Merge tag 'master-2014-11-25' of git://git.kernel.org/pub/scm/linux/kernel/git/linvil...
[deliverable/linux.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
14cf11af
PM
28#include <linux/prctl.h>
29#include <linux/init_task.h>
4b16f8e2 30#include <linux/export.h>
14cf11af
PM
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
06d67d54 34#include <linux/utsname.h>
6794c782 35#include <linux/ftrace.h>
79741dd3 36#include <linux/kernel_stat.h>
d839088c
AB
37#include <linux/personality.h>
38#include <linux/random.h>
5aae8a53 39#include <linux/hw_breakpoint.h>
14cf11af
PM
40
41#include <asm/pgtable.h>
42#include <asm/uaccess.h>
14cf11af
PM
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/prom.h>
76032de8 47#include <asm/machdep.h>
c6622f63 48#include <asm/time.h>
ae3a197e 49#include <asm/runlatch.h>
a7f31841 50#include <asm/syscalls.h>
ae3a197e 51#include <asm/switch_to.h>
fb09692e 52#include <asm/tm.h>
ae3a197e 53#include <asm/debug.h>
06d67d54
PM
54#ifdef CONFIG_PPC64
55#include <asm/firmware.h>
06d67d54 56#endif
7cedd601 57#include <asm/code-patching.h>
d6a61bfc
LM
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
14cf11af 60
8b3c34cf
MN
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
14cf11af
PM
68extern unsigned long _get_SP(void);
69
70#ifndef CONFIG_SMP
71struct task_struct *last_task_used_math = NULL;
72struct task_struct *last_task_used_altivec = NULL;
ce48b210 73struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
74struct task_struct *last_task_used_spe = NULL;
75#endif
76
d31626f7
PM
77#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79{
80 /*
81 * If we are saving the current thread's registers, and the
82 * thread is in a transactional state, set the TIF_RESTORE_TM
83 * bit so that we know to restore the registers before
84 * returning to userspace.
85 */
86 if (tsk == current && tsk->thread.regs &&
87 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88 !test_thread_flag(TIF_RESTORE_TM)) {
89 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
90 set_thread_flag(TIF_RESTORE_TM);
91 }
92
93 giveup_fpu(tsk);
94}
95
96void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97{
98 /*
99 * If we are saving the current thread's registers, and the
100 * thread is in a transactional state, set the TIF_RESTORE_TM
101 * bit so that we know to restore the registers before
102 * returning to userspace.
103 */
104 if (tsk == current && tsk->thread.regs &&
105 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106 !test_thread_flag(TIF_RESTORE_TM)) {
107 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
108 set_thread_flag(TIF_RESTORE_TM);
109 }
110
111 giveup_altivec(tsk);
112}
113
114#else
115#define giveup_fpu_maybe_transactional(tsk) giveup_fpu(tsk)
116#define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
037f0eed 119#ifdef CONFIG_PPC_FPU
14cf11af
PM
120/*
121 * Make sure the floating-point register state in the
122 * the thread_struct is up to date for task tsk.
123 */
124void flush_fp_to_thread(struct task_struct *tsk)
125{
126 if (tsk->thread.regs) {
127 /*
128 * We need to disable preemption here because if we didn't,
129 * another process could get scheduled after the regs->msr
130 * test but before we have finished saving the FP registers
131 * to the thread_struct. That process could take over the
132 * FPU, and then when we get scheduled again we would store
133 * bogus values for the remaining FP registers.
134 */
135 preempt_disable();
136 if (tsk->thread.regs->msr & MSR_FP) {
137#ifdef CONFIG_SMP
138 /*
139 * This should only ever be called for current or
140 * for a stopped child process. Since we save away
141 * the FP register state on context switch on SMP,
142 * there is something wrong if a stopped child appears
143 * to still have its FP state in the CPU registers.
