powerpc: Fix compile error for CONFIG_VSX
[deliverable/linux.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
31#include <linux/module.h>
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
06d67d54 35#include <linux/utsname.h>
14cf11af
PM
36
37#include <asm/pgtable.h>
38#include <asm/uaccess.h>
39#include <asm/system.h>
40#include <asm/io.h>
41#include <asm/processor.h>
42#include <asm/mmu.h>
43#include <asm/prom.h>
76032de8 44#include <asm/machdep.h>
c6622f63 45#include <asm/time.h>
a7f31841 46#include <asm/syscalls.h>
06d67d54
PM
47#ifdef CONFIG_PPC64
48#include <asm/firmware.h>
06d67d54 49#endif
14cf11af
PM
50
51extern unsigned long _get_SP(void);
52
53#ifndef CONFIG_SMP
54struct task_struct *last_task_used_math = NULL;
55struct task_struct *last_task_used_altivec = NULL;
ce48b210 56struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
57struct task_struct *last_task_used_spe = NULL;
58#endif
59
14cf11af
PM
60/*
61 * Make sure the floating-point register state in the
62 * the thread_struct is up to date for task tsk.
63 */
64void flush_fp_to_thread(struct task_struct *tsk)
65{
66 if (tsk->thread.regs) {
67 /*
68 * We need to disable preemption here because if we didn't,
69 * another process could get scheduled after the regs->msr
70 * test but before we have finished saving the FP registers
71 * to the thread_struct. That process could take over the
72 * FPU, and then when we get scheduled again we would store
73 * bogus values for the remaining FP registers.
74 */
75 preempt_disable();
76 if (tsk->thread.regs->msr & MSR_FP) {
77#ifdef CONFIG_SMP
78 /*
79 * This should only ever be called for current or
80 * for a stopped child process. Since we save away
81 * the FP register state on context switch on SMP,
82 * there is something wrong if a stopped child appears
83 * to still have its FP state in the CPU registers.
84 */
85 BUG_ON(tsk != current);
86#endif
0ee6c15e 87 giveup_fpu(tsk);
14cf11af
PM
88 }
89 preempt_enable();
90 }
91}
92
93void enable_kernel_fp(void)
94{
95 WARN_ON(preemptible());
96
97#ifdef CONFIG_SMP
98 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99 giveup_fpu(current);
100 else
101 giveup_fpu(NULL); /* just enables FP for kernel */
102#else
103 giveup_fpu(last_task_used_math);
104#endif /* CONFIG_SMP */
105}
106EXPORT_SYMBOL(enable_kernel_fp);
107
108int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
109{
ce48b210
MN
110#ifdef CONFIG_VSX
111 int i;
112 elf_fpreg_t *reg;
113#endif
114
14cf11af
PM
115 if (!tsk->thread.regs)
116 return 0;
117 flush_fp_to_thread(current);
118
ce48b210
MN
119#ifdef CONFIG_VSX
120 reg = (elf_fpreg_t *)fpregs;
121 for (i = 0; i < ELF_NFPREG - 1; i++, reg++)
122 *reg = tsk->thread.TS_FPR(i);
123 memcpy(reg, &tsk->thread.fpscr, sizeof(elf_fpreg_t));
124#else
9c75a31c 125 memcpy(fpregs, &tsk->thread.TS_FPR(0), sizeof(*fpregs));
ce48b210 126#endif
14cf11af
PM
127
128 return 1;
129}
130
131#ifdef CONFIG_ALTIVEC
132void enable_kernel_altivec(void)
133{
134 WARN_ON(preemptible());
135
136#ifdef CONFIG_SMP
137 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
138 giveup_altivec(current);
139 else
140 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
141#else
142 giveup_altivec(last_task_used_altivec);
143#endif /* CONFIG_SMP */
144}
145EXPORT_SYMBOL(enable_kernel_altivec);
146
147/*
148 * Make sure the VMX/Altivec register state in the
149 * the thread_struct is up to date for task tsk.
