm/exec.h>
5d31a96e
ME
60#include <asm/livepatch.h>
61
d6a61bfc
LM
62#include <linux/kprobes.h>
63#include <linux/kdebug.h>
14cf11af 64
8b3c34cf
MN
65/* Transactional Memory debug */
66#ifdef TM_DEBUG_SW
67#define TM_DEBUG(x...) printk(KERN_INFO x)
68#else
69#define TM_DEBUG(x...) do { } while(0)
70#endif
71
14cf11af
PM
72extern unsigned long _get_SP(void);
73
d31626f7 74#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
b86fd2bd 75static void check_if_tm_restore_required(struct task_struct *tsk)
d31626f7
PM
76{
77 /*
78 * If we are saving the current thread's registers, and the
79 * thread is in a transactional state, set the TIF_RESTORE_TM
80 * bit so that we know to restore the registers before
81 * returning to userspace.
82 */
83 if (tsk == current && tsk->thread.regs &&
84 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
85 !test_thread_flag(TIF_RESTORE_TM)) {
829023df 86 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
d31626f7
PM
87 set_thread_flag(TIF_RESTORE_TM);
88 }
d31626f7 89}
d31626f7 90#else
b86fd2bd 91static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
d31626f7
PM
92#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
93
3eb5d588
AB
94bool strict_msr_control;
95EXPORT_SYMBOL(strict_msr_control);
96
97static int __init enable_strict_msr_control(char *str)
98{
99 strict_msr_control = true;
100 pr_info("Enabling strict facility control\n");
101
102 return 0;
103}
104early_param("ppc_strict_facility_enable", enable_strict_msr_control);
105
106void msr_check_and_set(unsigned long bits)
98da581e 107{
a0e72cf1
AB
108 unsigned long oldmsr = mfmsr();
109 unsigned long newmsr;
98da581e 110
a0e72cf1 111 newmsr = oldmsr | bits;
98da581e 112
98da581e 113#ifdef CONFIG_VSX
a0e72cf1 114 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
98da581e
AB
115 newmsr |= MSR_VSX;
116#endif
a0e72cf1 117
98da581e
AB
118 if (oldmsr != newmsr)
119 mtmsr_isync(newmsr);
a0e72cf1 120}
98da581e 121
3eb5d588 122void __msr_check_and_clear(unsigned long bits)
a0e72cf1
AB
123{
124 unsigned long oldmsr = mfmsr();
125 unsigned long newmsr;
126
127 newmsr = oldmsr & ~bits;
128
129#ifdef CONFIG_VSX
130 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
131 newmsr &= ~MSR_VSX;
132#endif
133
134 if (oldmsr != newmsr)
135 mtmsr_isync(newmsr);
136}
3eb5d588 137EXPORT_SYMBOL(__msr_check_and_clear);
a0e72cf1
AB
138
139#ifdef CONFIG_PPC_FPU
8792468d
CB
140void __giveup_fpu(struct task_struct *tsk)
141{
142 save_fpu(tsk);
143 tsk->thread.regs->msr &= ~MSR_FP;
144#ifdef CONFIG_VSX
145 if (cpu_has_feature(CPU_FTR_VSX))
146 tsk->thread.regs->msr &= ~MSR_VSX;
147#endif
148}
149
a0e72cf1
AB
150void giveup_fpu(struct task_struct *tsk)
151{
152 check_if_tm_restore_required(tsk);
153
154 msr_check_and_set(MSR_FP);
98da581e 155 __giveup_fpu(tsk);
a0e72cf1 156 msr_check_and_clear(MSR_FP);
98da581e
AB
157}
158EXPORT_SYMBOL(giveup_fpu);
159
14cf11af
PM
160/*
161 * Make sure the floating-point register state in the
162 * the thread_struct is up to date for task tsk.
163 */
164void flush_fp_to_thread(struct task_struct *tsk)
165{
166 if (tsk->thread.regs) {
167 /*
168 * We need to disable preemption here because if we didn't,
169 * another process could get scheduled after the regs->msr
170 * test but before we have finished saving the FP registers
171 * to the thread_struct. That process could take over the
172 * FPU, and then when we get scheduled again we would store
173 * bogus values for the remaining FP registers.
174 */
175 preempt_disable();
176 if (tsk->thread.regs->msr & MSR_FP) {
14cf11af
PM
177 /*
178 * This should only ever be called for current or
179 * for a stopped child process. Since we save away
af1bbc3d 180 * the FP register state on context switch,
14cf11af
PM
181 * there is something wrong if a stopped child appears
182 * to still have its FP state in the CPU registers.
183 */
184 BUG_ON(tsk != current);
b86fd2bd 185 giveup_fpu(tsk);
14cf11af
PM
186 }
187 preempt_enable();
188 }
189}
de56a948 190EXPORT_SYMBOL_GPL(flush_fp_to_thread);
14cf11af
PM
191
192void enable_kernel_fp(void)
193{
194 WARN_ON(preemptible());
195
a0e72cf1 196 msr_check_and_set(MSR_FP);
611b0e5c 197
d64d02ce
AB
198 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
199 check_if_tm_restore_required(current);
a0e72cf1 200 __giveup_fpu(current);
d64d02ce 201 }
14cf11af
PM
202}
203EXPORT_SYMBOL(enable_kernel_fp);
70fe3d98
CB
204
205static int restore_fp(struct task_struct *tsk) {
206 if (tsk->thread.load_fp) {
207 load_fp_state(&current->thread.fp_state);
208 current->thread.load_fp++;
209 return 1;
210 }
211 return 0;
212}
213#else
214static int restore_fp(struct task_struct *tsk) { return 0; }
d1e1cf2e 215#endif /* CONFIG_PPC_FPU */
14cf11af 216
14cf11af 217#ifdef CONFIG_ALTIVEC
70fe3d98
CB
218#define loadvec(thr) ((thr).load_vec)
219
6f515d84
CB
220static void __giveup_altivec(struct task_struct *tsk)
221{
222 save_altivec(tsk);
223 tsk->thread.regs->msr &= ~MSR_VEC;
224#ifdef CONFIG_VSX
225 if (cpu_has_feature(CPU_FTR_VSX))
226 tsk->thread.regs->msr &= ~MSR_VSX;
227#endif
228}
229
98da581e
AB
230void giveup_altivec(struct task_struct *tsk)
231{
98da581e
AB
232 check_if_tm_restore_required(tsk);
233
a0e72cf1 234 msr_check_and_set(MSR_VEC);
98da581e 235 __giveup_altivec(tsk);
a0e72cf1 236 msr_check_and_clear(MSR_VEC);
98da581e
AB
237}
238EXPORT_SYMBOL(giveup_altivec);
239
14cf11af
PM
240void enable_kernel_altivec(void)
241{
242 WARN_ON(preemptible());
243
a0e72cf1 244 msr_check_and_set(MSR_VEC);
611b0e5c 245
d64d02ce
AB
246 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
247 check_if_tm_restore_required(current);
a0e72cf1 248 __giveup_altivec(current);
d64d02ce 249 }
14cf11af
PM
250}
251EXPORT_SYMBOL(enable_kernel_altivec);
252
253/*
254 * Make sure the VMX/Altivec register state in the
255 * the thread_struct is up to date for task tsk.