144 */
145 BUG_ON(tsk != current);
146#endif
d31626f7 147 giveup_fpu_maybe_transactional(tsk);
14cf11af
PM
148 }
149 preempt_enable();
150 }
151}
de56a948 152EXPORT_SYMBOL_GPL(flush_fp_to_thread);
d31626f7 153#endif /* CONFIG_PPC_FPU */
14cf11af
PM
154
155void enable_kernel_fp(void)
156{
157 WARN_ON(preemptible());
158
159#ifdef CONFIG_SMP
160 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
d31626f7 161 giveup_fpu_maybe_transactional(current);
14cf11af
PM
162 else
163 giveup_fpu(NULL); /* just enables FP for kernel */
164#else
d31626f7 165 giveup_fpu_maybe_transactional(last_task_used_math);
14cf11af
PM
166#endif /* CONFIG_SMP */
167}
168EXPORT_SYMBOL(enable_kernel_fp);
169
14cf11af
PM
170#ifdef CONFIG_ALTIVEC
171void enable_kernel_altivec(void)
172{
173 WARN_ON(preemptible());
174
175#ifdef CONFIG_SMP
176 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
d31626f7 177 giveup_altivec_maybe_transactional(current);
14cf11af 178 else
35000870 179 giveup_altivec_notask();
14cf11af 180#else
d31626f7 181 giveup_altivec_maybe_transactional(last_task_used_altivec);
14cf11af
PM
182#endif /* CONFIG_SMP */
183}
184EXPORT_SYMBOL(enable_kernel_altivec);
185
186/*
187 * Make sure the VMX/Altivec register state in the
188 * the thread_struct is up to date for task tsk.
189 */
190void flush_altivec_to_thread(struct task_struct *tsk)
191{
192 if (tsk->thread.regs) {
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_VEC) {
195#ifdef CONFIG_SMP
196 BUG_ON(tsk != current);
197#endif
d31626f7 198 giveup_altivec_maybe_transactional(tsk);
14cf11af
PM
199 }
200 preempt_enable();
201 }
202}
de56a948 203EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
14cf11af
PM
204#endif /* CONFIG_ALTIVEC */
205
ce48b210
MN
206#ifdef CONFIG_VSX
207#if 0
208/* not currently used, but some crazy RAID module might want to later */
209void enable_kernel_vsx(void)
210{
211 WARN_ON(preemptible());
212
213#ifdef CONFIG_SMP
214 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
215 giveup_vsx(current);
216 else
217 giveup_vsx(NULL); /* just enable vsx for kernel - force */
218#else
219 giveup_vsx(last_task_used_vsx);
220#endif /* CONFIG_SMP */
221}
222EXPORT_SYMBOL(enable_kernel_vsx);
223#endif
224
7c292170
MN
225void giveup_vsx(struct task_struct *tsk)
226{
d31626f7
PM
227 giveup_fpu_maybe_transactional(tsk);
228 giveup_altivec_maybe_transactional(tsk);
7c292170
MN
229 __giveup_vsx(tsk);
230}
e1802b06 231EXPORT_SYMBOL(giveup_vsx);
7c292170 232
ce48b210
MN
233void flush_vsx_to_thread(struct task_struct *tsk)
234{
235 if (tsk->thread.regs) {
236 preempt_disable();
237 if (tsk->thread.regs->msr & MSR_VSX) {
238#ifdef CONFIG_SMP
239 BUG_ON(tsk != current);
240#endif
241 giveup_vsx(tsk);
242 }
243 preempt_enable();
244 }
245}
de56a948 246EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
ce48b210
MN
247#endif /* CONFIG_VSX */
248
14cf11af
PM
249#ifdef CONFIG_SPE
250
251void enable_kernel_spe(void)
252{
253 WARN_ON(preemptible());
254
255#ifdef CONFIG_SMP
256 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
257 giveup_spe(current);
258 else
259 giveup_spe(NULL); /* just enable SPE for kernel - force */
260#else
261 giveup_spe(last_task_used_spe);
262#endif /* __SMP __ */
263}
264EXPORT_SYMBOL(enable_kernel_spe);
265
266void flush_spe_to_thread(struct task_struct *tsk)
267{
268 if (tsk->thread.regs) {
269 preempt_disable();
270 if (tsk->thread.regs->msr & MSR_SPE) {
271#ifdef CONFIG_SMP
272 BUG_ON(tsk != current);
273#endif
685659ee 274 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
0ee6c15e 275 giveup_spe(tsk);
14cf11af
PM
276 }
277 preempt_enable();
278 }
279}
14cf11af
PM
280#endif /* CONFIG_SPE */
281
5388fb10 282#ifndef CONFIG_SMP
48abec07
PM
283/*
284 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
285 * and the current task has some state, discard it.