150 */
151void flush_altivec_to_thread(struct task_struct *tsk)
152{
153 if (tsk->thread.regs) {
154 preempt_disable();
155 if (tsk->thread.regs->msr & MSR_VEC) {
156#ifdef CONFIG_SMP
157 BUG_ON(tsk != current);
158#endif
0ee6c15e 159 giveup_altivec(tsk);
14cf11af
PM
160 }
161 preempt_enable();
162 }
163}
164
ce48b210 165int dump_task_altivec(struct task_struct *tsk, elf_vrreg_t *vrregs)
14cf11af 166{
1f7d6668
MN
167 /* ELF_NVRREG includes the VSCR and VRSAVE which we need to save
168 * separately, see below */
169 const int nregs = ELF_NVRREG - 2;
170 elf_vrreg_t *reg;
171 u32 *dest;
172
173 if (tsk == current)
174 flush_altivec_to_thread(tsk);
175
176 reg = (elf_vrreg_t *)vrregs;
177
178 /* copy the 32 vr registers */
179 memcpy(reg, &tsk->thread.vr[0], nregs * sizeof(*reg));
180 reg += nregs;
181
182 /* copy the vscr */
183 memcpy(reg, &tsk->thread.vscr, sizeof(*reg));
184 reg++;
185
186 /* vrsave is stored in the high 32bit slot of the final 128bits */
187 memset(reg, 0, sizeof(*reg));
188 dest = (u32 *)reg;
189 *dest = tsk->thread.vrsave;
190
14cf11af
PM
191 return 1;
192}
193#endif /* CONFIG_ALTIVEC */
194
ce48b210
MN
195#ifdef CONFIG_VSX
196#if 0
197/* not currently used, but some crazy RAID module might want to later */
198void enable_kernel_vsx(void)
199{
200 WARN_ON(preemptible());
201
202#ifdef CONFIG_SMP
203 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
204 giveup_vsx(current);
205 else
206 giveup_vsx(NULL); /* just enable vsx for kernel - force */
207#else
208 giveup_vsx(last_task_used_vsx);
209#endif /* CONFIG_SMP */
210}
211EXPORT_SYMBOL(enable_kernel_vsx);
212#endif
213
214void flush_vsx_to_thread(struct task_struct *tsk)
215{
216 if (tsk->thread.regs) {
217 preempt_disable();
218 if (tsk->thread.regs->msr & MSR_VSX) {
219#ifdef CONFIG_SMP
220 BUG_ON(tsk != current);
221#endif
222 giveup_vsx(tsk);
223 }
224 preempt_enable();
225 }
226}
227
228/*
229 * This dumps the lower half 64bits of the first 32 VSX registers.
230 * This needs to be called with dump_task_fp and dump_task_altivec to
231 * get all the VSX state.
232 */
233int dump_task_vsx(struct task_struct *tsk, elf_vrreg_t *vrregs)
234{
235 elf_vrreg_t *reg;
236 double buf[32];
237 int i;
238
239 if (tsk == current)
240 flush_vsx_to_thread(tsk);
241
242 reg = (elf_vrreg_t *)vrregs;
243
244 for (i = 0; i < 32 ; i++)
245 buf[i] = current->thread.fpr[i][TS_VSRLOWOFFSET];
246 memcpy(reg, buf, sizeof(buf));
247
248 return 1;
249}
250#endif /* CONFIG_VSX */
251
252int dump_task_vector(struct task_struct *tsk, elf_vrregset_t *vrregs)
253{
254 int rc = 0;
255 elf_vrreg_t *regs = (elf_vrreg_t *)vrregs;
256#ifdef CONFIG_ALTIVEC
257 rc = dump_task_altivec(tsk, regs);
258 if (rc)
259 return rc;
260 regs += ELF_NVRREG;
261#endif
262
263#ifdef CONFIG_VSX
264 rc = dump_task_vsx(tsk, regs);
265#endif
266 return rc;
267}
268
14cf11af
PM
269#ifdef CONFIG_SPE
270
271void enable_kernel_spe(void)
272{
273 WARN_ON(preemptible());
274
275#ifdef CONFIG_SMP
276 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
277 giveup_spe(current);
278 else
279 giveup_spe(NULL); /* just enable SPE for kernel - force */
280#else
281 giveup_spe(last_task_used_spe);
282#endif /* __SMP __ */
283}
284EXPORT_SYMBOL(enable_kernel_spe);
285
286void flush_spe_to_thread(struct task_struct *tsk)
287{
288 if (tsk->thread.regs) {
289 preempt_disable();
290 if (tsk->thread.regs->msr & MSR_SPE) {
291#ifdef CONFIG_SMP
292 BUG_ON(tsk != current);
293#endif
0ee6c15e 294 giveup_spe(tsk);
14cf11af
PM
295 }
296 preempt_enable();
297 }
298}
299
300int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
301{
302 flush_spe_to_thread(current);
303 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
304 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
305 return 1;
306}
307#endif /* CONFIG_SPE */
308
5388fb10 309#ifndef CONFIG_SMP
48abec07
PM
310/*
311 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
312 * and the current task has some state, discard it.