256 */
257void flush_altivec_to_thread(struct task_struct *tsk)
258{
259 if (tsk->thread.regs) {
260 preempt_disable();
261 if (tsk->thread.regs->msr & MSR_VEC) {
14cf11af 262 BUG_ON(tsk != current);
b86fd2bd 263 giveup_altivec(tsk);
14cf11af
PM
264 }
265 preempt_enable();
266 }
267}
de56a948 268EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
70fe3d98
CB
269
270static int restore_altivec(struct task_struct *tsk)
271{
272 if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
273 load_vr_state(&tsk->thread.vr_state);
274 tsk->thread.used_vr = 1;
275 tsk->thread.load_vec++;
276
277 return 1;
278 }
279 return 0;
280}
281#else
282#define loadvec(thr) 0
283static inline int restore_altivec(struct task_struct *tsk) { return 0; }
14cf11af
PM
284#endif /* CONFIG_ALTIVEC */
285
ce48b210 286#ifdef CONFIG_VSX
bf6a4d5b 287static void __giveup_vsx(struct task_struct *tsk)
a7d623d4 288{
a7d623d4
AB
289 if (tsk->thread.regs->msr & MSR_FP)
290 __giveup_fpu(tsk);
291 if (tsk->thread.regs->msr & MSR_VEC)
292 __giveup_altivec(tsk);
bf6a4d5b
CB
293 tsk->thread.regs->msr &= ~MSR_VSX;
294}
295
296static void giveup_vsx(struct task_struct *tsk)
297{
298 check_if_tm_restore_required(tsk);
299
300 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 301 __giveup_vsx(tsk);
a0e72cf1 302 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
a7d623d4 303}
bf6a4d5b
CB
304
305static void save_vsx(struct task_struct *tsk)
306{
307 if (tsk->thread.regs->msr & MSR_FP)
308 save_fpu(tsk);
309 if (tsk->thread.regs->msr & MSR_VEC)
310 save_altivec(tsk);
311}
a7d623d4 312
ce48b210
MN
313void enable_kernel_vsx(void)
314{
315 WARN_ON(preemptible());
316
a0e72cf1 317 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
611b0e5c 318
a0e72cf1 319 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
d64d02ce 320 check_if_tm_restore_required(current);
a0e72cf1
AB
321 if (current->thread.regs->msr & MSR_FP)
322 __giveup_fpu(current);
323 if (current->thread.regs->msr & MSR_VEC)
324 __giveup_altivec(current);
325 __giveup_vsx(current);
611b0e5c 326 }
ce48b210
MN
327}
328EXPORT_SYMBOL(enable_kernel_vsx);
ce48b210
MN
329
330void flush_vsx_to_thread(struct task_struct *tsk)
331{
332 if (tsk->thread.regs) {
333 preempt_disable();
334 if (tsk->thread.regs->msr & MSR_VSX) {
ce48b210 335 BUG_ON(tsk != current);
ce48b210
MN
336 giveup_vsx(tsk);
337 }
338 preempt_enable();
339 }
340}
de56a948 341EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
70fe3d98
CB
342
343static int restore_vsx(struct task_struct *tsk)
344{
345 if (cpu_has_feature(CPU_FTR_VSX)) {
346 tsk->thread.used_vsr = 1;
347 return 1;
348 }
349
350 return 0;
351}
352#else
353static inline int restore_vsx(struct task_struct *tsk) { return 0; }
bf6a4d5b 354static inline void save_vsx(struct task_struct *tsk) { }
ce48b210
MN
355#endif /* CONFIG_VSX */
356
14cf11af 357#ifdef CONFIG_SPE
98da581e
AB
358void giveup_spe(struct task_struct *tsk)
359{
98da581e
AB
360 check_if_tm_restore_required(tsk);
361
a0e72cf1 362 msr_check_and_set(MSR_SPE);
98da581e 363 __giveup_spe(tsk);
a0e72cf1 364 msr_check_and_clear(MSR_SPE);
98da581e
AB
365}
366EXPORT_SYMBOL(giveup_spe);
14cf11af
PM
367
368void enable_kernel_spe(void)
369{
370 WARN_ON(preemptible());
371
a0e72cf1 372 msr_check_and_set(MSR_SPE);
611b0e5c 373
d64d02ce
AB
374 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
375 check_if_tm_restore_required(current);
a0e72cf1 376 __giveup_spe(current);
d64d02ce 377 }
14cf11af
PM
378}
379EXPORT_SYMBOL(enable_kernel_spe);
380
381void flush_spe_to_thread(struct task_struct *tsk)
382{
383 if (tsk->thread.regs) {
384 preempt_disable();
385 if (tsk->thread.regs->msr & MSR_SPE) {
14cf11af 386 BUG_ON(tsk != current);
685659ee 387 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 388 giveup_spe(tsk);
14cf11af
PM
389 }
390 preempt_enable();
391 }
392}
14cf11af
PM
393#endif /* CONFIG_SPE */
394
c2085059
AB
395static unsigned long msr_all_available;
396
397static int __init init_msr_all_available(void)
398{
399#ifdef CONFIG_PPC_FPU
400 msr_all_available |= MSR_FP;
401#endif
402#ifdef CONFIG_ALTIVEC
403 if (cpu_has_feature(CPU_FTR_ALTIVEC))
404 msr_all_available |= MSR_VEC;
405#endif
406#ifdef CONFIG_VSX
407 if (cpu_has_feature(CPU_FTR_VSX))
408 msr_all_available |= MSR_VSX;
409#endif
410#ifdef CONFIG_SPE
411 if (cpu_has_feature(CPU_FTR_SPE))
412 msr_all_available |= MSR_SPE;
413#endif
414
415 return 0;
416}
417early_initcall(init_msr_all_available);
418
419void giveup_all(struct task_struct *tsk)
420{
421 unsigned long usermsr;
422
423 if (!tsk->thread.regs)
424 return;
425
426 usermsr = tsk->thread.regs->msr;
427
428 if ((usermsr & msr_all_available) == 0)
429 return;
430
431 msr_check_and_set(msr_all_available);
432
433#ifdef CONFIG_PPC_FPU
434 if (usermsr & MSR_FP)
435 __giveup_fpu(tsk);
436#endif
437#ifdef CONFIG_ALTIVEC
438 if (usermsr & MSR_VEC)
439 __giveup_altivec(tsk);
440#endif
441#ifdef CONFIG_VSX
442 if (usermsr & MSR_VSX)
443 __giveup_vsx(tsk);
444#endif
445#ifdef CONFIG_SPE
446 if (usermsr & MSR_SPE)
447 __giveup_spe(tsk);
448#endif
449
450 msr_check_and_clear(msr_all_available);
451}
452EXPORT_SYMBOL(giveup_all);
453
70fe3d98
CB
454void restore_math(struct pt_regs *regs)
455{
456 unsigned long msr;
457
458 if (!current->thread.load_fp && !loadvec(current->thread))
459 return;
460
461 msr = regs->msr;
462 msr_check_and_set(msr_all_available);
463
464 /*
465 * Only reload if the bit is not set in the user MSR, the bit BEING set
466 * indicates that the registers are hot
467 */
468 if ((!(msr & MSR_FP)) && restore_fp(current))
469 msr |= MSR_FP | current->thread.fpexc_mode;
470
471 if ((!(msr & MSR_VEC)) && restore_altivec(current))
472 msr |= MSR_VEC;
473
474 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
475 restore_vsx(current)) {
476 msr |= MSR_VSX;
477 }
478
479 msr_check_and_clear(msr_all_available);
480
481 regs->msr = msr;
482}
483
de2a20aa
CB
484void save_all(struct task_struct *tsk)
485{
486 unsigned long usermsr;
487
488 if (!tsk->thread.regs)
489 return;
490
491 usermsr = tsk->thread.regs->msr;
492
493 if ((usermsr & msr_all_available) == 0)
494 return;
495
496 msr_check_and_set(msr_all_available);
497
bf6a4d5b
CB
498 /*
499 * Saving the way the register space is in hardware, save_vsx boils
500 * down to a save_fpu() and save_altivec()
501 */
502 if (usermsr & MSR_VSX) {
503 save_vsx(tsk);
504 } else {
505 if (usermsr & MSR_FP)
506 save_fpu(tsk);
507
508 if (usermsr & MSR_VEC)
509 save_altivec(tsk);
510 }
de2a20aa
CB
511
512 if (usermsr & MSR_SPE)
513 __giveup_spe(tsk);
514
515 msr_check_and_clear(msr_all_available);
516}
517
579e633e
AB
518void flush_all_to_thread(struct task_struct *tsk)
519{
520 if (tsk->thread.regs) {
521 preempt_disable();
522 BUG_ON(tsk != current);
de2a20aa 523 save_all(tsk);
579e633e
AB
524
525#ifdef CONFIG_SPE
526 if (tsk->thread.regs->msr & MSR_SPE)
527 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
528#endif
529
530 preempt_enable();
531 }
532}
533EXPORT_SYMBOL(flush_all_to_thread);
534
3bffb652
DK
535#ifdef CONFIG_PPC_ADV_DEBUG_REGS
536void do_send_trap(struct pt_regs *regs, unsigned long address,
537 unsigned long error_code, int signal_code, int breakpt)
538{
539 siginfo_t info;
540
41ab5266 541 current->thread.trap_nr = signal_code;
3bffb652
DK
542 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
543 11, SIGSEGV) == NOTIFY_STOP)
544 return;
545
546 /* Deliver the signal to userspace */
547 info.si_signo = SIGTRAP;
548 info.si_errno = breakpt; /* breakpoint or watchpoint id */
549 info.si_code = signal_code;
550 info.si_addr = (void __user *)address;
551 force_sig_info(SIGTRAP, &info, current);
552}
553#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 554void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
555 unsigned long error_code)
556{
557 siginfo_t info;
558
41ab5266 559 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
560 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
561 11, SIGSEGV) == NOTIFY_STOP)
562 return;
563
9422de3e 564 if (debugger_break_match(regs))
d6a61bfc
LM
565 return;
566
9422de3e
MN
567 /* Clear the breakpoint */
568 hw_breakpoint_disable();
d6a61bfc
LM
569
570 /* Deliver the signal to userspace */
571 info.si_signo = SIGTRAP;
572 info.si_errno = 0;
573 info.si_code = TRAP_HWBKPT;
574 info.si_addr = (void __user *)address;
575 force_sig_info(SIGTRAP, &info, current);
576}
3bffb652 577#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 578
9422de3e 579static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 580
3bffb652
DK
581#ifdef CONFIG_PPC_ADV_DEBUG_REGS
582/*
583 * Set the debug registers back to their default "safe" values.