286 */
5388fb10 287void discard_lazy_cpu_state(void)
48abec07 288{
48abec07
PM
289 preempt_disable();
290 if (last_task_used_math == current)
291 last_task_used_math = NULL;
292#ifdef CONFIG_ALTIVEC
293 if (last_task_used_altivec == current)
294 last_task_used_altivec = NULL;
295#endif /* CONFIG_ALTIVEC */
ce48b210
MN
296#ifdef CONFIG_VSX
297 if (last_task_used_vsx == current)
298 last_task_used_vsx = NULL;
299#endif /* CONFIG_VSX */
48abec07
PM
300#ifdef CONFIG_SPE
301 if (last_task_used_spe == current)
302 last_task_used_spe = NULL;
303#endif
304 preempt_enable();
48abec07 305}
5388fb10 306#endif /* CONFIG_SMP */
48abec07 307
3bffb652
DK
308#ifdef CONFIG_PPC_ADV_DEBUG_REGS
309void do_send_trap(struct pt_regs *regs, unsigned long address,
310 unsigned long error_code, int signal_code, int breakpt)
311{
312 siginfo_t info;
313
41ab5266 314 current->thread.trap_nr = signal_code;
3bffb652
DK
315 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
316 11, SIGSEGV) == NOTIFY_STOP)
317 return;
318
319 /* Deliver the signal to userspace */
320 info.si_signo = SIGTRAP;
321 info.si_errno = breakpt; /* breakpoint or watchpoint id */
322 info.si_code = signal_code;
323 info.si_addr = (void __user *)address;
324 force_sig_info(SIGTRAP, &info, current);
325}
326#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
9422de3e 327void do_break (struct pt_regs *regs, unsigned long address,
d6a61bfc
LM
328 unsigned long error_code)
329{
330 siginfo_t info;
331
41ab5266 332 current->thread.trap_nr = TRAP_HWBKPT;
d6a61bfc
LM
333 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
334 11, SIGSEGV) == NOTIFY_STOP)
335 return;
336
9422de3e 337 if (debugger_break_match(regs))
d6a61bfc
LM
338 return;
339
9422de3e
MN
340 /* Clear the breakpoint */
341 hw_breakpoint_disable();
d6a61bfc
LM
342
343 /* Deliver the signal to userspace */
344 info.si_signo = SIGTRAP;
345 info.si_errno = 0;
346 info.si_code = TRAP_HWBKPT;
347 info.si_addr = (void __user *)address;
348 force_sig_info(SIGTRAP, &info, current);
349}
3bffb652 350#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
d6a61bfc 351
9422de3e 352static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
a2ceff5e 353
3bffb652
DK
354#ifdef CONFIG_PPC_ADV_DEBUG_REGS
355/*
356 * Set the debug registers back to their default "safe" values.
357 */
358static void set_debug_reg_defaults(struct thread_struct *thread)
359{
51ae8d4a 360 thread->debug.iac1 = thread->debug.iac2 = 0;
3bffb652 361#if CONFIG_PPC_ADV_DEBUG_IACS > 2
51ae8d4a 362 thread->debug.iac3 = thread->debug.iac4 = 0;
3bffb652 363#endif
51ae8d4a 364 thread->debug.dac1 = thread->debug.dac2 = 0;
3bffb652 365#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
51ae8d4a 366 thread->debug.dvc1 = thread->debug.dvc2 = 0;
3bffb652 367#endif
51ae8d4a 368 thread->debug.dbcr0 = 0;
3bffb652
DK
369#ifdef CONFIG_BOOKE
370 /*
371 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
372 */
51ae8d4a 373 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
3bffb652
DK
374 DBCR1_IAC3US | DBCR1_IAC4US;
375 /*
376 * Force Data Address Compare User/Supervisor bits to be User-only
377 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
378 */
51ae8d4a 379 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
3bffb652 380#else
51ae8d4a 381 thread->debug.dbcr1 = 0;
3bffb652
DK
382#endif
383}
384
f5f97210 385static void prime_debug_regs(struct debug_reg *debug)
3bffb652 386{
6cecf76b
SW
387 /*
388 * We could have inherited MSR_DE from userspace, since
389 * it doesn't get cleared on exception entry. Make sure
390 * MSR_DE is clear before we enable any debug events.