313 */
5388fb10 314void discard_lazy_cpu_state(void)
48abec07 315{
48abec07
PM
316 preempt_disable();
317 if (last_task_used_math == current)
318 last_task_used_math = NULL;
319#ifdef CONFIG_ALTIVEC
320 if (last_task_used_altivec == current)
321 last_task_used_altivec = NULL;
322#endif /* CONFIG_ALTIVEC */
ce48b210
MN
323#ifdef CONFIG_VSX
324 if (last_task_used_vsx == current)
325 last_task_used_vsx = NULL;
326#endif /* CONFIG_VSX */
48abec07
PM
327#ifdef CONFIG_SPE
328 if (last_task_used_spe == current)
329 last_task_used_spe = NULL;
330#endif
331 preempt_enable();
48abec07 332}
5388fb10 333#endif /* CONFIG_SMP */
48abec07 334
a2ceff5e
ME
335static DEFINE_PER_CPU(unsigned long, current_dabr);
336
14cf11af
PM
337int set_dabr(unsigned long dabr)
338{
a2ceff5e
ME
339 __get_cpu_var(current_dabr) = dabr;
340
791cc501 341#ifdef CONFIG_PPC_MERGE /* XXX for now */
cab0af98
ME
342 if (ppc_md.set_dabr)
343 return ppc_md.set_dabr(dabr);
791cc501 344#endif
14cf11af 345
791cc501
BH
346 /* XXX should we have a CPU_FTR_HAS_DABR ? */
347#if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
cab0af98 348 mtspr(SPRN_DABR, dabr);
791cc501 349#endif
cab0af98 350 return 0;
14cf11af
PM
351}
352
06d67d54
PM
353#ifdef CONFIG_PPC64
354DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 355#endif
14cf11af
PM
356
357struct task_struct *__switch_to(struct task_struct *prev,
358 struct task_struct *new)
359{
360 struct thread_struct *new_thread, *old_thread;
361 unsigned long flags;
362 struct task_struct *last;
363
364#ifdef CONFIG_SMP
365 /* avoid complexity of lazy save/restore of fpu
366 * by just saving it every time we switch out if
367 * this task used the fpu during the last quantum.
368 *
369 * If it tries to use the fpu again, it'll trap and
370 * reload its fp regs. So we don't have to do a restore
371 * every switch, just a save.
372 * -- Cort
373 */
374 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
375 giveup_fpu(prev);
376#ifdef CONFIG_ALTIVEC
377 /*
378 * If the previous thread used altivec in the last quantum
379 * (thus changing altivec regs) then save them.
380 * We used to check the VRSAVE register but not all apps
381 * set it, so we don't rely on it now (and in fact we need
382 * to save & restore VSCR even if VRSAVE == 0). -- paulus
383 *
384 * On SMP we always save/restore altivec regs just to avoid the
385 * complexity of changing processors.
386 * -- Cort
387 */
388 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
389 giveup_altivec(prev);
14cf11af 390#endif /* CONFIG_ALTIVEC */
ce48b210
MN
391#ifdef CONFIG_VSX
392 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
393 giveup_vsx(prev);
394#endif /* CONFIG_VSX */
14cf11af
PM
395#ifdef CONFIG_SPE
396 /*
397 * If the previous thread used spe in the last quantum
398 * (thus changing spe regs) then save them.
399 *
400 * On SMP we always save/restore spe regs just to avoid the
401 * complexity of changing processors.
402 */
403 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
404 giveup_spe(prev);
c0c0d996
PM
405#endif /* CONFIG_SPE */
406
407#else /* CONFIG_SMP */
408#ifdef CONFIG_ALTIVEC
409 /* Avoid the trap. On smp this this never happens since
410 * we don't set last_task_used_altivec -- Cort
411 */
412 if (new->thread.regs && last_task_used_altivec == new)
413 new->thread.regs->msr |= MSR_VEC;
414#endif /* CONFIG_ALTIVEC */
ce48b210
MN
415#ifdef CONFIG_VSX
416 if (new->thread.regs && last_task_used_vsx == new)
417 new->thread.regs->msr |= MSR_VSX;
418#endif /* CONFIG_VSX */
c0c0d996 419#ifdef CONFIG_SPE
14cf11af
PM
420 /* Avoid the trap. On smp this this never happens since
421 * we don't set last_task_used_spe
422 */
423 if (new->thread.regs && last_task_used_spe == new)
424 new->thread.regs->msr |= MSR_SPE;
425#endif /* CONFIG_SPE */
c0c0d996 426
14cf11af
PM
427#endif /* CONFIG_SMP */
428
a2ceff5e 429 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
14cf11af 430 set_dabr(new->thread.dabr);
14cf11af
PM
431
432 new_thread = &new->thread;
433 old_thread = &current->thread;
06d67d54
PM
434
435#ifdef CONFIG_PPC64
436 /*
437 * Collect processor utilization data per process
438 */
439 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
440 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
441 long unsigned start_tb, current_tb;
442 start_tb = old_thread->start_tb;
443 cu->current_tb = current_tb = mfspr(SPRN_PURR);
444 old_thread->accum_tb += (current_tb - start_tb);
445 new_thread->start_tb = current_tb;
446 }
447#endif
448
14cf11af 449 local_irq_save(flags);
c6622f63
PM
450
451 account_system_vtime(current);
81a3843f 452 account_process_vtime(current);
c6622f63
PM
453 calculate_steal_time();
454
44387e9f
AB
455 /*
456 * We can't take a PMU exception inside _switch() since there is a
457 * window where the kernel stack SLB and the kernel stack are out
458 * of sync. Hard disable here.
