Merge tag 'pci-v3.15-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[deliverable/linux.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
14cf11af
PM
28#include <linux/prctl.h>
29#include <linux/init_task.h>
4b16f8e2 30#include <linux/export.h>
14cf11af
PM
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
06d67d54 34#include <linux/utsname.h>
6794c782 35#include <linux/ftrace.h>
79741dd3 36#include <linux/kernel_stat.h>
d839088c
AB
37#include <linux/personality.h>
38#include <linux/random.h>
5aae8a53 39#include <linux/hw_breakpoint.h>
14cf11af
PM
40
41#include <asm/pgtable.h>
42#include <asm/uaccess.h>
14cf11af
PM
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/prom.h>
76032de8 47#include <asm/machdep.h>
c6622f63 48#include <asm/time.h>
ae3a197e 49#include <asm/runlatch.h>
a7f31841 50#include <asm/syscalls.h>
ae3a197e 51#include <asm/switch_to.h>
fb09692e 52#include <asm/tm.h>
ae3a197e 53#include <asm/debug.h>
06d67d54
PM
54#ifdef CONFIG_PPC64
55#include <asm/firmware.h>
06d67d54 56#endif
d6a61bfc
LM
57#include <linux/kprobes.h>
58#include <linux/kdebug.h>
14cf11af 59
8b3c34cf
MN
60/* Transactional Memory debug */
61#ifdef TM_DEBUG_SW
62#define TM_DEBUG(x...) printk(KERN_INFO x)
63#else
64#define TM_DEBUG(x...) do { } while(0)
65#endif
66
14cf11af
PM
67extern unsigned long _get_SP(void);
68
69#ifndef CONFIG_SMP
70struct task_struct *last_task_used_math = NULL;
71struct task_struct *last_task_used_altivec = NULL;
ce48b210 72struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
73struct task_struct *last_task_used_spe = NULL;
74#endif
75
d31626f7
PM
76#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
77void giveup_fpu_maybe_transactional(struct task_struct *tsk)
78{
79 /*
80 * If we are saving the current thread's registers, and the
81 * thread is in a transactional state, set the TIF_RESTORE_TM
82 * bit so that we know to restore the registers before
83 * returning to userspace.
84 */
85 if (tsk == current && tsk->thread.regs &&
86 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
87 !test_thread_flag(TIF_RESTORE_TM)) {
88 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
89 set_thread_flag(TIF_RESTORE_TM);
90 }
91
92 giveup_fpu(tsk);
93}
94
95void giveup_altivec_maybe_transactional(struct task_struct *tsk)
96{
97 /*
98 * If we are saving the current thread's registers, and the
99 * thread is in a transactional state, set the TIF_RESTORE_TM
100 * bit so that we know to restore the registers before
101 * returning to userspace.
102 */
103 if (tsk == current && tsk->thread.regs &&
104 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
105 !test_thread_flag(TIF_RESTORE_TM)) {
106 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
107 set_thread_flag(TIF_RESTORE_TM);
108 }
109
110 giveup_altivec(tsk);
111}
112
113#else
114#define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
115#define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
116#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
117
037f0eed 118#ifdef CONFIG_PPC_FPU
14cf11af
PM
119/*
120 * Make sure the floating-point register state in the
121 * the thread_struct is up to date for task tsk.
122 */
123void flush_fp_to_thread(struct task_struct *tsk)
124{
125 if (tsk->thread.regs) {
126 /*
127 * We need to disable preemption here because if we didn't,
128 * another process could get scheduled after the regs->msr
129 * test but before we have finished saving the FP registers
130 * to the thread_struct. That process could take over the
131 * FPU, and then when we get scheduled again we would store
132 * bogus values for the remaining FP registers.
133 */
134 preempt_disable();
135 if (tsk->thread.regs->msr & MSR_FP) {
136#ifdef CONFIG_SMP
137 /*
138 * This should only ever be called for current or
139 * for a stopped child process. Since we save away
140 * the FP register state on context switch on SMP,
141 * there is something wrong if a stopped child appears
142 * to still have its FP state in the CPU registers.
143 */
144 BUG_ON(tsk != current);
145#endif
d31626f7 146 giveup_fpu_maybe_transactional(tsk);
14cf11af
PM
147 }
148 preempt_enable();
149 }
150}
de56a948 151EXPORT_SYMBOL_GPL(flush_fp_to_thread);
d31626f7 152#endif /* CONFIG_PPC_FPU */
14cf11af
PM
153
154void enable_kernel_fp(void)
155{
156 WARN_ON(preemptible());
157
158#ifdef CONFIG_SMP
159 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
d31626f7 160 giveup_fpu_maybe_transactional(current);
14cf11af
PM
161 else
162 giveup_fpu(NULL); /* just enables FP for kernel */
163#else
d31626f7 164 giveup_fpu_maybe_transactional(last_task_used_math);
14cf11af
PM
165#endif /* CONFIG_SMP */
166}
167EXPORT_SYMBOL(enable_kernel_fp);
168
14cf11af
PM
169#ifdef CONFIG_ALTIVEC
170void enable_kernel_altivec(void)
171{
172 WARN_ON(preemptible());
173
174#ifdef CONFIG_SMP
175 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
d31626f7 176 giveup_altivec_maybe_transactional(current);
14cf11af 177 else
35000870 178 giveup_altivec_notask();
14cf11af 179#else
d31626f7 180 giveup_altivec_maybe_transactional(last_task_used_altivec);
14cf11af
PM
181#endif /* CONFIG_SMP */
182}
183EXPORT_SYMBOL(enable_kernel_altivec);
184
185/*
186 * Make sure the VMX/Altivec register state in the
187 * the thread_struct is up to date for task tsk.