391 */
392 mtmsr(mfmsr() & ~MSR_DE);
393
f5f97210
SW
394 mtspr(SPRN_IAC1, debug->iac1);
395 mtspr(SPRN_IAC2, debug->iac2);
3bffb652 396#if CONFIG_PPC_ADV_DEBUG_IACS > 2
f5f97210
SW
397 mtspr(SPRN_IAC3, debug->iac3);
398 mtspr(SPRN_IAC4, debug->iac4);
3bffb652 399#endif
f5f97210
SW
400 mtspr(SPRN_DAC1, debug->dac1);
401 mtspr(SPRN_DAC2, debug->dac2);
3bffb652 402#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
f5f97210
SW
403 mtspr(SPRN_DVC1, debug->dvc1);
404 mtspr(SPRN_DVC2, debug->dvc2);
3bffb652 405#endif
f5f97210
SW
406 mtspr(SPRN_DBCR0, debug->dbcr0);
407 mtspr(SPRN_DBCR1, debug->dbcr1);
3bffb652 408#ifdef CONFIG_BOOKE
f5f97210 409 mtspr(SPRN_DBCR2, debug->dbcr2);
3bffb652
DK
410#endif
411}
412/*
413 * Unless neither the old or new thread are making use of the
414 * debug registers, set the debug registers from the values
415 * stored in the new thread.
416 */
f5f97210 417void switch_booke_debug_regs(struct debug_reg *new_debug)
3bffb652 418{
51ae8d4a 419 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
f5f97210
SW
420 || (new_debug->dbcr0 & DBCR0_IDM))
421 prime_debug_regs(new_debug);
3bffb652 422}
3743c9b8 423EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
3bffb652 424#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
e0780b72 425#ifndef CONFIG_HAVE_HW_BREAKPOINT
3bffb652
DK
426static void set_debug_reg_defaults(struct thread_struct *thread)
427{
9422de3e
MN
428 thread->hw_brk.address = 0;
429 thread->hw_brk.type = 0;
b9818c33 430 set_breakpoint(&thread->hw_brk);
3bffb652 431}
e0780b72 432#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
3bffb652
DK
433#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
434
172ae2e7 435#ifdef CONFIG_PPC_ADV_DEBUG_REGS
9422de3e
MN
436static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
437{
d6a61bfc 438 mtspr(SPRN_DAC1, dabr);
221c185d
DK
439#ifdef CONFIG_PPC_47x
440 isync();
441#endif
9422de3e
MN
442 return 0;
443}
c6c9eace 444#elif defined(CONFIG_PPC_BOOK3S)
9422de3e
MN
445static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
446{
c6c9eace 447 mtspr(SPRN_DABR, dabr);
82a9f16a
MN
448 if (cpu_has_feature(CPU_FTR_DABRX))
449 mtspr(SPRN_DABRX, dabrx);
cab0af98 450 return 0;
14cf11af 451}
9422de3e
MN
452#else
453static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
454{
455 return -EINVAL;
456}
457#endif
458
459static inline int set_dabr(struct arch_hw_breakpoint *brk)
460{
461 unsigned long dabr, dabrx;
462
463 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
464 dabrx = ((brk->type >> 3) & 0x7);
465
466 if (ppc_md.set_dabr)
467 return ppc_md.set_dabr(dabr, dabrx);
468
469 return __set_dabr(dabr, dabrx);
470}
471
bf99de36
MN
472static inline int set_dawr(struct arch_hw_breakpoint *brk)
473{
05d694ea 474 unsigned long dawr, dawrx, mrd;
bf99de36
MN
475
476 dawr = brk->address;
477
478 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
479 << (63 - 58); //* read/write bits */
480 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
481 << (63 - 59); //* translate */
482 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
483 >> 3; //* PRIM bits */
05d694ea
MN
484 /* dawr length is stored in field MDR bits 48:53. Matches range in
485 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
486 0b111111=64DW.