584 */
585static void set_debug_reg_defaults(struct thread_struct *thread)
586{
51ae8d4a 587 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 588#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 589 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 590#endif
51ae8d4a 591 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 592#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 593 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 594#endif
51ae8d4a 595 thread->debug.dbcr0 = 0;
3bffb652
DK
596#ifdef CONFIG_BOOKE
597 /*
598 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
599 */
51ae8d4a 600 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
601 DBCR1_IAC3US | DBCR1_IAC4US;
602 /*
603 * Force Data Address Compare User/Supervisor bits to be User-only
604 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
605 */
51ae8d4a 606 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 607#else
51ae8d4a 608 thread->debug.dbcr1 = 0;
3bffb652
DK
609#endif
610}
611
f5f97210 612static void prime_debug_regs(struct debug_reg *debug)
3bffb652 613{
6cecf76b
SW
614 /*
615 * We could have inherited MSR_DE from userspace, since
616 * it doesn't get cleared on exception entry. Make sure
617 * MSR_DE is clear before we enable any debug events.
618 */
619 mtmsr(mfmsr() & ~MSR_DE);
620
f5f97210
SW
621 mtspr(SPRN_IAC1, debug->iac1);
622 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 623#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
624 mtspr(SPRN_IAC3, debug->iac3);
625 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 626#endif
f5f97210
SW
627 mtspr(SPRN_DAC1, debug->dac1);
628 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 629#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
630 mtspr(SPRN_DVC1, debug->dvc1);
631 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 632#endif
f5f97210
SW
633 mtspr(SPRN_DBCR0, debug->dbcr0);
634 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 635#ifdef CONFIG_BOOKE
f5f97210 636 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
637#endif
638}
639/*
640 * Unless neither the old or new thread are making use of the
641 * debug registers, set the debug registers from the values
642 * stored in the new thread.
643 */
f5f97210 644void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 645{
51ae8d4a 646 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
647 || (new_debug->dbcr0 & DBCR0_IDM))
648 prime_debug_regs(new_debug);
3bffb652 649}
3743c9b8 650EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 651#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 652#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
653static void set_debug_reg_defaults(struct thread_struct *thread)
654{
9422de3e
MN
655 thread->hw_brk.address = 0;
656 thread->hw_brk.type = 0;
b9818c33 657 set_breakpoint(&thread->hw_brk);
3bffb652 658}
e0780b72 659#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
660#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
661
172ae2e7 662#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
663static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
664{
d6a61bfc 665 mtspr(SPRN_DAC1, dabr);
221c185d
DK
666#ifdef CONFIG_PPC_47x
667 isync();
668#endif
9422de3e
MN
669 return 0;
670}
c6c9eace 671#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
672static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
673{
c6c9eace 674 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
675 if (cpu_has_feature(CPU_FTR_DABRX))
676 mtspr(SPRN_DABRX, dabrx);
cab0af98 677 return 0;
14cf11af 678}
9422de3e
MN
679#else
680static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
681{
682 return -EINVAL;
683}
684#endif
685
686static inline int set_dabr(struct arch_hw_breakpoint *brk)
687{
688 unsigned long dabr, dabrx;
689
690 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
691 dabrx = ((brk->type >> 3) & 0x7);
692
693 if (ppc_md.set_dabr)
694 return ppc_md.set_dabr(dabr, dabrx);
695
696 return __set_dabr(dabr, dabrx);
697}
698
bf99de36
MN
699static inline int set_dawr(struct arch_hw_breakpoint *brk)
700{
05d694ea 701 unsigned long dawr, dawrx, mrd;
bf99de36
MN
702
703 dawr = brk->address;
704
705 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
706 << (63 - 58); //* read/write bits */
707 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
708 << (63 - 59); //* translate */
709 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
710 >> 3; //* PRIM bits */
05d694ea
MN
711 /* dawr length is stored in field MDR bits 48:53. Matches range in
712 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
713 0b111111=64DW.
714 brk->len is in bytes.
715 This aligns up to double word size, shifts and does the bias.
716 */
717 mrd = ((brk->len + 7) >> 3) - 1;
718 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
719
720 if (ppc_md.set_dawr)
721 return ppc_md.set_dawr(dawr, dawrx);
722 mtspr(SPRN_DAWR, dawr);
723 mtspr(SPRN_DAWRX, dawrx);
724 return 0;
725}
726
21f58507 727void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e 728{
69111bac 729 memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
9422de3e 730
bf99de36 731 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
732 set_dawr(brk);
733 else
734 set_dabr(brk);
9422de3e 735}
14cf11af 736
21f58507
PG
737void set_breakpoint(struct arch_hw_breakpoint *brk)
738{
739 preempt_disable();
740 __set_breakpoint(brk);
741 preempt_enable();
742}
743
06d67d54
PM
744#ifdef CONFIG_PPC64
745DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 746#endif
14cf11af 747
9422de3e
MN
748static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
749 struct arch_hw_breakpoint *b)
750{
751 if (a->address != b->address)
752 return false;
753 if (a->type != b->type)
754 return false;
755 if (a->len != b->len)
756 return false;
757 return true;
758}
d31626f7 759
fb09692e 760#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
d31626f7
PM
761static void tm_reclaim_thread(struct thread_struct *thr,
762 struct thread_info *ti, uint8_t cause)
763{
764 unsigned long msr_diff = 0;
765
766 /*
767 * If FP/VSX registers have been already saved to the
768 * thread_struct, move them to the transact_fp array.
769 * We clear the TIF_RESTORE_TM bit since after the reclaim
770 * the thread will no longer be transactional.
771 */
772 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
829023df 773 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
d31626f7
PM
774 if (msr_diff & MSR_FP)
775 memcpy(&thr->transact_fp, &thr->fp_state,
776 sizeof(struct thread_fp_state));
777 if (msr_diff & MSR_VEC)
778 memcpy(&thr->transact_vr, &thr->vr_state,
779 sizeof(struct thread_vr_state));
780 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
781 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
782 }
783
7f821fc9
MN
784 /*
785 * Use the current MSR TM suspended bit to track if we have
786 * checkpointed state outstanding.