188 */
189void flush_altivec_to_thread(struct task_struct *tsk)
190{
191 if (tsk->thread.regs) {
192 preempt_disable();
193 if (tsk->thread.regs->msr & MSR_VEC) {
194#ifdef CONFIG_SMP
195 BUG_ON(tsk != current);
196#endif
d31626f7 197 giveup_altivec_maybe_transactional(tsk);
14cf11af
PM
198 }
199 preempt_enable();
200 }
201}
de56a948 202EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
203#endif /* CONFIG_ALTIVEC */
204
ce48b210
MN
205#ifdef CONFIG_VSX
206#if 0
207/* not currently used, but some crazy RAID module might want to later */
208void enable_kernel_vsx(void)
209{
210 WARN_ON(preemptible());
211
212#ifdef CONFIG_SMP
213 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
214 giveup_vsx(current);
215 else
216 giveup_vsx(NULL); /* just enable vsx for kernel - force */
217#else
218 giveup_vsx(last_task_used_vsx);
219#endif /* CONFIG_SMP */
220}
221EXPORT_SYMBOL(enable_kernel_vsx);
222#endif
223
7c292170
MN
224void giveup_vsx(struct task_struct *tsk)
225{
d31626f7
PM
226 giveup_fpu_maybe_transactional(tsk);
227 giveup_altivec_maybe_transactional(tsk);
7c292170
MN
228 __giveup_vsx(tsk);
229}
230
ce48b210
MN
231void flush_vsx_to_thread(struct task_struct *tsk)
232{
233 if (tsk->thread.regs) {
234 preempt_disable();
235 if (tsk->thread.regs->msr & MSR_VSX) {
236#ifdef CONFIG_SMP
237 BUG_ON(tsk != current);
238#endif
239 giveup_vsx(tsk);
240 }
241 preempt_enable();
242 }
243}
de56a948 244EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
245#endif /* CONFIG_VSX */
246
14cf11af
PM
247#ifdef CONFIG_SPE
248
249void enable_kernel_spe(void)
250{
251 WARN_ON(preemptible());
252
253#ifdef CONFIG_SMP
254 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
255 giveup_spe(current);
256 else
257 giveup_spe(NULL); /* just enable SPE for kernel - force */
258#else
259 giveup_spe(last_task_used_spe);
260#endif /* __SMP __ */
261}
262EXPORT_SYMBOL(enable_kernel_spe);
263
264void flush_spe_to_thread(struct task_struct *tsk)
265{
266 if (tsk->thread.regs) {
267 preempt_disable();
268 if (tsk->thread.regs->msr & MSR_SPE) {
269#ifdef CONFIG_SMP
270 BUG_ON(tsk != current);
271#endif
685659ee 272 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 273 giveup_spe(tsk);
14cf11af
PM
274 }
275 preempt_enable();
276 }
277}
14cf11af
PM
278#endif /* CONFIG_SPE */
279
5388fb10 280#ifndef CONFIG_SMP
48abec07
PM
281/*
282 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
283 * and the current task has some state, discard it.
284 */
5388fb10 285void discard_lazy_cpu_state(void)
48abec07 286{
48abec07
PM
287 preempt_disable();
288 if (last_task_used_math == current)
289 last_task_used_math = NULL;
290#ifdef CONFIG_ALTIVEC
291 if (last_task_used_altivec == current)
292 last_task_used_altivec = NULL;
293#endif /* CONFIG_ALTIVEC */
ce48b210
MN
294#ifdef CONFIG_VSX
295 if (last_task_used_vsx == current)
296 last_task_used_vsx = NULL;
297#endif /* CONFIG_VSX */
48abec07
PM
298#ifdef CONFIG_SPE
299 if (last_task_used_spe == current)
300 last_task_used_spe = NULL;
301#endif
302 preempt_enable();
48abec07 303}
5388fb10 304#endif /* CONFIG_SMP */
48abec07 305
3bffb652
DK
306#ifdef CONFIG_PPC_ADV_DEBUG_REGS
307void do_send_trap(struct pt_regs *regs, unsigned long address,
308 unsigned long error_code, int signal_code, int breakpt)
309{
310 siginfo_t info;
311
41ab5266 312 current->thread.trap_nr = signal_code;
3bffb652
DK
313 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
314 11, SIGSEGV) == NOTIFY_STOP)
315 return;
316
317 /* Deliver the signal to userspace */
318 info.si_signo = SIGTRAP;
319 info.si_errno = breakpt; /* breakpoint or watchpoint id */
320 info.si_code = signal_code;
321 info.si_addr = (void __user *)address;
322 force_sig_info(SIGTRAP, &info, current);
323}
324#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 325void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
326 unsigned long error_code)
327{
328 siginfo_t info;
329
41ab5266 330 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
331 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
332 11, SIGSEGV) == NOTIFY_STOP)
333 return;
334
9422de3e 335 if (debugger_break_match(regs))
d6a61bfc
LM
336 return;
337
9422de3e
MN
338 /* Clear the breakpoint */
339 hw_breakpoint_disable();
d6a61bfc
LM
340
341 /* Deliver the signal to userspace */
342 info.si_signo = SIGTRAP;
343 info.si_errno = 0;
344 info.si_code = TRAP_HWBKPT;
345 info.si_addr = (void __user *)address;
346 force_sig_info(SIGTRAP, &info, current);
347}
3bffb652 348#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 349
9422de3e 350static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 351
3bffb652
DK
352#ifdef CONFIG_PPC_ADV_DEBUG_REGS
353/*
354 * Set the debug registers back to their default "safe" values.
355 */
356static void set_debug_reg_defaults(struct thread_struct *thread)
357{
51ae8d4a 358 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 359#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 360 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 361#endif
51ae8d4a 362 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 363#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 364 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 365#endif
51ae8d4a 366 thread->debug.dbcr0 = 0;
3bffb652
DK
367#ifdef CONFIG_BOOKE
368 /*
369 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
370 */
51ae8d4a 371 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
372 DBCR1_IAC3US | DBCR1_IAC4US;
373 /*
374 * Force Data Address Compare User/Supervisor bits to be User-only
375 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
376 */
51ae8d4a 377 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 378#else
51ae8d4a 379 thread->debug.dbcr1 = 0;
3bffb652
DK
380#endif
381}
382
f5f97210 383static void prime_debug_regs(struct debug_reg *debug)
3bffb652 384{
6cecf76b
SW
385 /*
386 * We could have inherited MSR_DE from userspace, since
387 * it doesn't get cleared on exception entry. Make sure
388 * MSR_DE is clear before we enable any debug events.
389 */
390 mtmsr(mfmsr() & ~MSR_DE);
391
f5f97210
SW
392 mtspr(SPRN_IAC1, debug->iac1);
393 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 394#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
395 mtspr(SPRN_IAC3, debug->iac3);
396 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 397#endif
f5f97210
SW
398 mtspr(SPRN_DAC1, debug->dac1);
399 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 400#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
401 mtspr(SPRN_DVC1, debug->dvc1);
402 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 403#endif
f5f97210
SW
404 mtspr(SPRN_DBCR0, debug->dbcr0);
405 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 406#ifdef CONFIG_BOOKE
f5f97210 407 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
408#endif
409}
410/*
411 * Unless neither the old or new thread are making use of the
412 * debug registers, set the debug registers from the values
413 * stored in the new thread.