459 */
460 hard_irq_disable();
14cf11af
PM
461 last = _switch(old_thread, new_thread);
462
463 local_irq_restore(flags);
464
465 return last;
466}
467
06d67d54
PM
468static int instructions_to_print = 16;
469
06d67d54
PM
470static void show_instructions(struct pt_regs *regs)
471{
472 int i;
473 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
474 sizeof(int));
475
476 printk("Instruction dump:");
477
478 for (i = 0; i < instructions_to_print; i++) {
479 int instr;
480
481 if (!(i % 8))
482 printk("\n");
483
0de2d820
SW
484#if !defined(CONFIG_BOOKE)
485 /* If executing with the IMMU off, adjust pc rather
486 * than print XXXXXXXX.
487 */
488 if (!(regs->msr & MSR_IR))
489 pc = (unsigned long)phys_to_virt(pc);
490#endif
491
af308377
SR
492 /* We use __get_user here *only* to avoid an OOPS on a
493 * bad address because the pc *should* only be a
494 * kernel address.
495 */
00ae36de
AB
496 if (!__kernel_text_address(pc) ||
497 __get_user(instr, (unsigned int __user *)pc)) {
06d67d54
PM
498 printk("XXXXXXXX ");
499 } else {
500 if (regs->nip == pc)
501 printk("<%08x> ", instr);
502 else
503 printk("%08x ", instr);
504 }
505
506 pc += sizeof(int);
507 }
508
509 printk("\n");
510}
511
512static struct regbit {
513 unsigned long bit;
514 const char *name;
515} msr_bits[] = {
516 {MSR_EE, "EE"},
517 {MSR_PR, "PR"},
518 {MSR_FP, "FP"},
ce48b210
MN
519 {MSR_VEC, "VEC"},
520 {MSR_VSX, "VSX"},
06d67d54
PM
521 {MSR_ME, "ME"},
522 {MSR_IR, "IR"},
523 {MSR_DR, "DR"},
524 {0, NULL}
525};
526
527static void printbits(unsigned long val, struct regbit *bits)
528{
529 const char *sep = "";
530
531 printk("<");
532 for (; bits->bit; ++bits)
533 if (val & bits->bit) {
534 printk("%s%s", sep, bits->name);
535 sep = ",";
536 }
537 printk(">");
538}
539
540#ifdef CONFIG_PPC64
f6f7dde3 541#define REG "%016lx"
06d67d54
PM
542#define REGS_PER_LINE 4
543#define LAST_VOLATILE 13
544#else
f6f7dde3 545#define REG "%08lx"
06d67d54
PM
546#define REGS_PER_LINE 8
547#define LAST_VOLATILE 12
548#endif
549
14cf11af
PM
550void show_regs(struct pt_regs * regs)
551{
552 int i, trap;
553
06d67d54
PM
554 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
555 regs->nip, regs->link, regs->ctr);
556 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 557 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
558 printk("MSR: "REG" ", regs->msr);
559 printbits(regs->msr, msr_bits);
f6f7dde3 560 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af
PM
561 trap = TRAP(regs);
562 if (trap == 0x300 || trap == 0x600)
14170789
KG
563#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
564 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
565#else
06d67d54 566 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
14170789 567#endif
06d67d54 568 printk("TASK = %p[%d] '%s' THREAD: %p",
19c5870c 569 current, task_pid_nr(current), current->comm, task_thread_info(current));
14cf11af
PM
570
571#ifdef CONFIG_SMP
79ccd1be 572 printk(" CPU: %d", raw_smp_processor_id());
14cf11af
PM
573#endif /* CONFIG_SMP */
574
575 for (i = 0; i < 32; i++) {
06d67d54 576 if ((i % REGS_PER_LINE) == 0)
14cf11af 577 printk("\n" KERN_INFO "GPR%02d: ", i);
06d67d54
PM
578 printk(REG " ", regs->gpr[i]);
579 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
580 break;
581 }
582 printk("\n");
583#ifdef CONFIG_KALLSYMS
584 /*
585 * Lookup NIP late so we have the best change of getting the
586 * above info out without failing
587 */
06d67d54 588 printk("NIP ["REG"] ", regs->nip);
14cf11af 589 print_symbol("%s\n", regs->nip);
06d67d54 590 printk("LR ["REG"] ", regs->link);
14cf11af
PM
591 print_symbol("%s\n", regs->link);
592#endif
593 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
594 if (!user_mode(regs))
595 show_instructions(regs);
14cf11af
PM
596}
597
598void exit_thread(void)
599{
48abec07 600 discard_lazy_cpu_state();
14cf11af
PM
601}
602
603void flush_thread(void)
604{
06d67d54
PM
605#ifdef CONFIG_PPC64
606 struct thread_info *t = current_thread_info();
607
f144e7c7
MD
608 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
609 clear_ti_thread_flag(t, TIF_ABI_PENDING);
610 if (test_ti_thread_flag(t, TIF_32BIT))
611 clear_ti_thread_flag(t, TIF_32BIT);
612 else
613 set_ti_thread_flag(t, TIF_32BIT);
614 }
06d67d54 615#endif
06d67d54 616
48abec07 617 discard_lazy_cpu_state();
14cf11af 618
14cf11af
PM
619 if (current->thread.dabr) {
620 current->thread.dabr = 0;
621 set_dabr(0);
622 }
14cf11af
PM
623}
624
625void
626release_thread(struct task_struct *t)
627{
628}
629
630/*
631 * This gets called before we allocate a new thread and copy
632 * the current task into it.