787 * On signal delivery, we'd normally reclaim the checkpointed
788 * state to obtain stack pointer (see:get_tm_stackpointer()).
789 * This will then directly return to userspace without going
790 * through __switch_to(). However, if the stack frame is bad,
791 * we need to exit this thread which calls __switch_to() which
792 * will again attempt to reclaim the already saved tm state.
793 * Hence we need to check that we've not already reclaimed
794 * this state.
795 * We do this using the current MSR, rather tracking it in
796 * some specific thread_struct bit, as it has the additional
797 * benifit of checking for a potential TM bad thing exception.
798 */
799 if (!MSR_TM_SUSPENDED(mfmsr()))
800 return;
801
d31626f7
PM
802 tm_reclaim(thr, thr->regs->msr, cause);
803
804 /* Having done the reclaim, we now have the checkpointed
805 * FP/VSX values in the registers. These might be valid
806 * even if we have previously called enable_kernel_fp() or
807 * flush_fp_to_thread(), so update thr->regs->msr to
808 * indicate their current validity.
809 */
810 thr->regs->msr |= msr_diff;
811}
812
813void tm_reclaim_current(uint8_t cause)
814{
815 tm_enable();
816 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
817}
818
fb09692e
MN
819static inline void tm_reclaim_task(struct task_struct *tsk)
820{
821 /* We have to work out if we're switching from/to a task that's in the
822 * middle of a transaction.
823 *
824 * In switching we need to maintain a 2nd register state as
825 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
826 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
827 * (current) FPRs into oldtask->thread.transact_fpr[].
828 *
829 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
830 */
831 struct thread_struct *thr = &tsk->thread;
832
833 if (!thr->regs)
834 return;
835
836 if (!MSR_TM_ACTIVE(thr->regs->msr))
837 goto out_and_saveregs;
838
839 /* Stash the original thread MSR, as giveup_fpu et al will
840 * modify it. We hold onto it to see whether the task used
d31626f7 841 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
829023df 842 * ckpt_regs.msr is already set.
fb09692e 843 */
d31626f7 844 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
829023df 845 thr->ckpt_regs.msr = thr->regs->msr;
fb09692e
MN
846
847 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
848 "ccr=%lx, msr=%lx, trap=%lx)\n",
849 tsk->pid, thr->regs->nip,
850 thr->regs->ccr, thr->regs->msr,
851 thr->regs->trap);
852
d31626f7 853 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
854
855 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
856 tsk->pid);
857
858out_and_saveregs:
859 /* Always save the regs here, even if a transaction's not active.
860 * This context-switches a thread's TM info SPRs. We do it here to
861 * be consistent with the restore path (in recheckpoint) which
862 * cannot happen later in _switch().
863 */
864 tm_save_sprs(thr);
865}
866
e6b8fd02
MN
867extern void __tm_recheckpoint(struct thread_struct *thread,
868 unsigned long orig_msr);
869
870void tm_recheckpoint(struct thread_struct *thread,
871 unsigned long orig_msr)
872{
873 unsigned long flags;
874
875 /* We really can't be interrupted here as the TEXASR registers can't
876 * change and later in the trecheckpoint code, we have a userspace R1.
877 * So let's hard disable over this region.
878 */
879 local_irq_save(flags);
880 hard_irq_disable();
881
882 /* The TM SPRs are restored here, so that TEXASR.FS can be set
883 * before the trecheckpoint and no explosion occurs.
884 */
885 tm_restore_sprs(thread);
886
887 __tm_recheckpoint(thread, orig_msr);
888
889 local_irq_restore(flags);
890}
891
bc2a9408 892static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
893{
894 unsigned long msr;
895
896 if (!cpu_has_feature(CPU_FTR_TM))
897 return;
898
899 /* Recheckpoint the registers of the thread we're about to switch to.
900 *
901 * If the task was using FP, we non-lazily reload both the original and
902 * the speculative FP register states. This is because the kernel
903 * doesn't see if/when a TM rollback occurs, so if we take an FP
904 * unavoidable later, we are unable to determine which set of FP regs
905 * need to be restored.
906 */
907 if (!new->thread.regs)
908 return;
909
e6b8fd02
MN
910 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
911 tm_restore_sprs(&new->thread);
fb09692e 912 return;
e6b8fd02 913 }
829023df 914 msr = new->thread.ckpt_regs.msr;
fb09692e
MN
915 /* Recheckpoint to restore original checkpointed register state. */
916 TM_DEBUG("*** tm_recheckpoint of pid %d "
917 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
918 new->pid, new->thread.regs->msr, msr);
919
920 /* This loads the checkpointed FP/VEC state, if used */
921 tm_recheckpoint(&new->thread, msr);
922
923 /* This loads the speculative FP/VEC state, if used */
924 if (msr & MSR_FP) {
925 do_load_up_transact_fpu(&new->thread);
926 new->thread.regs->msr |=
927 (MSR_FP | new->thread.fpexc_mode);
928 }
f110c0c1 929#ifdef CONFIG_ALTIVEC
fb09692e
MN
930 if (msr & MSR_VEC) {
931 do_load_up_transact_altivec(&new->thread);
932 new->thread.regs->msr |= MSR_VEC;
933 }
f110c0c1 934#endif
fb09692e
MN
935 /* We may as well turn on VSX too since all the state is restored now */
936 if (msr & MSR_VSX)
937 new->thread.regs->msr |= MSR_VSX;
938
939 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
940 "(kernel msr 0x%lx)\n",
941 new->pid, mfmsr());
942}
943
944static inline void __switch_to_tm(struct task_struct *prev)
945{
946 if (cpu_has_feature(CPU_FTR_TM)) {
947 tm_enable();
948 tm_reclaim_task(prev);
949 }
950}
d31626f7
PM
951
952/*
953 * This is called if we are on the way out to userspace and the
954 * TIF_RESTORE_TM flag is set. It checks if we need to reload
955 * FP and/or vector state and does so if necessary.
956 * If userspace is inside a transaction (whether active or
957 * suspended) and FP/VMX/VSX instructions have ever been enabled
958 * inside that transaction, then we have to keep them enabled
959 * and keep the FP/VMX/VSX state loaded while ever the transaction
960 * continues. The reason is that if we didn't, and subsequently
961 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
962 * we don't know whether it's the same transaction, and thus we
963 * don't know which of the checkpointed state and the transactional
964 * state to use.
965 */
966void restore_tm_state(struct pt_regs *regs)
967{
968 unsigned long msr_diff;
969
970 clear_thread_flag(TIF_RESTORE_TM);
971 if (!MSR_TM_ACTIVE(regs->msr))
972 return;
973
829023df 974 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
d31626f7 975 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
70fe3d98
CB
976
977 restore_math(regs);
978
d31626f7
PM
979 regs->msr |= msr_diff;
980}
981
fb09692e
MN
982#else
983#define tm_recheckpoint_new_task(new)
984#define __switch_to_tm(prev)
985#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 986
152d523e
AB
987static inline void save_sprs(struct thread_struct *t)
988{
989#ifdef CONFIG_ALTIVEC
01d7c2a2 990 if (cpu_has_feature(CPU_FTR_ALTIVEC))
152d523e
AB
991 t->vrsave = mfspr(SPRN_VRSAVE);
992#endif
993#ifdef CONFIG_PPC_BOOK3S_64
994 if (cpu_has_feature(CPU_FTR_DSCR))
995 t->dscr = mfspr(SPRN_DSCR);
996
997 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
998 t->bescr = mfspr(SPRN_BESCR);
999 t->ebbhr = mfspr(SPRN_EBBHR);
1000 t->ebbrr = mfspr(SPRN_EBBRR);
1001
1002 t->fscr = mfspr(SPRN_FSCR);
1003
1004 /*
1005 * Note that the TAR is not available for use in the kernel.