414 */
f5f97210 415void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 416{
51ae8d4a 417 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
418 || (new_debug->dbcr0 & DBCR0_IDM))
419 prime_debug_regs(new_debug);
3bffb652 420}
3743c9b8 421EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 422#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 423#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
424static void set_debug_reg_defaults(struct thread_struct *thread)
425{
9422de3e
MN
426 thread->hw_brk.address = 0;
427 thread->hw_brk.type = 0;
b9818c33 428 set_breakpoint(&thread->hw_brk);
3bffb652 429}
e0780b72 430#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
431#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
432
172ae2e7 433#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
434static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
435{
d6a61bfc 436 mtspr(SPRN_DAC1, dabr);
221c185d
DK
437#ifdef CONFIG_PPC_47x
438 isync();
439#endif
9422de3e
MN
440 return 0;
441}
c6c9eace 442#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
443static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
444{
c6c9eace 445 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
446 if (cpu_has_feature(CPU_FTR_DABRX))
447 mtspr(SPRN_DABRX, dabrx);
cab0af98 448 return 0;
14cf11af 449}
9422de3e
MN
450#else
451static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
452{
453 return -EINVAL;
454}
455#endif
456
457static inline int set_dabr(struct arch_hw_breakpoint *brk)
458{
459 unsigned long dabr, dabrx;
460
461 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
462 dabrx = ((brk->type >> 3) & 0x7);
463
464 if (ppc_md.set_dabr)
465 return ppc_md.set_dabr(dabr, dabrx);
466
467 return __set_dabr(dabr, dabrx);
468}
469
bf99de36
MN
470static inline int set_dawr(struct arch_hw_breakpoint *brk)
471{
05d694ea 472 unsigned long dawr, dawrx, mrd;
bf99de36
MN
473
474 dawr = brk->address;
475
476 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
477 << (63 - 58); //* read/write bits */
478 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
479 << (63 - 59); //* translate */
480 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
481 >> 3; //* PRIM bits */
05d694ea
MN
482 /* dawr length is stored in field MDR bits 48:53. Matches range in
483 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
484 0b111111=64DW.
485 brk->len is in bytes.
486 This aligns up to double word size, shifts and does the bias.
487 */
488 mrd = ((brk->len + 7) >> 3) - 1;
489 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
490
491 if (ppc_md.set_dawr)
492 return ppc_md.set_dawr(dawr, dawrx);
493 mtspr(SPRN_DAWR, dawr);
494 mtspr(SPRN_DAWRX, dawrx);
495 return 0;
496}
497
b9818c33 498int set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e
MN
499{
500 __get_cpu_var(current_brk) = *brk;
501
bf99de36
MN
502 if (cpu_has_feature(CPU_FTR_DAWR))
503 return set_dawr(brk);
504
9422de3e
MN
505 return set_dabr(brk);
506}
14cf11af 507
06d67d54
PM
508#ifdef CONFIG_PPC64
509DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 510#endif
14cf11af 511
9422de3e
MN
512static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
513 struct arch_hw_breakpoint *b)
514{
515 if (a->address != b->address)
516 return false;
517 if (a->type != b->type)
518 return false;
519 if (a->len != b->len)
520 return false;
521 return true;
522}
d31626f7 523
fb09692e 524#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
d31626f7
PM
525static void tm_reclaim_thread(struct thread_struct *thr,
526 struct thread_info *ti, uint8_t cause)
527{
528 unsigned long msr_diff = 0;
529
530 /*
531 * If FP/VSX registers have been already saved to the
532 * thread_struct, move them to the transact_fp array.
533 * We clear the TIF_RESTORE_TM bit since after the reclaim
534 * the thread will no longer be transactional.
535 */
536 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
537 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
538 if (msr_diff & MSR_FP)
539 memcpy(&thr->transact_fp, &thr->fp_state,
540 sizeof(struct thread_fp_state));
541 if (msr_diff & MSR_VEC)
542 memcpy(&thr->transact_vr, &thr->vr_state,
543 sizeof(struct thread_vr_state));
544 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
545 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
546 }
547
548 tm_reclaim(thr, thr->regs->msr, cause);
549
550 /* Having done the reclaim, we now have the checkpointed
551 * FP/VSX values in the registers. These might be valid
552 * even if we have previously called enable_kernel_fp() or
553 * flush_fp_to_thread(), so update thr->regs->msr to
554 * indicate their current validity.
555 */
556 thr->regs->msr |= msr_diff;
557}
558
559void tm_reclaim_current(uint8_t cause)
560{
561 tm_enable();
562 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
563}
564
fb09692e
MN
565static inline void tm_reclaim_task(struct task_struct *tsk)
566{
567 /* We have to work out if we're switching from/to a task that's in the
568 * middle of a transaction.
569 *
570 * In switching we need to maintain a 2nd register state as
571 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
572 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
573 * (current) FPRs into oldtask->thread.transact_fpr[].
574 *
575 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
576 */
577 struct thread_struct *thr = &tsk->thread;
578
579 if (!thr->regs)
580 return;
581
582 if (!MSR_TM_ACTIVE(thr->regs->msr))
583 goto out_and_saveregs;
584
585 /* Stash the original thread MSR, as giveup_fpu et al will
586 * modify it. We hold onto it to see whether the task used
d31626f7
PM
587 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
588 * tm_orig_msr is already set.
fb09692e 589 */
d31626f7
PM
590 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
591 thr->tm_orig_msr = thr->regs->msr;
fb09692e
MN
592
593 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
594 "ccr=%lx, msr=%lx, trap=%lx)\n",
595 tsk->pid, thr->regs->nip,
596 thr->regs->ccr, thr->regs->msr,
597 thr->regs->trap);
598
d31626f7 599 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
600
601 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
602 tsk->pid);
603
604out_and_saveregs:
605 /* Always save the regs here, even if a transaction's not active.
606 * This context-switches a thread's TM info SPRs. We do it here to
607 * be consistent with the restore path (in recheckpoint) which
608 * cannot happen later in _switch().
609 */
610 tm_save_sprs(thr);
611}
612
bc2a9408 613static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
614{
615 unsigned long msr;
616
617 if (!cpu_has_feature(CPU_FTR_TM))
618 return;
619
620 /* Recheckpoint the registers of the thread we're about to switch to.
621 *
622 * If the task was using FP, we non-lazily reload both the original and
623 * the speculative FP register states. This is because the kernel
624 * doesn't see if/when a TM rollback occurs, so if we take an FP
625 * unavoidable later, we are unable to determine which set of FP regs
626 * need to be restored.
627 */
628 if (!new->thread.regs)
629 return;
630
631 /* The TM SPRs are restored here, so that TEXASR.FS can be set
632 * before the trecheckpoint and no explosion occurs.