633 */
634void prepare_to_copy(struct task_struct *tsk)
635{
636 flush_fp_to_thread(current);
637 flush_altivec_to_thread(current);
ce48b210 638 flush_vsx_to_thread(current);
14cf11af
PM
639 flush_spe_to_thread(current);
640}
641
642/*
643 * Copy a thread..
644 */
06d67d54
PM
645int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
646 unsigned long unused, struct task_struct *p,
647 struct pt_regs *regs)
14cf11af
PM
648{
649 struct pt_regs *childregs, *kregs;
650 extern void ret_from_fork(void);
0cec6fd1 651 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af
PM
652
653 CHECK_FULL_REGS(regs);
654 /* Copy registers */
655 sp -= sizeof(struct pt_regs);
656 childregs = (struct pt_regs *) sp;
657 *childregs = *regs;
658 if ((childregs->msr & MSR_PR) == 0) {
659 /* for kernel thread, set `current' and stackptr in new task */
660 childregs->gpr[1] = sp + sizeof(struct pt_regs);
06d67d54 661#ifdef CONFIG_PPC32
14cf11af 662 childregs->gpr[2] = (unsigned long) p;
06d67d54 663#else
b5e2fc1c 664 clear_tsk_thread_flag(p, TIF_32BIT);
06d67d54 665#endif
14cf11af
PM
666 p->thread.regs = NULL; /* no user register state */
667 } else {
668 childregs->gpr[1] = usp;
669 p->thread.regs = childregs;
06d67d54
PM
670 if (clone_flags & CLONE_SETTLS) {
671#ifdef CONFIG_PPC64
672 if (!test_thread_flag(TIF_32BIT))
673 childregs->gpr[13] = childregs->gpr[6];
674 else
675#endif
676 childregs->gpr[2] = childregs->gpr[6];
677 }
14cf11af
PM
678 }
679 childregs->gpr[3] = 0; /* Result from fork() */
680 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
681
682 /*
683 * The way this works is that at some point in the future
684 * some task will call _switch to switch to the new task.
685 * That will pop off the stack frame created below and start
686 * the new task running at ret_from_fork. The new task will
687 * do some house keeping and then return from the fork or clone
688 * system call, using the stack frame created above.
689 */
690 sp -= sizeof(struct pt_regs);
691 kregs = (struct pt_regs *) sp;
692 sp -= STACK_FRAME_OVERHEAD;
693 p->thread.ksp = sp;
85218827
KG
694 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
695 _ALIGN_UP(sizeof(struct thread_info), 16);
14cf11af 696
06d67d54
PM
697#ifdef CONFIG_PPC64
698 if (cpu_has_feature(CPU_FTR_SLB)) {
1189be65 699 unsigned long sp_vsid;
3c726f8d 700 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 701
1189be65
PM
702 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
703 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
704 << SLB_VSID_SHIFT_1T;
705 else
706 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
707 << SLB_VSID_SHIFT;
3c726f8d 708 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
709 p->thread.ksp_vsid = sp_vsid;
710 }
711
712 /*
713 * The PPC64 ABI makes use of a TOC to contain function
714 * pointers. The function (ret_from_except) is actually a pointer
715 * to the TOC entry. The first entry is a pointer to the actual
716 * function.
717 */
718 kregs->nip = *((unsigned long *)ret_from_fork);
719#else
720 kregs->nip = (unsigned long)ret_from_fork;
06d67d54 721#endif
14cf11af
PM
722
723 return 0;
724}
725
726/*
727 * Set up a thread for executing a new program
728 */
06d67d54 729void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 730{
90eac727
ME
731#ifdef CONFIG_PPC64
732 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
733#endif
734
14cf11af 735 set_fs(USER_DS);
06d67d54
PM
736
737 /*
738 * If we exec out of a kernel thread then thread.regs will not be
739 * set. Do it now.