1006 * (To provide this, the TAR should be backed up/restored on
1007 * exception entry/exit instead, and be in pt_regs. FIXME,
1008 * this should be in pt_regs anyway (for debug).)
1009 */
1010 t->tar = mfspr(SPRN_TAR);
1011 }
1012#endif
1013}
1014
1015static inline void restore_sprs(struct thread_struct *old_thread,
1016 struct thread_struct *new_thread)
1017{
1018#ifdef CONFIG_ALTIVEC
1019 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1020 old_thread->vrsave != new_thread->vrsave)
1021 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1022#endif
1023#ifdef CONFIG_PPC_BOOK3S_64
1024 if (cpu_has_feature(CPU_FTR_DSCR)) {
1025 u64 dscr = get_paca()->dscr_default;
1026 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
1027
1028 if (new_thread->dscr_inherit) {
1029 dscr = new_thread->dscr;
1030 fscr |= FSCR_DSCR;
1031 }
1032
1033 if (old_thread->dscr != dscr)
1034 mtspr(SPRN_DSCR, dscr);
1035
1036 if (old_thread->fscr != fscr)
1037 mtspr(SPRN_FSCR, fscr);
1038 }
1039
1040 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1041 if (old_thread->bescr != new_thread->bescr)
1042 mtspr(SPRN_BESCR, new_thread->bescr);
1043 if (old_thread->ebbhr != new_thread->ebbhr)
1044 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1045 if (old_thread->ebbrr != new_thread->ebbrr)
1046 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1047
1048 if (old_thread->tar != new_thread->tar)
1049 mtspr(SPRN_TAR, new_thread->tar);
1050 }
1051#endif
1052}
1053
14cf11af
PM
1054struct task_struct *__switch_to(struct task_struct *prev,
1055 struct task_struct *new)
1056{
1057 struct thread_struct *new_thread, *old_thread;
14cf11af 1058 struct task_struct *last;
d6bf29b4
PZ
1059#ifdef CONFIG_PPC_BOOK3S_64
1060 struct ppc64_tlb_batch *batch;
1061#endif
14cf11af 1062
152d523e
AB
1063 new_thread = &new->thread;
1064 old_thread = &current->thread;
1065
7ba5fef7
MN
1066 WARN_ON(!irqs_disabled());
1067
06d67d54
PM
1068#ifdef CONFIG_PPC64
1069 /*
1070 * Collect processor utilization data per process
1071 */
1072 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
69111bac 1073 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
06d67d54
PM
1074 long unsigned start_tb, current_tb;
1075 start_tb = old_thread->start_tb;
1076 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1077 old_thread->accum_tb += (current_tb - start_tb);
1078 new_thread->start_tb = current_tb;
1079 }
d6bf29b4
PZ
1080#endif /* CONFIG_PPC64 */
1081
caca285e 1082#ifdef CONFIG_PPC_STD_MMU_64
69111bac 1083 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1084 if (batch->active) {
1085 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1086 if (batch->index)
1087 __flush_tlb_pending(batch);
1088 batch->active = 0;
1089 }
caca285e 1090#endif /* CONFIG_PPC_STD_MMU_64 */
06d67d54 1091
f3d885cc
AB
1092#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1093 switch_booke_debug_regs(&new->thread.debug);
1094#else
1095/*
1096 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1097 * schedule DABR
1098 */
1099#ifndef CONFIG_HAVE_HW_BREAKPOINT
1100 if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1101 __set_breakpoint(&new->thread.hw_brk);
1102#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1103#endif
1104
1105 /*
1106 * We need to save SPRs before treclaim/trecheckpoint as these will
1107 * change a number of them.
1108 */
1109 save_sprs(&prev->thread);
1110
1111 __switch_to_tm(prev);
1112
1113 /* Save FPU, Altivec, VSX and SPE state */
1114 giveup_all(prev);
1115
44387e9f
AB
1116 /*
1117 * We can't take a PMU exception inside _switch() since there is a
1118 * window where the kernel stack SLB and the kernel stack are out
1119 * of sync. Hard disable here.
1120 */
1121 hard_irq_disable();
bc2a9408
MN
1122
1123 tm_recheckpoint_new_task(new);
1124
20dbe670
AB
1125 /*
1126 * Call restore_sprs() before calling _switch(). If we move it after
1127 * _switch() then we miss out on calling it for new tasks. The reason
1128 * for this is we manually create a stack frame for new tasks that
1129 * directly returns through ret_from_fork() or
1130 * ret_from_kernel_thread(). See copy_thread() for details.
1131 */
f3d885cc
AB
1132 restore_sprs(old_thread, new_thread);
1133
20dbe670
AB
1134 last = _switch(old_thread, new_thread);
1135
caca285e 1136#ifdef CONFIG_PPC_STD_MMU_64
d6bf29b4
PZ
1137 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1138 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
69111bac 1139 batch = this_cpu_ptr(&ppc64_tlb_batch);
d6bf29b4
PZ
1140 batch->active = 1;
1141 }
70fe3d98
CB
1142
1143 if (current_thread_info()->task->thread.regs)
1144 restore_math(current_thread_info()->task->thread.regs);
caca285e 1145#endif /* CONFIG_PPC_STD_MMU_64 */
d6bf29b4 1146
14cf11af
PM
1147 return last;
1148}
1149
06d67d54
PM
1150static int instructions_to_print = 16;
1151
06d67d54
PM
1152static void show_instructions(struct pt_regs *regs)
1153{
1154 int i;
1155 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1156 sizeof(int));
1157
1158 printk("Instruction dump:");
1159
1160 for (i = 0; i < instructions_to_print; i++) {
1161 int instr;
1162
1163 if (!(i % 8))
1164 printk("\n");
1165
0de2d820
SW
1166#if !defined(CONFIG_BOOKE)
1167 /* If executing with the IMMU off, adjust pc rather
1168 * than print XXXXXXXX.
1169 */
1170 if (!(regs->msr & MSR_IR))
1171 pc = (unsigned long)phys_to_virt(pc);
1172#endif
1173
00ae36de 1174 if (!__kernel_text_address(pc) ||
7b051f66 1175 probe_kernel_address((unsigned int __user *)pc, instr)) {
40c8cefa 1176 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
1177 } else {
1178 if (regs->nip == pc)
40c8cefa 1179 printk(KERN_CONT "<%08x> ", instr);
06d67d54 1180 else
40c8cefa 1181 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
1182 }
1183
1184 pc += sizeof(int);
1185 }
1186
1187 printk("\n");
1188}
1189
801c0b2c 1190struct regbit {
06d67d54
PM
1191 unsigned long bit;
1192 const char *name;
801c0b2c
MN
1193};
1194
1195static struct regbit msr_bits[] = {
3bfd0c9c
AB
1196#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1197 {MSR_SF, "SF"},
1198 {MSR_HV, "HV"},
1199#endif
1200 {MSR_VEC, "VEC"},
1201 {MSR_VSX, "VSX"},
1202#ifdef CONFIG_BOOKE
1203 {MSR_CE, "CE"},
1204#endif
06d67d54
PM
1205 {MSR_EE, "EE"},
1206 {MSR_PR, "PR"},
1207 {MSR_FP, "FP"},
1208 {MSR_ME, "ME"},
3bfd0c9c 1209#ifdef CONFIG_BOOKE
1b98326b 1210 {MSR_DE, "DE"},
3bfd0c9c
AB
1211#else
1212 {MSR_SE, "SE"},
1213 {MSR_BE, "BE"},
1214#endif
06d67d54
PM
1215 {MSR_IR, "IR"},
1216 {MSR_DR, "DR"},
3bfd0c9c
AB
1217 {MSR_PMM, "PMM"},
1218#ifndef CONFIG_BOOKE
1219 {MSR_RI, "RI"},
1220 {MSR_LE, "LE"},
1221#endif
06d67d54
PM
1222 {0, NULL}
1223};
1224
801c0b2c 1225static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
06d67d54 1226{
801c0b2c 1227 const char *s = "";
06d67d54 1228
06d67d54
PM
1229 for (; bits->bit; ++bits)
1230 if (val & bits->bit) {
801c0b2c
MN
1231 printk("%s%s", s, bits->name);
1232 s = sep;
06d67d54 1233 }
801c0b2c
MN
1234}
1235
1236#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1237static struct regbit msr_tm_bits[] = {
1238 {MSR_TS_T, "T"},
1239 {MSR_TS_S, "S"},
1240 {MSR_TM, "E"},
1241 {0, NULL}
1242};
1243
1244static void print_tm_bits(unsigned long val)
1245{
1246/*
1247 * This only prints something if at least one of the TM bit is set.