487 brk->len is in bytes.
488 This aligns up to double word size, shifts and does the bias.
489 */
490 mrd = ((brk->len + 7) >> 3) - 1;
491 dawrx |= (mrd & 0x3f) << (63 - 53);
bf99de36
MN
492
493 if (ppc_md.set_dawr)
494 return ppc_md.set_dawr(dawr, dawrx);
495 mtspr(SPRN_DAWR, dawr);
496 mtspr(SPRN_DAWRX, dawrx);
497 return 0;
498}
499
21f58507 500void __set_breakpoint(struct arch_hw_breakpoint *brk)
9422de3e
MN
501{
502 __get_cpu_var(current_brk) = *brk;
503
bf99de36 504 if (cpu_has_feature(CPU_FTR_DAWR))
04c32a51
PG
505 set_dawr(brk);
506 else
507 set_dabr(brk);
9422de3e 508}
14cf11af 509
21f58507
PG
510void set_breakpoint(struct arch_hw_breakpoint *brk)
511{
512 preempt_disable();
513 __set_breakpoint(brk);
514 preempt_enable();
515}
516
06d67d54
PM
517#ifdef CONFIG_PPC64
518DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 519#endif
14cf11af 520
9422de3e
MN
521static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
522 struct arch_hw_breakpoint *b)
523{
524 if (a->address != b->address)
525 return false;
526 if (a->type != b->type)
527 return false;
528 if (a->len != b->len)
529 return false;
530 return true;
531}
d31626f7 532
fb09692e 533#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
d31626f7
PM
534static void tm_reclaim_thread(struct thread_struct *thr,
535 struct thread_info *ti, uint8_t cause)
536{
537 unsigned long msr_diff = 0;
538
539 /*
540 * If FP/VSX registers have been already saved to the
541 * thread_struct, move them to the transact_fp array.
542 * We clear the TIF_RESTORE_TM bit since after the reclaim
543 * the thread will no longer be transactional.
544 */
545 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
546 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
547 if (msr_diff & MSR_FP)
548 memcpy(&thr->transact_fp, &thr->fp_state,
549 sizeof(struct thread_fp_state));
550 if (msr_diff & MSR_VEC)
551 memcpy(&thr->transact_vr, &thr->vr_state,
552 sizeof(struct thread_vr_state));
553 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
554 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
555 }
556
557 tm_reclaim(thr, thr->regs->msr, cause);
558
559 /* Having done the reclaim, we now have the checkpointed
560 * FP/VSX values in the registers. These might be valid
561 * even if we have previously called enable_kernel_fp() or
562 * flush_fp_to_thread(), so update thr->regs->msr to
563 * indicate their current validity.
564 */
565 thr->regs->msr |= msr_diff;
566}
567
568void tm_reclaim_current(uint8_t cause)
569{
570 tm_enable();
571 tm_reclaim_thread(&current->thread, current_thread_info(), cause);
572}
573
fb09692e
MN
574static inline void tm_reclaim_task(struct task_struct *tsk)
575{
576 /* We have to work out if we're switching from/to a task that's in the
577 * middle of a transaction.
578 *
579 * In switching we need to maintain a 2nd register state as
580 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
581 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
582 * (current) FPRs into oldtask->thread.transact_fpr[].
583 *
584 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
585 */
586 struct thread_struct *thr = &tsk->thread;
587
588 if (!thr->regs)
589 return;
590
591 if (!MSR_TM_ACTIVE(thr->regs->msr))
592 goto out_and_saveregs;
593
594 /* Stash the original thread MSR, as giveup_fpu et al will
595 * modify it. We hold onto it to see whether the task used
d31626f7
PM
596 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
597 * tm_orig_msr is already set.
fb09692e 598 */
d31626f7
PM
599 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
600 thr->tm_orig_msr = thr->regs->msr;
fb09692e
MN
601
602 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
603 "ccr=%lx, msr=%lx, trap=%lx)\n",
604 tsk->pid, thr->regs->nip,
605 thr->regs->ccr, thr->regs->msr,
606 thr->regs->trap);
607
d31626f7 608 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
fb09692e
MN
609
610 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
611 tsk->pid);
612
613out_and_saveregs:
614 /* Always save the regs here, even if a transaction's not active.