740 */
741 if (!current->thread.regs) {
0cec6fd1
AV
742 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
743 current->thread.regs = regs - 1;
06d67d54
PM
744 }
745
14cf11af
PM
746 memset(regs->gpr, 0, sizeof(regs->gpr));
747 regs->ctr = 0;
748 regs->link = 0;
749 regs->xer = 0;
750 regs->ccr = 0;
14cf11af 751 regs->gpr[1] = sp;
06d67d54 752
474f8196
RM
753 /*
754 * We have just cleared all the nonvolatile GPRs, so make
755 * FULL_REGS(regs) return true. This is necessary to allow
756 * ptrace to examine the thread immediately after exec.
757 */
758 regs->trap &= ~1UL;
759
06d67d54
PM
760#ifdef CONFIG_PPC32
761 regs->mq = 0;
762 regs->nip = start;
14cf11af 763 regs->msr = MSR_USER;
06d67d54 764#else
d4bf9a78 765 if (!test_thread_flag(TIF_32BIT)) {
90eac727 766 unsigned long entry, toc;
06d67d54
PM
767
768 /* start is a relocated pointer to the function descriptor for
769 * the elf _start routine. The first entry in the function
770 * descriptor is the entry address of _start and the second
771 * entry is the TOC value we need to use.
772 */
773 __get_user(entry, (unsigned long __user *)start);
774 __get_user(toc, (unsigned long __user *)start+1);
775
776 /* Check whether the e_entry function descriptor entries
777 * need to be relocated before we can use them.
778 */
779 if (load_addr != 0) {
780 entry += load_addr;
781 toc += load_addr;
782 }
783 regs->nip = entry;
784 regs->gpr[2] = toc;
785 regs->msr = MSR_USER64;
d4bf9a78
SR
786 } else {
787 regs->nip = start;
788 regs->gpr[2] = 0;
789 regs->msr = MSR_USER32;
06d67d54
PM
790 }
791#endif
792
48abec07 793 discard_lazy_cpu_state();
ce48b210
MN
794#ifdef CONFIG_VSX
795 current->thread.used_vsr = 0;
796#endif
14cf11af 797 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
25c8a78b 798 current->thread.fpscr.val = 0;
14cf11af
PM
799#ifdef CONFIG_ALTIVEC
800 memset(current->thread.vr, 0, sizeof(current->thread.vr));
801 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
06d67d54 802 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
803 current->thread.vrsave = 0;
804 current->thread.used_vr = 0;
805#endif /* CONFIG_ALTIVEC */
806#ifdef CONFIG_SPE
807 memset(current->thread.evr, 0, sizeof(current->thread.evr));
808 current->thread.acc = 0;
809 current->thread.spefscr = 0;
810 current->thread.used_spe = 0;
811#endif /* CONFIG_SPE */
812}
813
814#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
815 | PR_FP_EXC_RES | PR_FP_EXC_INV)
816
817int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
818{
819 struct pt_regs *regs = tsk->thread.regs;
820
821 /* This is a bit hairy. If we are an SPE enabled processor
822 * (have embedded fp) we store the IEEE exception enable flags in
823 * fpexc_mode. fpexc_mode is also used for setting FP exception
824 * mode (asyn, precise, disabled) for 'Classic' FP. */
825 if (val & PR_FP_EXC_SW_ENABLE) {
826#ifdef CONFIG_SPE
5e14d21e
KG
827 if (cpu_has_feature(CPU_FTR_SPE)) {
828 tsk->thread.fpexc_mode = val &
829 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
830 return 0;
831 } else {
832 return -EINVAL;
833 }
14cf11af
PM
834#else
835 return -EINVAL;
836#endif
14cf11af 837 }
06d67d54
PM
838
839 /* on a CONFIG_SPE this does not hurt us. The bits that
840 * __pack_fe01 use do not overlap with bits used for
841 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
842 * on CONFIG_SPE implementations are reserved so writing to
843 * them does not change anything */
844 if (val > PR_FP_EXC_PRECISE)
845 return -EINVAL;
846 tsk->thread.fpexc_mode = __pack_fe01(val);
847 if (regs != NULL && (regs->msr & MSR_FP) != 0)
848 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
849 | tsk->thread.fpexc_mode;
14cf11af
PM
850 return 0;
851}
852
853int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
854{
855 unsigned int val;