1248 * Inside the TM[], the output means:
1249 * E: Enabled (bit 32)
1250 * S: Suspended (bit 33)
1251 * T: Transactional (bit 34)
1252 */
1253 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1254 printk(",TM[");
1255 print_bits(val, msr_tm_bits, "");
1256 printk("]");
1257 }
1258}
1259#else
1260static void print_tm_bits(unsigned long val) {}
1261#endif
1262
1263static void print_msr_bits(unsigned long val)
1264{
1265 printk("<");
1266 print_bits(val, msr_bits, ",");
1267 print_tm_bits(val);
06d67d54
PM
1268 printk(">");
1269}
1270
1271#ifdef CONFIG_PPC64
f6f7dde3 1272#define REG "%016lx"
06d67d54
PM
1273#define REGS_PER_LINE 4
1274#define LAST_VOLATILE 13
1275#else
f6f7dde3 1276#define REG "%08lx"
06d67d54
PM
1277#define REGS_PER_LINE 8
1278#define LAST_VOLATILE 12
1279#endif
1280
14cf11af
PM
1281void show_regs(struct pt_regs * regs)
1282{
1283 int i, trap;
1284
a43cb95d
TH
1285 show_regs_print_info(KERN_DEFAULT);
1286
06d67d54
PM
1287 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1288 regs->nip, regs->link, regs->ctr);
1289 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1290 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54 1291 printk("MSR: "REG" ", regs->msr);
801c0b2c 1292 print_msr_bits(regs->msr);
f6f7dde3 1293 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1294 trap = TRAP(regs);
5115a026 1295 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
9db8bcfd 1296 printk("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1297 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1298#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
9db8bcfd 1299 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1300#else
9db8bcfd
AB
1301 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1302#endif
1303#ifdef CONFIG_PPC64
1304 printk("SOFTE: %ld ", regs->softe);
1305#endif
1306#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a
AB
1307 if (MSR_TM_ACTIVE(regs->msr))
1308 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1309#endif
14cf11af
PM
1310
1311 for (i = 0; i < 32; i++) {
06d67d54 1312 if ((i % REGS_PER_LINE) == 0)
a2367194 1313 printk("\nGPR%02d: ", i);
06d67d54
PM
1314 printk(REG " ", regs->gpr[i]);
1315 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1316 break;
1317 }
1318 printk("\n");
1319#ifdef CONFIG_KALLSYMS
1320 /*
1321 * Lookup NIP late so we have the best change of getting the
1322 * above info out without failing
1323 */
058c78f4
BH
1324 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1325 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1326#endif
14cf11af 1327 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1328 if (!user_mode(regs))
1329 show_instructions(regs);
14cf11af
PM
1330}
1331
14cf11af
PM
1332void flush_thread(void)
1333{
e0780b72 1334#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1335 flush_ptrace_hw_breakpoint(current);
e0780b72 1336#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1337 set_debug_reg_defaults(&current->thread);
e0780b72 1338#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1339}
1340
1341void
1342release_thread(struct task_struct *t)
1343{
1344}
1345
1346/*
55ccf3fe
SS
1347 * this gets called so that we can store coprocessor state into memory and
1348 * copy the current task into the new thread.
14cf11af 1349 */
55ccf3fe 1350int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1351{
579e633e 1352 flush_all_to_thread(src);
621b5060
MN
1353 /*
1354 * Flush TM state out so we can copy it. __switch_to_tm() does this
1355 * flush but it removes the checkpointed state from the current CPU and
1356 * transitions the CPU out of TM mode. Hence we need to call
1357 * tm_recheckpoint_new_task() (on the same task) to restore the
1358 * checkpointed state back and the TM mode.
1359 */
1360 __switch_to_tm(src);
1361 tm_recheckpoint_new_task(src);
330a1eb7 1362
55ccf3fe 1363 *dst = *src;
330a1eb7
ME
1364
1365 clear_task_ebb(dst);
1366
55ccf3fe 1367 return 0;
14cf11af
PM
1368}
1369
cec15488
ME
1370static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1371{
1372#ifdef CONFIG_PPC_STD_MMU_64
1373 unsigned long sp_vsid;
1374 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1375
caca285e
AK
1376 if (radix_enabled())
1377 return;
1378
cec15488
ME
1379 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1380 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1381 << SLB_VSID_SHIFT_1T;
1382 else
1383 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1384 << SLB_VSID_SHIFT;
1385 sp_vsid |= SLB_VSID_KERNEL | llp;
1386 p->thread.ksp_vsid = sp_vsid;
1387#endif
1388}
1389
14cf11af
PM
1390/*
1391 * Copy a thread..
1392 */
efcac658 1393
6eca8933
AD
1394/*
1395 * Copy architecture-specific thread state
1396 */
6f2c55b8 1397int copy_thread(unsigned long clone_flags, unsigned long usp,
6eca8933 1398 unsigned long kthread_arg, struct task_struct *p)
14cf11af
PM
1399{
1400 struct pt_regs *childregs, *kregs;
1401 extern void ret_from_fork(void);
58254e10
AV
1402 extern void ret_from_kernel_thread(void);
1403 void (*f)(void);
0cec6fd1 1404 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
5d31a96e
ME
1405 struct thread_info *ti = task_thread_info(p);
1406
1407 klp_init_thread_info(ti);
14cf11af 1408
14cf11af
PM
1409 /* Copy registers */
1410 sp -= sizeof(struct pt_regs);
1411 childregs = (struct pt_regs *) sp;
ab75819d 1412 if (unlikely(p->flags & PF_KTHREAD)) {
6eca8933 1413 /* kernel thread */
58254e10 1414 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1415 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1416 /* function */
1417 if (usp)
1418 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1419#ifdef CONFIG_PPC64
b5e2fc1c 1420 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1421 childregs->softe = 1;
06d67d54 1422#endif
6eca8933 1423 childregs->gpr[15] = kthread_arg;
14cf11af 1424 p->thread.regs = NULL; /* no user register state */
138d1ce8 1425 ti->flags |= _TIF_RESTOREALL;
58254e10 1426 f = ret_from_kernel_thread;
14cf11af 1427 } else {
6eca8933 1428 /* user thread */
afa86fc4 1429 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1430 CHECK_FULL_REGS(regs);
1431 *childregs = *regs;
ea516b11
AV
1432 if (usp)
1433 childregs->gpr[1] = usp;
14cf11af 1434 p->thread.regs = childregs;
58254e10 1435 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1436 if (clone_flags & CLONE_SETTLS) {
1437#ifdef CONFIG_PPC64
9904b005 1438 if (!is_32bit_task())
06d67d54
PM
1439 childregs->gpr[13] = childregs->gpr[6];
1440 else
1441#endif
1442 childregs->gpr[2] = childregs->gpr[6];
1443 }
58254e10
AV
1444
1445 f = ret_from_fork;
14cf11af 1446 }
d272f667 1447 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
14cf11af 1448 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1449
1450 /*
1451 * The way this works is that at some point in the future
1452 * some task will call _switch to switch to the new task.
1453 * That will pop off the stack frame created below and start
1454 * the new task running at ret_from_fork. The new task will
1455 * do some house keeping and then return from the fork or clone
1456 * system call, using the stack frame created above.