633 */
634 tm_restore_sprs(&new->thread);
635
636 if (!MSR_TM_ACTIVE(new->thread.regs->msr))
637 return;
638 msr = new->thread.tm_orig_msr;
639 /* Recheckpoint to restore original checkpointed register state. */
640 TM_DEBUG("*** tm_recheckpoint of pid %d "
641 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
642 new->pid, new->thread.regs->msr, msr);
643
644 /* This loads the checkpointed FP/VEC state, if used */
645 tm_recheckpoint(&new->thread, msr);
646
647 /* This loads the speculative FP/VEC state, if used */
648 if (msr & MSR_FP) {
649 do_load_up_transact_fpu(&new->thread);
650 new->thread.regs->msr |=
651 (MSR_FP | new->thread.fpexc_mode);
652 }
f110c0c1 653#ifdef CONFIG_ALTIVEC
fb09692e
MN
654 if (msr & MSR_VEC) {
655 do_load_up_transact_altivec(&new->thread);
656 new->thread.regs->msr |= MSR_VEC;
657 }
f110c0c1 658#endif
fb09692e
MN
659 /* We may as well turn on VSX too since all the state is restored now */
660 if (msr & MSR_VSX)
661 new->thread.regs->msr |= MSR_VSX;
662
663 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
664 "(kernel msr 0x%lx)\n",
665 new->pid, mfmsr());
666}
667
668static inline void __switch_to_tm(struct task_struct *prev)
669{
670 if (cpu_has_feature(CPU_FTR_TM)) {
671 tm_enable();
672 tm_reclaim_task(prev);
673 }
674}
d31626f7
PM
675
676/*
677 * This is called if we are on the way out to userspace and the
678 * TIF_RESTORE_TM flag is set. It checks if we need to reload
679 * FP and/or vector state and does so if necessary.
680 * If userspace is inside a transaction (whether active or
681 * suspended) and FP/VMX/VSX instructions have ever been enabled
682 * inside that transaction, then we have to keep them enabled
683 * and keep the FP/VMX/VSX state loaded while ever the transaction
684 * continues. The reason is that if we didn't, and subsequently
685 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
686 * we don't know whether it's the same transaction, and thus we
687 * don't know which of the checkpointed state and the transactional
688 * state to use.
689 */
690void restore_tm_state(struct pt_regs *regs)
691{
692 unsigned long msr_diff;
693
694 clear_thread_flag(TIF_RESTORE_TM);
695 if (!MSR_TM_ACTIVE(regs->msr))
696 return;
697
698 msr_diff = current->thread.tm_orig_msr & ~regs->msr;
699 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
700 if (msr_diff & MSR_FP) {
701 fp_enable();
702 load_fp_state(&current->thread.fp_state);
703 regs->msr |= current->thread.fpexc_mode;
704 }
705 if (msr_diff & MSR_VEC) {
706 vec_enable();
707 load_vr_state(&current->thread.vr_state);
708 }
709 regs->msr |= msr_diff;
710}
711
fb09692e
MN
712#else
713#define tm_recheckpoint_new_task(new)
714#define __switch_to_tm(prev)
715#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 716
14cf11af
PM
717struct task_struct *__switch_to(struct task_struct *prev,
718 struct task_struct *new)
719{
720 struct thread_struct *new_thread, *old_thread;
14cf11af 721 struct task_struct *last;
d6bf29b4
PZ
722#ifdef CONFIG_PPC_BOOK3S_64
723 struct ppc64_tlb_batch *batch;
724#endif
14cf11af 725
7ba5fef7
MN
726 WARN_ON(!irqs_disabled());
727
c2d52644
MN
728 /* Back up the TAR across context switches.
729 * Note that the TAR is not available for use in the kernel. (To
730 * provide this, the TAR should be backed up/restored on exception
731 * entry/exit instead, and be in pt_regs. FIXME, this should be in
732 * pt_regs anyway (for debug).)
733 * Save the TAR here before we do treclaim/trecheckpoint as these
734 * will change the TAR.
735 */
736 save_tar(&prev->thread);
737
bc2a9408
MN
738 __switch_to_tm(prev);
739
14cf11af
PM
740#ifdef CONFIG_SMP
741 /* avoid complexity of lazy save/restore of fpu
742 * by just saving it every time we switch out if
743 * this task used the fpu during the last quantum.
744 *
745 * If it tries to use the fpu again, it'll trap and
746 * reload its fp regs. So we don't have to do a restore
747 * every switch, just a save.
748 * -- Cort
749 */
750 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
751 giveup_fpu(prev);
752#ifdef CONFIG_ALTIVEC
753 /*
754 * If the previous thread used altivec in the last quantum
755 * (thus changing altivec regs) then save them.
756 * We used to check the VRSAVE register but not all apps
757 * set it, so we don't rely on it now (and in fact we need
758 * to save & restore VSCR even if VRSAVE == 0). -- paulus
759 *
760 * On SMP we always save/restore altivec regs just to avoid the
761 * complexity of changing processors.
762 * -- Cort
763 */
764 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
765 giveup_altivec(prev);
14cf11af 766#endif /* CONFIG_ALTIVEC */
ce48b210
MN
767#ifdef CONFIG_VSX
768 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
769 /* VMX and FPU registers are already save here */
770 __giveup_vsx(prev);
ce48b210 771#endif /* CONFIG_VSX */
14cf11af
PM
772#ifdef CONFIG_SPE
773 /*
774 * If the previous thread used spe in the last quantum
775 * (thus changing spe regs) then save them.
776 *
777 * On SMP we always save/restore spe regs just to avoid the
778 * complexity of changing processors.
779 */
780 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
781 giveup_spe(prev);
c0c0d996
PM
782#endif /* CONFIG_SPE */
783
784#else /* CONFIG_SMP */
785#ifdef CONFIG_ALTIVEC
786 /* Avoid the trap. On smp this this never happens since
787 * we don't set last_task_used_altivec -- Cort
788 */
789 if (new->thread.regs && last_task_used_altivec == new)
790 new->thread.regs->msr |= MSR_VEC;
791#endif /* CONFIG_ALTIVEC */
ce48b210
MN
792#ifdef CONFIG_VSX
793 if (new->thread.regs && last_task_used_vsx == new)
794 new->thread.regs->msr |= MSR_VSX;
795#endif /* CONFIG_VSX */
c0c0d996 796#ifdef CONFIG_SPE
14cf11af
PM
797 /* Avoid the trap. On smp this this never happens since
798 * we don't set last_task_used_spe
799 */
800 if (new->thread.regs && last_task_used_spe == new)
801 new->thread.regs->msr |= MSR_SPE;
802#endif /* CONFIG_SPE */
c0c0d996 803
14cf11af
PM
804#endif /* CONFIG_SMP */
805
172ae2e7 806#ifdef CONFIG_PPC_ADV_DEBUG_REGS
f5f97210 807 switch_booke_debug_regs(&new->thread.debug);
c6c9eace 808#else
5aae8a53
P
809/*
810 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
811 * schedule DABR
812 */
813#ifndef CONFIG_HAVE_HW_BREAKPOINT
1c430c06 814 if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
b9818c33 815 set_breakpoint(&new->thread.hw_brk);
5aae8a53 816#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
817#endif
818
c6c9eace 819
14cf11af
PM
820 new_thread = &new->thread;
821 old_thread = &current->thread;
06d67d54
PM
822
823#ifdef CONFIG_PPC64
824 /*
825 * Collect processor utilization data per process
826 */
827 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
828 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
829 long unsigned start_tb, current_tb;
830 start_tb = old_thread->start_tb;
831 cu->current_tb = current_tb = mfspr(SPRN_PURR);
832 old_thread->accum_tb += (current_tb - start_tb);
833 new_thread->start_tb = current_tb;
834 }
d6bf29b4
PZ
835#endif /* CONFIG_PPC64 */
836
837#ifdef CONFIG_PPC_BOOK3S_64
838 batch = &__get_cpu_var(ppc64_tlb_batch);
839 if (batch->active) {
840 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
841 if (batch->index)
842 __flush_tlb_pending(batch);
843 batch->active = 0;
844 }
845#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 846
44387e9f
AB
847 /*
848 * We can't take a PMU exception inside _switch() since there is a
849 * window where the kernel stack SLB and the kernel stack are out
850 * of sync. Hard disable here.