615 * This context-switches a thread's TM info SPRs. We do it here to
616 * be consistent with the restore path (in recheckpoint) which
617 * cannot happen later in _switch().
618 */
619 tm_save_sprs(thr);
620}
621
e6b8fd02
MN
622extern void __tm_recheckpoint(struct thread_struct *thread,
623 unsigned long orig_msr);
624
625void tm_recheckpoint(struct thread_struct *thread,
626 unsigned long orig_msr)
627{
628 unsigned long flags;
629
630 /* We really can't be interrupted here as the TEXASR registers can't
631 * change and later in the trecheckpoint code, we have a userspace R1.
632 * So let's hard disable over this region.
633 */
634 local_irq_save(flags);
635 hard_irq_disable();
636
637 /* The TM SPRs are restored here, so that TEXASR.FS can be set
638 * before the trecheckpoint and no explosion occurs.
639 */
640 tm_restore_sprs(thread);
641
642 __tm_recheckpoint(thread, orig_msr);
643
644 local_irq_restore(flags);
645}
646
bc2a9408 647static inline void tm_recheckpoint_new_task(struct task_struct *new)
fb09692e
MN
648{
649 unsigned long msr;
650
651 if (!cpu_has_feature(CPU_FTR_TM))
652 return;
653
654 /* Recheckpoint the registers of the thread we're about to switch to.
655 *
656 * If the task was using FP, we non-lazily reload both the original and
657 * the speculative FP register states. This is because the kernel
658 * doesn't see if/when a TM rollback occurs, so if we take an FP
659 * unavoidable later, we are unable to determine which set of FP regs
660 * need to be restored.
661 */
662 if (!new->thread.regs)
663 return;
664
e6b8fd02
MN
665 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
666 tm_restore_sprs(&new->thread);
fb09692e 667 return;
e6b8fd02 668 }
fb09692e
MN
669 msr = new->thread.tm_orig_msr;
670 /* Recheckpoint to restore original checkpointed register state. */
671 TM_DEBUG("*** tm_recheckpoint of pid %d "
672 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
673 new->pid, new->thread.regs->msr, msr);
674
675 /* This loads the checkpointed FP/VEC state, if used */
676 tm_recheckpoint(&new->thread, msr);
677
678 /* This loads the speculative FP/VEC state, if used */
679 if (msr & MSR_FP) {
680 do_load_up_transact_fpu(&new->thread);
681 new->thread.regs->msr |=
682 (MSR_FP | new->thread.fpexc_mode);
683 }
f110c0c1 684#ifdef CONFIG_ALTIVEC
fb09692e
MN
685 if (msr & MSR_VEC) {
686 do_load_up_transact_altivec(&new->thread);
687 new->thread.regs->msr |= MSR_VEC;
688 }
f110c0c1 689#endif
fb09692e
MN
690 /* We may as well turn on VSX too since all the state is restored now */
691 if (msr & MSR_VSX)
692 new->thread.regs->msr |= MSR_VSX;
693
694 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
695 "(kernel msr 0x%lx)\n",
696 new->pid, mfmsr());
697}
698
699static inline void __switch_to_tm(struct task_struct *prev)
700{
701 if (cpu_has_feature(CPU_FTR_TM)) {
702 tm_enable();
703 tm_reclaim_task(prev);
704 }
705}
d31626f7
PM
706
707/*
708 * This is called if we are on the way out to userspace and the
709 * TIF_RESTORE_TM flag is set. It checks if we need to reload
710 * FP and/or vector state and does so if necessary.
711 * If userspace is inside a transaction (whether active or
712 * suspended) and FP/VMX/VSX instructions have ever been enabled
713 * inside that transaction, then we have to keep them enabled
714 * and keep the FP/VMX/VSX state loaded while ever the transaction
715 * continues. The reason is that if we didn't, and subsequently
716 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
717 * we don't know whether it's the same transaction, and thus we
718 * don't know which of the checkpointed state and the transactional
719 * state to use.