1457 */
af945cf4 1458 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1459 sp -= sizeof(struct pt_regs);
1460 kregs = (struct pt_regs *) sp;
1461 sp -= STACK_FRAME_OVERHEAD;
1462 p->thread.ksp = sp;
cbc9565e 1463#ifdef CONFIG_PPC32
85218827
KG
1464 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1465 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1466#endif
28d170ab
ON
1467#ifdef CONFIG_HAVE_HW_BREAKPOINT
1468 p->thread.ptrace_bps[0] = NULL;
1469#endif
1470
18461960
PM
1471 p->thread.fp_save_area = NULL;
1472#ifdef CONFIG_ALTIVEC
1473 p->thread.vr_save_area = NULL;
1474#endif
1475
cec15488
ME
1476 setup_ksp_vsid(p, sp);
1477
efcac658
AK
1478#ifdef CONFIG_PPC64
1479 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26 1480 p->thread.dscr_inherit = current->thread.dscr_inherit;
db1231dc 1481 p->thread.dscr = mfspr(SPRN_DSCR);
efcac658 1482 }
92779245
HM
1483 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1484 p->thread.ppr = INIT_PPR;
efcac658 1485#endif
7cedd601 1486 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1487 return 0;
1488}
1489
1490/*
1491 * Set up a thread for executing a new program
1492 */
06d67d54 1493void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1494{
90eac727
ME
1495#ifdef CONFIG_PPC64
1496 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1497#endif
1498
06d67d54
PM
1499 /*
1500 * If we exec out of a kernel thread then thread.regs will not be
1501 * set. Do it now.
1502 */
1503 if (!current->thread.regs) {
0cec6fd1
AV
1504 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1505 current->thread.regs = regs - 1;
06d67d54
PM
1506 }
1507
14cf11af
PM
1508 memset(regs->gpr, 0, sizeof(regs->gpr));
1509 regs->ctr = 0;
1510 regs->link = 0;
1511 regs->xer = 0;
1512 regs->ccr = 0;
14cf11af 1513 regs->gpr[1] = sp;
06d67d54 1514
474f8196
RM
1515 /*
1516 * We have just cleared all the nonvolatile GPRs, so make
1517 * FULL_REGS(regs) return true. This is necessary to allow
1518 * ptrace to examine the thread immediately after exec.
1519 */
1520 regs->trap &= ~1UL;
1521
06d67d54
PM
1522#ifdef CONFIG_PPC32
1523 regs->mq = 0;
1524 regs->nip = start;
14cf11af 1525 regs->msr = MSR_USER;
06d67d54 1526#else
9904b005 1527 if (!is_32bit_task()) {
94af3abf 1528 unsigned long entry;
06d67d54 1529
94af3abf
RR
1530 if (is_elf2_task()) {
1531 /* Look ma, no function descriptors! */
1532 entry = start;
06d67d54 1533
94af3abf
RR
1534 /*
1535 * Ulrich says:
1536 * The latest iteration of the ABI requires that when
1537 * calling a function (at its global entry point),
1538 * the caller must ensure r12 holds the entry point
1539 * address (so that the function can quickly
1540 * establish addressability).
1541 */
1542 regs->gpr[12] = start;
1543 /* Make sure that's restored on entry to userspace. */
1544 set_thread_flag(TIF_RESTOREALL);
1545 } else {
1546 unsigned long toc;
1547
1548 /* start is a relocated pointer to the function
1549 * descriptor for the elf _start routine. The first
1550 * entry in the function descriptor is the entry
1551 * address of _start and the second entry is the TOC
1552 * value we need to use.
1553 */
1554 __get_user(entry, (unsigned long __user *)start);
1555 __get_user(toc, (unsigned long __user *)start+1);
1556
1557 /* Check whether the e_entry function descriptor entries
1558 * need to be relocated before we can use them.
1559 */
1560 if (load_addr != 0) {
1561 entry += load_addr;
1562 toc += load_addr;
1563 }
1564 regs->gpr[2] = toc;
06d67d54
PM
1565 }
1566 regs->nip = entry;
06d67d54 1567 regs->msr = MSR_USER64;
d4bf9a78
SR
1568 } else {
1569 regs->nip = start;
1570 regs->gpr[2] = 0;
1571 regs->msr = MSR_USER32;
06d67d54
PM
1572 }
1573#endif
ce48b210
MN
1574#ifdef CONFIG_VSX
1575 current->thread.used_vsr = 0;
1576#endif
de79f7b9 1577 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1578 current->thread.fp_save_area = NULL;
14cf11af 1579#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1580 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1581 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1582 current->thread.vr_save_area = NULL;
14cf11af
PM
1583 current->thread.vrsave = 0;
1584 current->thread.used_vr = 0;
1585#endif /* CONFIG_ALTIVEC */
1586#ifdef CONFIG_SPE
1587 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1588 current->thread.acc = 0;
1589 current->thread.spefscr = 0;
1590 current->thread.used_spe = 0;
1591#endif /* CONFIG_SPE */
bc2a9408
MN
1592#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1593 if (cpu_has_feature(CPU_FTR_TM))
1594 regs->msr |= MSR_TM;
1595 current->thread.tm_tfhar = 0;
1596 current->thread.tm_texasr = 0;
1597 current->thread.tm_tfiar = 0;
1598#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1599}
e1802b06 1600EXPORT_SYMBOL(start_thread);
14cf11af
PM
1601
1602#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1603 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1604
1605int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1606{
1607 struct pt_regs *regs = tsk->thread.regs;
1608
1609 /* This is a bit hairy. If we are an SPE enabled processor
1610 * (have embedded fp) we store the IEEE exception enable flags in
1611 * fpexc_mode. fpexc_mode is also used for setting FP exception
1612 * mode (asyn, precise, disabled) for 'Classic' FP. */
1613 if (val & PR_FP_EXC_SW_ENABLE) {
1614#ifdef CONFIG_SPE
5e14d21e 1615 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1616 /*
1617 * When the sticky exception bits are set
1618 * directly by userspace, it must call prctl
1619 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1620 * in the existing prctl settings) or
1621 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1622 * the bits being set). <fenv.h> functions
1623 * saving and restoring the whole
1624 * floating-point environment need to do so
1625 * anyway to restore the prctl settings from
1626 * the saved environment.
1627 */
1628 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1629 tsk->thread.fpexc_mode = val &
1630 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1631 return 0;
1632 } else {
1633 return -EINVAL;
1634 }
14cf11af
PM
1635#else
1636 return -EINVAL;
1637#endif
14cf11af 1638 }
06d67d54
PM
1639
1640 /* on a CONFIG_SPE this does not hurt us. The bits that
1641 * __pack_fe01 use do not overlap with bits used for
1642 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1643 * on CONFIG_SPE implementations are reserved so writing to
1644 * them does not change anything */
1645 if (val > PR_FP_EXC_PRECISE)
1646 return -EINVAL;
1647 tsk->thread.fpexc_mode = __pack_fe01(val);
1648 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1649 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1650 | tsk->thread.fpexc_mode;
14cf11af
PM
1651 return 0;
1652}
1653
1654int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1655{
1656 unsigned int val;
1657
1658 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1659#ifdef CONFIG_SPE
640e9225
JM
1660 if (cpu_has_feature(CPU_FTR_SPE)) {
1661 /*
1662 * When the sticky exception bits are set
1663 * directly by userspace, it must call prctl
1664 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1665 * in the existing prctl settings) or
1666 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1667 * the bits being set). <fenv.h> functions
1668 * saving and restoring the whole
1669 * floating-point environment need to do so
1670 * anyway to restore the prctl settings from
1671 * the saved environment.