851 */
852 hard_irq_disable();
bc2a9408
MN
853
854 tm_recheckpoint_new_task(new);
855
14cf11af
PM
856 last = _switch(old_thread, new_thread);
857
d6bf29b4
PZ
858#ifdef CONFIG_PPC_BOOK3S_64
859 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
860 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
861 batch = &__get_cpu_var(ppc64_tlb_batch);
862 batch->active = 1;
863 }
864#endif /* CONFIG_PPC_BOOK3S_64 */
865
14cf11af
PM
866 return last;
867}
868
06d67d54
PM
869static int instructions_to_print = 16;
870
06d67d54
PM
871static void show_instructions(struct pt_regs *regs)
872{
873 int i;
874 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
875 sizeof(int));
876
877 printk("Instruction dump:");
878
879 for (i = 0; i < instructions_to_print; i++) {
880 int instr;
881
882 if (!(i % 8))
883 printk("\n");
884
0de2d820
SW
885#if !defined(CONFIG_BOOKE)
886 /* If executing with the IMMU off, adjust pc rather
887 * than print XXXXXXXX.
888 */
889 if (!(regs->msr & MSR_IR))
890 pc = (unsigned long)phys_to_virt(pc);
891#endif
892
af308377
SR
893 /* We use __get_user here *only* to avoid an OOPS on a
894 * bad address because the pc *should* only be a
895 * kernel address.
896 */
00ae36de
AB
897 if (!__kernel_text_address(pc) ||
898 __get_user(instr, (unsigned int __user *)pc)) {
40c8cefa 899 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
900 } else {
901 if (regs->nip == pc)
40c8cefa 902 printk(KERN_CONT "<%08x> ", instr);
06d67d54 903 else
40c8cefa 904 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
905 }
906
907 pc += sizeof(int);
908 }
909
910 printk("\n");
911}
912
913static struct regbit {
914 unsigned long bit;
915 const char *name;
916} msr_bits[] = {
3bfd0c9c
AB
917#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
918 {MSR_SF, "SF"},
919 {MSR_HV, "HV"},
920#endif
921 {MSR_VEC, "VEC"},
922 {MSR_VSX, "VSX"},
923#ifdef CONFIG_BOOKE
924 {MSR_CE, "CE"},
925#endif
06d67d54
PM
926 {MSR_EE, "EE"},
927 {MSR_PR, "PR"},
928 {MSR_FP, "FP"},
929 {MSR_ME, "ME"},
3bfd0c9c 930#ifdef CONFIG_BOOKE
1b98326b 931 {MSR_DE, "DE"},
3bfd0c9c
AB
932#else
933 {MSR_SE, "SE"},
934 {MSR_BE, "BE"},
935#endif
06d67d54
PM
936 {MSR_IR, "IR"},
937 {MSR_DR, "DR"},
3bfd0c9c
AB
938 {MSR_PMM, "PMM"},
939#ifndef CONFIG_BOOKE
940 {MSR_RI, "RI"},
941 {MSR_LE, "LE"},
942#endif
06d67d54
PM
943 {0, NULL}
944};
945
946static void printbits(unsigned long val, struct regbit *bits)
947{
948 const char *sep = "";
949
950 printk("<");
951 for (; bits->bit; ++bits)
952 if (val & bits->bit) {
953 printk("%s%s", sep, bits->name);
954 sep = ",";
955 }
956 printk(">");
957}
958
959#ifdef CONFIG_PPC64
f6f7dde3 960#define REG "%016lx"
06d67d54
PM
961#define REGS_PER_LINE 4
962#define LAST_VOLATILE 13
963#else
f6f7dde3 964#define REG "%08lx"
06d67d54
PM
965#define REGS_PER_LINE 8
966#define LAST_VOLATILE 12
967#endif
968
14cf11af
PM
969void show_regs(struct pt_regs * regs)
970{
971 int i, trap;
972
a43cb95d
TH
973 show_regs_print_info(KERN_DEFAULT);
974
06d67d54
PM
975 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
976 regs->nip, regs->link, regs->ctr);
977 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 978 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
979 printk("MSR: "REG" ", regs->msr);
980 printbits(regs->msr, msr_bits);
f6f7dde3 981 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 982 trap = TRAP(regs);
5115a026 983 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
9db8bcfd 984 printk("CFAR: "REG" ", regs->orig_gpr3);
c5400649 985 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 986#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
9db8bcfd 987 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 988#else
9db8bcfd
AB
989 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
990#endif
991#ifdef CONFIG_PPC64
992 printk("SOFTE: %ld ", regs->softe);
993#endif
994#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a
AB
995 if (MSR_TM_ACTIVE(regs->msr))
996 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 997#endif
14cf11af
PM
998
999 for (i = 0; i < 32; i++) {
06d67d54 1000 if ((i % REGS_PER_LINE) == 0)
a2367194 1001 printk("\nGPR%02d: ", i);
06d67d54
PM
1002 printk(REG " ", regs->gpr[i]);
1003 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1004 break;
1005 }
1006 printk("\n");
1007#ifdef CONFIG_KALLSYMS
1008 /*
1009 * Lookup NIP late so we have the best change of getting the
1010 * above info out without failing
1011 */
058c78f4
BH
1012 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1013 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1014#endif
14cf11af 1015 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1016 if (!user_mode(regs))
1017 show_instructions(regs);
14cf11af
PM
1018}
1019
1020void exit_thread(void)
1021{
48abec07 1022 discard_lazy_cpu_state();
14cf11af
PM
1023}
1024
1025void flush_thread(void)
1026{
48abec07 1027 discard_lazy_cpu_state();
14cf11af 1028
e0780b72 1029#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1030 flush_ptrace_hw_breakpoint(current);
e0780b72 1031#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1032 set_debug_reg_defaults(&current->thread);
e0780b72 1033#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1034}
1035
1036void
1037release_thread(struct task_struct *t)
1038{
1039}
1040
1041/*
55ccf3fe
SS
1042 * this gets called so that we can store coprocessor state into memory and
1043 * copy the current task into the new thread.