856
857 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
858#ifdef CONFIG_SPE
5e14d21e
KG
859 if (cpu_has_feature(CPU_FTR_SPE))
860 val = tsk->thread.fpexc_mode;
861 else
862 return -EINVAL;
14cf11af
PM
863#else
864 return -EINVAL;
865#endif
866 else
867 val = __unpack_fe01(tsk->thread.fpexc_mode);
868 return put_user(val, (unsigned int __user *) adr);
869}
870
fab5db97
PM
871int set_endian(struct task_struct *tsk, unsigned int val)
872{
873 struct pt_regs *regs = tsk->thread.regs;
874
875 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
876 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
877 return -EINVAL;
878
879 if (regs == NULL)
880 return -EINVAL;
881
882 if (val == PR_ENDIAN_BIG)
883 regs->msr &= ~MSR_LE;
884 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
885 regs->msr |= MSR_LE;
886 else
887 return -EINVAL;
888
889 return 0;
890}
891
892int get_endian(struct task_struct *tsk, unsigned long adr)
893{
894 struct pt_regs *regs = tsk->thread.regs;
895 unsigned int val;
896
897 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
898 !cpu_has_feature(CPU_FTR_REAL_LE))
899 return -EINVAL;
900
901 if (regs == NULL)
902 return -EINVAL;
903
904 if (regs->msr & MSR_LE) {
905 if (cpu_has_feature(CPU_FTR_REAL_LE))
906 val = PR_ENDIAN_LITTLE;
907 else
908 val = PR_ENDIAN_PPC_LITTLE;
909 } else
910 val = PR_ENDIAN_BIG;
911
912 return put_user(val, (unsigned int __user *)adr);
913}
914
e9370ae1
PM
915int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
916{
917 tsk->thread.align_ctl = val;
918 return 0;
919}
920
921int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
922{
923 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
924}
925
06d67d54
PM
926#define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
927
14cf11af
PM
928int sys_clone(unsigned long clone_flags, unsigned long usp,
929 int __user *parent_tidp, void __user *child_threadptr,
930 int __user *child_tidp, int p6,
931 struct pt_regs *regs)
932{
933 CHECK_FULL_REGS(regs);
934 if (usp == 0)
935 usp = regs->gpr[1]; /* stack pointer for child */
06d67d54
PM
936#ifdef CONFIG_PPC64
937 if (test_thread_flag(TIF_32BIT)) {
938 parent_tidp = TRUNC_PTR(parent_tidp);
939 child_tidp = TRUNC_PTR(child_tidp);
940 }
941#endif
14cf11af
PM
942 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
943}
944
945int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
946 unsigned long p4, unsigned long p5, unsigned long p6,
947 struct pt_regs *regs)
948{
949 CHECK_FULL_REGS(regs);
950 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
951}
952
953int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
954 unsigned long p4, unsigned long p5, unsigned long p6,
955 struct pt_regs *regs)
956{
957 CHECK_FULL_REGS(regs);
958 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
959 regs, 0, NULL, NULL);
960}
961
962int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
963 unsigned long a3, unsigned long a4, unsigned long a5,
964 struct pt_regs *regs)
965{
966 int error;
06d67d54 967 char *filename;
14cf11af
PM
968
969 filename = getname((char __user *) a0);
970 error = PTR_ERR(filename);
971 if (IS_ERR(filename))
972 goto out;
973 flush_fp_to_thread(current);
974 flush_altivec_to_thread(current);
975 flush_spe_to_thread(current);
20c8c210
PM
976 error = do_execve(filename, (char __user * __user *) a1,
977 (char __user * __user *) a2, regs);
14cf11af
PM
978 putname(filename);
979out:
980 return error;
981}
982
bb72c481
PM
983#ifdef CONFIG_IRQSTACKS
984static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
985 unsigned long nbytes)
986{
987 unsigned long stack_page;
988 unsigned long cpu = task_cpu(p);
989
990 /*
991 * Avoid crashing if the stack has overflowed and corrupted
992 * task_cpu(p), which is in the thread_info struct.