1672 */
1673 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1674 val = tsk->thread.fpexc_mode;
640e9225 1675 } else
5e14d21e 1676 return -EINVAL;
14cf11af
PM
1677#else
1678 return -EINVAL;
1679#endif
1680 else
1681 val = __unpack_fe01(tsk->thread.fpexc_mode);
1682 return put_user(val, (unsigned int __user *) adr);
1683}
1684
fab5db97
PM
1685int set_endian(struct task_struct *tsk, unsigned int val)
1686{
1687 struct pt_regs *regs = tsk->thread.regs;
1688
1689 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1690 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1691 return -EINVAL;
1692
1693 if (regs == NULL)
1694 return -EINVAL;
1695
1696 if (val == PR_ENDIAN_BIG)
1697 regs->msr &= ~MSR_LE;
1698 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1699 regs->msr |= MSR_LE;
1700 else
1701 return -EINVAL;
1702
1703 return 0;
1704}
1705
1706int get_endian(struct task_struct *tsk, unsigned long adr)
1707{
1708 struct pt_regs *regs = tsk->thread.regs;
1709 unsigned int val;
1710
1711 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1712 !cpu_has_feature(CPU_FTR_REAL_LE))
1713 return -EINVAL;
1714
1715 if (regs == NULL)
1716 return -EINVAL;
1717
1718 if (regs->msr & MSR_LE) {
1719 if (cpu_has_feature(CPU_FTR_REAL_LE))
1720 val = PR_ENDIAN_LITTLE;
1721 else
1722 val = PR_ENDIAN_PPC_LITTLE;
1723 } else
1724 val = PR_ENDIAN_BIG;
1725
1726 return put_user(val, (unsigned int __user *)adr);
1727}
1728
e9370ae1
PM
1729int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1730{
1731 tsk->thread.align_ctl = val;
1732 return 0;
1733}
1734
1735int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1736{
1737 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1738}
1739
bb72c481
PM
1740static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1741 unsigned long nbytes)
1742{
1743 unsigned long stack_page;
1744 unsigned long cpu = task_cpu(p);
1745
1746 /*
1747 * Avoid crashing if the stack has overflowed and corrupted
1748 * task_cpu(p), which is in the thread_info struct.
1749 */
1750 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1751 stack_page = (unsigned long) hardirq_ctx[cpu];
1752 if (sp >= stack_page + sizeof(struct thread_struct)
1753 && sp <= stack_page + THREAD_SIZE - nbytes)
1754 return 1;
1755
1756 stack_page = (unsigned long) softirq_ctx[cpu];
1757 if (sp >= stack_page + sizeof(struct thread_struct)
1758 && sp <= stack_page + THREAD_SIZE - nbytes)
1759 return 1;
1760 }
1761 return 0;
1762}
1763
2f25194d 1764int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1765 unsigned long nbytes)
1766{
0cec6fd1 1767 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1768
1769 if (sp >= stack_page + sizeof(struct thread_struct)
1770 && sp <= stack_page + THREAD_SIZE - nbytes)
1771 return 1;
1772
bb72c481 1773 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1774}
1775
2f25194d
AB
1776EXPORT_SYMBOL(validate_sp);
1777
14cf11af
PM
1778unsigned long get_wchan(struct task_struct *p)
1779{
1780 unsigned long ip, sp;
1781 int count = 0;
1782
1783 if (!p || p == current || p->state == TASK_RUNNING)
1784 return 0;
1785
1786 sp = p->thread.ksp;
ec2b36b9 1787 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1788 return 0;
1789
1790 do {
1791 sp = *(unsigned long *)sp;
ec2b36b9 1792 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1793 return 0;
1794 if (count > 0) {
ec2b36b9 1795 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1796 if (!in_sched_functions(ip))
1797 return ip;
1798 }
1799 } while (count++ < 16);
1800 return 0;
1801}
06d67d54 1802
c4d04be1 1803static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1804
1805void show_stack(struct task_struct *tsk, unsigned long *stack)
1806{
1807 unsigned long sp, ip, lr, newsp;
1808 int count = 0;
1809 int firstframe = 1;
6794c782
SR
1810#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1811 int curr_frame = current->curr_ret_stack;
1812 extern void return_to_handler(void);
9135c3cc 1813 unsigned long rth = (unsigned long)return_to_handler;
6794c782 1814#endif
06d67d54
PM
1815
1816 sp = (unsigned long) stack;
1817 if (tsk == NULL)
1818 tsk = current;
1819 if (sp == 0) {
1820 if (tsk == current)
acf620ec 1821 sp = current_stack_pointer();
06d67d54
PM
1822 else
1823 sp = tsk->thread.ksp;
1824 }
1825
1826 lr = 0;
1827 printk("Call Trace:\n");
1828 do {
ec2b36b9 1829 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1830 return;
1831
1832 stack = (unsigned long *) sp;
1833 newsp = stack[0];
ec2b36b9 1834 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1835 if (!firstframe || ip != lr) {
058c78f4 1836 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1837#ifdef CONFIG_FUNCTION_GRAPH_TRACER
7d56c65a 1838 if ((ip == rth) && curr_frame >= 0) {
6794c782
SR
1839 printk(" (%pS)",
1840 (void *)current->ret_stack[curr_frame].ret);
1841 curr_frame--;
1842 }
1843#endif
06d67d54
PM
1844 if (firstframe)
1845 printk(" (unreliable)");
1846 printk("\n");
1847 }
1848 firstframe = 0;
1849
1850 /*
1851 * See if this is an exception frame.
1852 * We look for the "regshere" marker in the current frame.
1853 */
ec2b36b9
BH
1854 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1855 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1856 struct pt_regs *regs = (struct pt_regs *)
1857 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1858 lr = regs->link;
9be9be2e 1859 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 1860 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1861 firstframe = 1;
1862 }
1863
1864 sp = newsp;
1865 } while (count++ < kstack_depth_to_print);
1866}
1867
cb2c9b27 1868#ifdef CONFIG_PPC64
fe1952fc 1869/* Called with hard IRQs off */
0e37739b 1870void notrace __ppc64_runlatch_on(void)
cb2c9b27 1871{
fe1952fc 1872 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1873 unsigned long ctrl;
1874
fe1952fc
BH
1875 ctrl = mfspr(SPRN_CTRLF);
1876 ctrl |= CTRL_RUNLATCH;
1877 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1878
fae2e0fb 1879 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1880}
1881
fe1952fc 1882/* Called with hard IRQs off */
0e37739b 1883void notrace __ppc64_runlatch_off(void)
cb2c9b27 1884{
fe1952fc 1885 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1886 unsigned long ctrl;
1887
fae2e0fb 1888 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1889
4138d653
AB
1890 ctrl = mfspr(SPRN_CTRLF);
1891 ctrl &= ~CTRL_RUNLATCH;
1892 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1893}
fe1952fc 1894#endif /* CONFIG_PPC64 */
f6a61680 1895
d839088c
AB
1896unsigned long arch_align_stack(unsigned long sp)
1897{
1898 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1899 sp -= get_random_int() & ~PAGE_MASK;
1900 return sp & ~0xf;
1901}
912f9ee2
AB
1902
1903static inline unsigned long brk_rnd(void)
1904{
1905 unsigned long rnd = 0;
1906
1907 /* 8MB for 32bit, 1GB for 64bit */
1908 if (is_32bit_task())
5ef11c35 1909 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
912f9ee2 1910 else
5ef11c35 1911 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
912f9ee2
AB
1912
1913 return rnd << PAGE_SHIFT;
1914}
1915
1916unsigned long arch_randomize_brk(struct mm_struct *mm)
1917{
8bbde7a7
AB
1918 unsigned long base = mm->brk;
1919 unsigned long ret;
1920
ce7a35c7 1921#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1922 /*
1923 * If we are using 1TB segments and we are allowed to randomise
1924 * the heap, we can put it above 1TB so it is backed by a 1TB
1925 * segment. Otherwise the heap will be in the bottom 1TB
1926 * which always uses 256MB segments and this may result in a
caca285e
AK
1927 * performance penalty. We don't need to worry about radix. For
1928 * radix, mmu_highuser_ssize remains unchanged from 256MB.
8bbde7a7
AB
1929 */
1930 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1931 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1932#endif
1933
1934 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1935
1936 if (ret < mm->brk)
1937 return mm->brk;
1938
1939 return ret;
1940}
501cb16d 1941
This page took 0.756801 seconds and 5 git commands to generate.