14cf11af 1044 */
55ccf3fe 1045int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1046{
55ccf3fe
SS
1047 flush_fp_to_thread(src);
1048 flush_altivec_to_thread(src);
1049 flush_vsx_to_thread(src);
1050 flush_spe_to_thread(src);
621b5060
MN
1051 /*
1052 * Flush TM state out so we can copy it. __switch_to_tm() does this
1053 * flush but it removes the checkpointed state from the current CPU and
1054 * transitions the CPU out of TM mode. Hence we need to call
1055 * tm_recheckpoint_new_task() (on the same task) to restore the
1056 * checkpointed state back and the TM mode.
1057 */
1058 __switch_to_tm(src);
1059 tm_recheckpoint_new_task(src);
330a1eb7 1060
55ccf3fe 1061 *dst = *src;
330a1eb7
ME
1062
1063 clear_task_ebb(dst);
1064
55ccf3fe 1065 return 0;
14cf11af
PM
1066}
1067
1068/*
1069 * Copy a thread..
1070 */
efcac658
AK
1071extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1072
6f2c55b8 1073int copy_thread(unsigned long clone_flags, unsigned long usp,
afa86fc4 1074 unsigned long arg, struct task_struct *p)
14cf11af
PM
1075{
1076 struct pt_regs *childregs, *kregs;
1077 extern void ret_from_fork(void);
58254e10
AV
1078 extern void ret_from_kernel_thread(void);
1079 void (*f)(void);
0cec6fd1 1080 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 1081
14cf11af
PM
1082 /* Copy registers */
1083 sp -= sizeof(struct pt_regs);
1084 childregs = (struct pt_regs *) sp;
ab75819d 1085 if (unlikely(p->flags & PF_KTHREAD)) {
138d1ce8 1086 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 1087 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1088 childregs->gpr[1] = sp + sizeof(struct pt_regs);
53b50f94 1089 childregs->gpr[14] = usp; /* function */
58254e10 1090#ifdef CONFIG_PPC64
b5e2fc1c 1091 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1092 childregs->softe = 1;
06d67d54 1093#endif
58254e10 1094 childregs->gpr[15] = arg;
14cf11af 1095 p->thread.regs = NULL; /* no user register state */
138d1ce8 1096 ti->flags |= _TIF_RESTOREALL;
58254e10 1097 f = ret_from_kernel_thread;
14cf11af 1098 } else {
afa86fc4 1099 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1100 CHECK_FULL_REGS(regs);
1101 *childregs = *regs;
ea516b11
AV
1102 if (usp)
1103 childregs->gpr[1] = usp;
14cf11af 1104 p->thread.regs = childregs;
58254e10 1105 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1106 if (clone_flags & CLONE_SETTLS) {
1107#ifdef CONFIG_PPC64
9904b005 1108 if (!is_32bit_task())
06d67d54
PM
1109 childregs->gpr[13] = childregs->gpr[6];
1110 else
1111#endif
1112 childregs->gpr[2] = childregs->gpr[6];
1113 }
58254e10
AV
1114
1115 f = ret_from_fork;
14cf11af 1116 }
14cf11af 1117 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1118
1119 /*
1120 * The way this works is that at some point in the future
1121 * some task will call _switch to switch to the new task.
1122 * That will pop off the stack frame created below and start
1123 * the new task running at ret_from_fork. The new task will
1124 * do some house keeping and then return from the fork or clone
1125 * system call, using the stack frame created above.
1126 */
af945cf4 1127 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1128 sp -= sizeof(struct pt_regs);
1129 kregs = (struct pt_regs *) sp;
1130 sp -= STACK_FRAME_OVERHEAD;
1131 p->thread.ksp = sp;
cbc9565e 1132#ifdef CONFIG_PPC32
85218827
KG
1133 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1134 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1135#endif
28d170ab
ON
1136#ifdef CONFIG_HAVE_HW_BREAKPOINT
1137 p->thread.ptrace_bps[0] = NULL;
1138#endif
1139
18461960
PM
1140 p->thread.fp_save_area = NULL;
1141#ifdef CONFIG_ALTIVEC
1142 p->thread.vr_save_area = NULL;
1143#endif
1144
94491685 1145#ifdef CONFIG_PPC_STD_MMU_64
44ae3ab3 1146 if (mmu_has_feature(MMU_FTR_SLB)) {
1189be65 1147 unsigned long sp_vsid;
3c726f8d 1148 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 1149
44ae3ab3 1150 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1189be65
PM
1151 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1152 << SLB_VSID_SHIFT_1T;
1153 else
1154 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1155 << SLB_VSID_SHIFT;
3c726f8d 1156 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
1157 p->thread.ksp_vsid = sp_vsid;
1158 }
747bea91 1159#endif /* CONFIG_PPC_STD_MMU_64 */
efcac658
AK
1160#ifdef CONFIG_PPC64
1161 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
1162 p->thread.dscr_inherit = current->thread.dscr_inherit;
1163 p->thread.dscr = current->thread.dscr;
efcac658 1164 }
92779245
HM
1165 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1166 p->thread.ppr = INIT_PPR;
efcac658 1167#endif
06d67d54
PM
1168 /*
1169 * The PPC64 ABI makes use of a TOC to contain function
1170 * pointers. The function (ret_from_except) is actually a pointer
1171 * to the TOC entry. The first entry is a pointer to the actual
1172 * function.
58254e10 1173 */
747bea91 1174#ifdef CONFIG_PPC64
58254e10 1175 kregs->nip = *((unsigned long *)f);
06d67d54 1176#else
58254e10 1177 kregs->nip = (unsigned long)f;
06d67d54 1178#endif
14cf11af
PM
1179 return 0;
1180}
1181
1182/*
1183 * Set up a thread for executing a new program
1184 */
06d67d54 1185void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1186{
90eac727
ME
1187#ifdef CONFIG_PPC64
1188 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1189#endif
1190
06d67d54
PM
1191 /*
1192 * If we exec out of a kernel thread then thread.regs will not be
1193 * set. Do it now.
1194 */
1195 if (!current->thread.regs) {
0cec6fd1
AV
1196 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1197 current->thread.regs = regs - 1;
06d67d54
PM
1198 }
1199
14cf11af
PM
1200 memset(regs->gpr, 0, sizeof(regs->gpr));
1201 regs->ctr = 0;
1202 regs->link = 0;
1203 regs->xer = 0;
1204 regs->ccr = 0;
14cf11af 1205 regs->gpr[1] = sp;
06d67d54 1206
474f8196
RM
1207 /*
1208 * We have just cleared all the nonvolatile GPRs, so make
1209 * FULL_REGS(regs) return true. This is necessary to allow
1210 * ptrace to examine the thread immediately after exec.