993 */
994 if (cpu < NR_CPUS && cpu_possible(cpu)) {
995 stack_page = (unsigned long) hardirq_ctx[cpu];
996 if (sp >= stack_page + sizeof(struct thread_struct)
997 && sp <= stack_page + THREAD_SIZE - nbytes)
998 return 1;
999
1000 stack_page = (unsigned long) softirq_ctx[cpu];
1001 if (sp >= stack_page + sizeof(struct thread_struct)
1002 && sp <= stack_page + THREAD_SIZE - nbytes)
1003 return 1;
1004 }
1005 return 0;
1006}
1007
1008#else
1009#define valid_irq_stack(sp, p, nb) 0
1010#endif /* CONFIG_IRQSTACKS */
1011
2f25194d 1012int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1013 unsigned long nbytes)
1014{
0cec6fd1 1015 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1016
1017 if (sp >= stack_page + sizeof(struct thread_struct)
1018 && sp <= stack_page + THREAD_SIZE - nbytes)
1019 return 1;
1020
bb72c481 1021 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1022}
1023
2f25194d
AB
1024EXPORT_SYMBOL(validate_sp);
1025
14cf11af
PM
1026unsigned long get_wchan(struct task_struct *p)
1027{
1028 unsigned long ip, sp;
1029 int count = 0;
1030
1031 if (!p || p == current || p->state == TASK_RUNNING)
1032 return 0;
1033
1034 sp = p->thread.ksp;
ec2b36b9 1035 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1036 return 0;
1037
1038 do {
1039 sp = *(unsigned long *)sp;
ec2b36b9 1040 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1041 return 0;
1042 if (count > 0) {
ec2b36b9 1043 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1044 if (!in_sched_functions(ip))
1045 return ip;
1046 }
1047 } while (count++ < 16);
1048 return 0;
1049}
06d67d54
PM
1050
1051static int kstack_depth_to_print = 64;
1052
1053void show_stack(struct task_struct *tsk, unsigned long *stack)
1054{
1055 unsigned long sp, ip, lr, newsp;
1056 int count = 0;
1057 int firstframe = 1;
1058
1059 sp = (unsigned long) stack;
1060 if (tsk == NULL)
1061 tsk = current;
1062 if (sp == 0) {
1063 if (tsk == current)
1064 asm("mr %0,1" : "=r" (sp));
1065 else
1066 sp = tsk->thread.ksp;
1067 }
1068
1069 lr = 0;
1070 printk("Call Trace:\n");
1071 do {
ec2b36b9 1072 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1073 return;
1074
1075 stack = (unsigned long *) sp;
1076 newsp = stack[0];
ec2b36b9 1077 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54
PM
1078 if (!firstframe || ip != lr) {
1079 printk("["REG"] ["REG"] ", sp, ip);
1080 print_symbol("%s", ip);
1081 if (firstframe)
1082 printk(" (unreliable)");
1083 printk("\n");
1084 }
1085 firstframe = 0;
1086
1087 /*
1088 * See if this is an exception frame.
1089 * We look for the "regshere" marker in the current frame.
1090 */
ec2b36b9
BH
1091 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1092 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1093 struct pt_regs *regs = (struct pt_regs *)
1094 (sp + STACK_FRAME_OVERHEAD);
1095 printk("--- Exception: %lx", regs->trap);
1096 print_symbol(" at %s\n", regs->nip);
1097 lr = regs->link;
1098 print_symbol(" LR = %s\n", lr);
1099 firstframe = 1;
1100 }
1101
1102 sp = newsp;
1103 } while (count++ < kstack_depth_to_print);
1104}
1105
1106void dump_stack(void)
1107{
1108 show_stack(current, NULL);
1109}
1110EXPORT_SYMBOL(dump_stack);
cb2c9b27
AB
1111
1112#ifdef CONFIG_PPC64
1113void ppc64_runlatch_on(void)
1114{
1115 unsigned long ctrl;
1116
1117 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1118 HMT_medium();
1119
1120 ctrl = mfspr(SPRN_CTRLF);
1121 ctrl |= CTRL_RUNLATCH;
1122 mtspr(SPRN_CTRLT, ctrl);
1123
1124 set_thread_flag(TIF_RUNLATCH);
1125 }
1126}
1127
1128void ppc64_runlatch_off(void)
1129{
1130 unsigned long ctrl;
1131
1132 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1133 HMT_medium();
1134
1135 clear_thread_flag(TIF_RUNLATCH);
1136
1137 ctrl = mfspr(SPRN_CTRLF);
1138 ctrl &= ~CTRL_RUNLATCH;
1139 mtspr(SPRN_CTRLT, ctrl);
1140 }
1141}
1142#endif
f6a61680
BH
1143
1144#if THREAD_SHIFT < PAGE_SHIFT
1145
1146static struct kmem_cache *thread_info_cache;
1147
1148struct thread_info *alloc_thread_info(struct task_struct *tsk)
1149{
1150 struct thread_info *ti;
1151
1152 ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1153 if (unlikely(ti == NULL))
1154 return NULL;
1155#ifdef CONFIG_DEBUG_STACK_USAGE
1156 memset(ti, 0, THREAD_SIZE);
1157#endif
1158 return ti;
1159}
1160
1161void free_thread_info(struct thread_info *ti)
1162{
1163 kmem_cache_free(thread_info_cache, ti);
1164}
1165
1166void thread_info_cache_init(void)
1167{
1168 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1169 THREAD_SIZE, 0, NULL);
1170 BUG_ON(thread_info_cache == NULL);
1171}
1172
1173#endif /* THREAD_SHIFT < PAGE_SHIFT */
This page took 0.307885 seconds and 5 git commands to generate.