1211 */
1212 regs->trap &= ~1UL;
1213
06d67d54
PM
1214#ifdef CONFIG_PPC32
1215 regs->mq = 0;
1216 regs->nip = start;
14cf11af 1217 regs->msr = MSR_USER;
06d67d54 1218#else
9904b005 1219 if (!is_32bit_task()) {
94af3abf 1220 unsigned long entry;
06d67d54 1221
94af3abf
RR
1222 if (is_elf2_task()) {
1223 /* Look ma, no function descriptors! */
1224 entry = start;
06d67d54 1225
94af3abf
RR
1226 /*
1227 * Ulrich says:
1228 * The latest iteration of the ABI requires that when
1229 * calling a function (at its global entry point),
1230 * the caller must ensure r12 holds the entry point
1231 * address (so that the function can quickly
1232 * establish addressability).
1233 */
1234 regs->gpr[12] = start;
1235 /* Make sure that's restored on entry to userspace. */
1236 set_thread_flag(TIF_RESTOREALL);
1237 } else {
1238 unsigned long toc;
1239
1240 /* start is a relocated pointer to the function
1241 * descriptor for the elf _start routine. The first
1242 * entry in the function descriptor is the entry
1243 * address of _start and the second entry is the TOC
1244 * value we need to use.
1245 */
1246 __get_user(entry, (unsigned long __user *)start);
1247 __get_user(toc, (unsigned long __user *)start+1);
1248
1249 /* Check whether the e_entry function descriptor entries
1250 * need to be relocated before we can use them.
1251 */
1252 if (load_addr != 0) {
1253 entry += load_addr;
1254 toc += load_addr;
1255 }
1256 regs->gpr[2] = toc;
06d67d54
PM
1257 }
1258 regs->nip = entry;
06d67d54 1259 regs->msr = MSR_USER64;
d4bf9a78
SR
1260 } else {
1261 regs->nip = start;
1262 regs->gpr[2] = 0;
1263 regs->msr = MSR_USER32;
06d67d54
PM
1264 }
1265#endif
48abec07 1266 discard_lazy_cpu_state();
ce48b210
MN
1267#ifdef CONFIG_VSX
1268 current->thread.used_vsr = 0;
1269#endif
de79f7b9 1270 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1271 current->thread.fp_save_area = NULL;
14cf11af 1272#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1273 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1274 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1275 current->thread.vr_save_area = NULL;
14cf11af
PM
1276 current->thread.vrsave = 0;
1277 current->thread.used_vr = 0;
1278#endif /* CONFIG_ALTIVEC */
1279#ifdef CONFIG_SPE
1280 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1281 current->thread.acc = 0;
1282 current->thread.spefscr = 0;
1283 current->thread.used_spe = 0;
1284#endif /* CONFIG_SPE */
bc2a9408
MN
1285#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1286 if (cpu_has_feature(CPU_FTR_TM))
1287 regs->msr |= MSR_TM;
1288 current->thread.tm_tfhar = 0;
1289 current->thread.tm_texasr = 0;
1290 current->thread.tm_tfiar = 0;
1291#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af
PM
1292}
1293
1294#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1295 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1296
1297int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1298{
1299 struct pt_regs *regs = tsk->thread.regs;
1300
1301 /* This is a bit hairy. If we are an SPE enabled processor
1302 * (have embedded fp) we store the IEEE exception enable flags in
1303 * fpexc_mode. fpexc_mode is also used for setting FP exception
1304 * mode (asyn, precise, disabled) for 'Classic' FP. */
1305 if (val & PR_FP_EXC_SW_ENABLE) {
1306#ifdef CONFIG_SPE
5e14d21e 1307 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1308 /*
1309 * When the sticky exception bits are set
1310 * directly by userspace, it must call prctl
1311 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1312 * in the existing prctl settings) or
1313 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1314 * the bits being set). <fenv.h> functions
1315 * saving and restoring the whole
1316 * floating-point environment need to do so
1317 * anyway to restore the prctl settings from
1318 * the saved environment.
1319 */
1320 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1321 tsk->thread.fpexc_mode = val &
1322 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1323 return 0;
1324 } else {
1325 return -EINVAL;
1326 }
14cf11af
PM
1327#else
1328 return -EINVAL;
1329#endif
14cf11af 1330 }
06d67d54
PM
1331
1332 /* on a CONFIG_SPE this does not hurt us. The bits that
1333 * __pack_fe01 use do not overlap with bits used for
1334 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1335 * on CONFIG_SPE implementations are reserved so writing to
1336 * them does not change anything */
1337 if (val > PR_FP_EXC_PRECISE)
1338 return -EINVAL;
1339 tsk->thread.fpexc_mode = __pack_fe01(val);
1340 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1341 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1342 | tsk->thread.fpexc_mode;
14cf11af
PM
1343 return 0;
1344}
1345
1346int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1347{
1348 unsigned int val;
1349
1350 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1351#ifdef CONFIG_SPE
640e9225
JM
1352 if (cpu_has_feature(CPU_FTR_SPE)) {
1353 /*
1354 * When the sticky exception bits are set
1355 * directly by userspace, it must call prctl
1356 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1357 * in the existing prctl settings) or
1358 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1359 * the bits being set). <fenv.h> functions
1360 * saving and restoring the whole
1361 * floating-point environment need to do so
1362 * anyway to restore the prctl settings from
1363 * the saved environment.
1364 */
1365 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1366 val = tsk->thread.fpexc_mode;
640e9225 1367 } else
5e14d21e 1368 return -EINVAL;
14cf11af
PM
1369#else
1370 return -EINVAL;
1371#endif
1372 else
1373 val = __unpack_fe01(tsk->thread.fpexc_mode);
1374 return put_user(val, (unsigned int __user *) adr);
1375}
1376
fab5db97
PM
1377int set_endian(struct task_struct *tsk, unsigned int val)
1378{
1379 struct pt_regs *regs = tsk->thread.regs;
1380
1381 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1382 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1383 return -EINVAL;
1384
1385 if (regs == NULL)
1386 return -EINVAL;
1387
1388 if (val == PR_ENDIAN_BIG)
1389 regs->msr &= ~MSR_LE;
1390 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1391 regs->msr |= MSR_LE;
1392 else
1393 return -EINVAL;
1394
1395 return 0;
1396}
1397
1398int get_endian(struct task_struct *tsk, unsigned long adr)
1399{
1400 struct pt_regs *regs = tsk->thread.regs;
1401 unsigned int val;
1402
1403 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1404 !cpu_has_feature(CPU_FTR_REAL_LE))
1405 return -EINVAL;
1406
1407 if (regs == NULL)
1408 return -EINVAL;
1409
1410 if (regs->msr & MSR_LE) {
1411 if (cpu_has_feature(CPU_FTR_REAL_LE))
1412 val = PR_ENDIAN_LITTLE;
1413 else
1414 val = PR_ENDIAN_PPC_LITTLE;
1415 } else
1416 val = PR_ENDIAN_BIG;
1417
1418 return put_user(val, (unsigned int __user *)adr);
1419}
1420
e9370ae1
PM
1421int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1422{
1423 tsk->thread.align_ctl = val;
1424 return 0;
1425}
1426
1427int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1428{
1429 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1430}
1431
bb72c481
PM
1432static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1433 unsigned long nbytes)
1434{
1435 unsigned long stack_page;
1436 unsigned long cpu = task_cpu(p);
1437
1438 /*
1439 * Avoid crashing if the stack has overflowed and corrupted
1440 * task_cpu(p), which is in the thread_info struct.
1441 */
1442 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1443 stack_page = (unsigned long) hardirq_ctx[cpu];
1444 if (sp >= stack_page + sizeof(struct thread_struct)
1445 && sp <= stack_page + THREAD_SIZE - nbytes)
1446 return 1;
1447
1448 stack_page = (unsigned long) softirq_ctx[cpu];
1449 if (sp >= stack_page + sizeof(struct thread_struct)
1450 && sp <= stack_page + THREAD_SIZE - nbytes)
1451 return 1;
1452 }
1453 return 0;
1454}
1455
2f25194d 1456int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1457 unsigned long nbytes)
1458{
0cec6fd1 1459 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1460
1461 if (sp >= stack_page + sizeof(struct thread_struct)
1462 && sp <= stack_page + THREAD_SIZE - nbytes)
1463 return 1;
1464
bb72c481 1465 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1466}
1467
2f25194d
AB
1468EXPORT_SYMBOL(validate_sp);
1469
14cf11af
PM
1470unsigned long get_wchan(struct task_struct *p)
1471{
1472 unsigned long ip, sp;
1473 int count = 0;
1474
1475 if (!p || p == current || p->state == TASK_RUNNING)
1476 return 0;
1477
1478 sp = p->thread.ksp;
ec2b36b9 1479 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1480 return 0;
1481
1482 do {
1483 sp = *(unsigned long *)sp;
ec2b36b9 1484 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1485 return 0;
1486 if (count > 0) {
ec2b36b9 1487 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1488 if (!in_sched_functions(ip))
1489 return ip;
1490 }
1491 } while (count++ < 16);
1492 return 0;
1493}
06d67d54 1494
c4d04be1 1495static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1496
1497void show_stack(struct task_struct *tsk, unsigned long *stack)
1498{
1499 unsigned long sp, ip, lr, newsp;
1500 int count = 0;
1501 int firstframe = 1;
6794c782
SR
1502#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1503 int curr_frame = current->curr_ret_stack;
1504 extern void return_to_handler(void);
9135c3cc
SR
1505 unsigned long rth = (unsigned long)return_to_handler;
1506 unsigned long mrth = -1;
6794c782 1507#ifdef CONFIG_PPC64
9135c3cc
SR
1508 extern void mod_return_to_handler(void);
1509 rth = *(unsigned long *)rth;
1510 mrth = (unsigned long)mod_return_to_handler;
1511 mrth = *(unsigned long *)mrth;
6794c782
SR
1512#endif
1513#endif
06d67d54
PM
1514
1515 sp = (unsigned long) stack;
1516 if (tsk == NULL)
1517 tsk = current;
1518 if (sp == 0) {
1519 if (tsk == current)
1520 asm("mr %0,1" : "=r" (sp));
1521 else
1522 sp = tsk->thread.ksp;
1523 }
1524
1525 lr = 0;
1526 printk("Call Trace:\n");
1527 do {
ec2b36b9 1528 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1529 return;
1530
1531 stack = (unsigned long *) sp;
1532 newsp = stack[0];
ec2b36b9 1533 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1534 if (!firstframe || ip != lr) {
058c78f4 1535 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1536#ifdef CONFIG_FUNCTION_GRAPH_TRACER
9135c3cc 1537 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
6794c782
SR
1538 printk(" (%pS)",
1539 (void *)current->ret_stack[curr_frame].ret);
1540 curr_frame--;
1541 }
1542#endif
06d67d54
PM
1543 if (firstframe)
1544 printk(" (unreliable)");
1545 printk("\n");
1546 }
1547 firstframe = 0;
1548
1549 /*
1550 * See if this is an exception frame.
1551 * We look for the "regshere" marker in the current frame.
1552 */
ec2b36b9
BH
1553 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1554 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1555 struct pt_regs *regs = (struct pt_regs *)
1556 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1557 lr = regs->link;
058c78f4
BH
1558 printk("--- Exception: %lx at %pS\n LR = %pS\n",
1559 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1560 firstframe = 1;
1561 }
1562
1563 sp = newsp;
1564 } while (count++ < kstack_depth_to_print);
1565}
1566
cb2c9b27 1567#ifdef CONFIG_PPC64
fe1952fc 1568/* Called with hard IRQs off */
0e37739b 1569void notrace __ppc64_runlatch_on(void)
cb2c9b27 1570{
fe1952fc 1571 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1572 unsigned long ctrl;
1573
fe1952fc
BH
1574 ctrl = mfspr(SPRN_CTRLF);
1575 ctrl |= CTRL_RUNLATCH;
1576 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1577
fae2e0fb 1578 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1579}
1580
fe1952fc 1581/* Called with hard IRQs off */
0e37739b 1582void notrace __ppc64_runlatch_off(void)
cb2c9b27 1583{
fe1952fc 1584 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1585 unsigned long ctrl;
1586
fae2e0fb 1587 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1588
4138d653
AB
1589 ctrl = mfspr(SPRN_CTRLF);
1590 ctrl &= ~CTRL_RUNLATCH;
1591 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1592}
fe1952fc 1593#endif /* CONFIG_PPC64 */
f6a61680 1594
d839088c
AB
1595unsigned long arch_align_stack(unsigned long sp)
1596{
1597 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1598 sp -= get_random_int() & ~PAGE_MASK;
1599 return sp & ~0xf;
1600}
912f9ee2
AB
1601
1602static inline unsigned long brk_rnd(void)
1603{
1604 unsigned long rnd = 0;
1605
1606 /* 8MB for 32bit, 1GB for 64bit */
1607 if (is_32bit_task())
1608 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1609 else
1610 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1611
1612 return rnd << PAGE_SHIFT;
1613}
1614
1615unsigned long arch_randomize_brk(struct mm_struct *mm)
1616{
8bbde7a7
AB
1617 unsigned long base = mm->brk;
1618 unsigned long ret;
1619
ce7a35c7 1620#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1621 /*
1622 * If we are using 1TB segments and we are allowed to randomise
1623 * the heap, we can put it above 1TB so it is backed by a 1TB
1624 * segment. Otherwise the heap will be in the bottom 1TB
1625 * which always uses 256MB segments and this may result in a
1626 * performance penalty.
1627 */
1628 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1629 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1630#endif
1631
1632 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1633
1634 if (ret < mm->brk)
1635 return mm->brk;
1636
1637 return ret;
1638}
501cb16d
AB
1639
1640unsigned long randomize_et_dyn(unsigned long base)
1641{
1642 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1643
1644 if (ret < base)
1645 return base;
1646
1647 return ret;
1648}
This page took 0.726942 seconds and 5 git commands to generate.