720 */
721void restore_tm_state(struct pt_regs *regs)
722{
723 unsigned long msr_diff;
724
725 clear_thread_flag(TIF_RESTORE_TM);
726 if (!MSR_TM_ACTIVE(regs->msr))
727 return;
728
729 msr_diff = current->thread.tm_orig_msr & ~regs->msr;
730 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
731 if (msr_diff & MSR_FP) {
732 fp_enable();
733 load_fp_state(&current->thread.fp_state);
734 regs->msr |= current->thread.fpexc_mode;
735 }
736 if (msr_diff & MSR_VEC) {
737 vec_enable();
738 load_vr_state(&current->thread.vr_state);
739 }
740 regs->msr |= msr_diff;
741}
742
fb09692e
MN
743#else
744#define tm_recheckpoint_new_task(new)
745#define __switch_to_tm(prev)
746#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
9422de3e 747
14cf11af
PM
748struct task_struct *__switch_to(struct task_struct *prev,
749 struct task_struct *new)
750{
751 struct thread_struct *new_thread, *old_thread;
14cf11af 752 struct task_struct *last;
d6bf29b4
PZ
753#ifdef CONFIG_PPC_BOOK3S_64
754 struct ppc64_tlb_batch *batch;
755#endif
14cf11af 756
7ba5fef7
MN
757 WARN_ON(!irqs_disabled());
758
96d01610 759 /* Back up the TAR and DSCR across context switches.
c2d52644
MN
760 * Note that the TAR is not available for use in the kernel. (To
761 * provide this, the TAR should be backed up/restored on exception
762 * entry/exit instead, and be in pt_regs. FIXME, this should be in
763 * pt_regs anyway (for debug).)
96d01610
S
764 * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
765 * these will change them.
c2d52644 766 */
96d01610 767 save_early_sprs(&prev->thread);
c2d52644 768
bc2a9408
MN
769 __switch_to_tm(prev);
770
14cf11af
PM
771#ifdef CONFIG_SMP
772 /* avoid complexity of lazy save/restore of fpu
773 * by just saving it every time we switch out if
774 * this task used the fpu during the last quantum.
775 *
776 * If it tries to use the fpu again, it'll trap and
777 * reload its fp regs. So we don't have to do a restore
778 * every switch, just a save.
779 * -- Cort
780 */
781 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
782 giveup_fpu(prev);
783#ifdef CONFIG_ALTIVEC
784 /*
785 * If the previous thread used altivec in the last quantum
786 * (thus changing altivec regs) then save them.
787 * We used to check the VRSAVE register but not all apps
788 * set it, so we don't rely on it now (and in fact we need
789 * to save & restore VSCR even if VRSAVE == 0). -- paulus
790 *
791 * On SMP we always save/restore altivec regs just to avoid the
792 * complexity of changing processors.
793 * -- Cort
794 */
795 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
796 giveup_altivec(prev);
14cf11af 797#endif /* CONFIG_ALTIVEC */
ce48b210
MN
798#ifdef CONFIG_VSX
799 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
7c292170
MN
800 /* VMX and FPU registers are already save here */
801 __giveup_vsx(prev);
ce48b210 802#endif /* CONFIG_VSX */
14cf11af
PM
803#ifdef CONFIG_SPE
804 /*
805 * If the previous thread used spe in the last quantum
806 * (thus changing spe regs) then save them.
807 *
808 * On SMP we always save/restore spe regs just to avoid the
809 * complexity of changing processors.
810 */
811 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
812 giveup_spe(prev);
c0c0d996
PM
813#endif /* CONFIG_SPE */
814
815#else /* CONFIG_SMP */
816#ifdef CONFIG_ALTIVEC
817 /* Avoid the trap. On smp this this never happens since
818 * we don't set last_task_used_altivec -- Cort
819 */
820 if (new->thread.regs && last_task_used_altivec == new)
821 new->thread.regs->msr |= MSR_VEC;
822#endif /* CONFIG_ALTIVEC */
ce48b210
MN
823#ifdef CONFIG_VSX
824 if (new->thread.regs && last_task_used_vsx == new)
825 new->thread.regs->msr |= MSR_VSX;
826#endif /* CONFIG_VSX */
c0c0d996 827#ifdef CONFIG_SPE
14cf11af
PM
828 /* Avoid the trap. On smp this this never happens since
829 * we don't set last_task_used_spe
830 */
831 if (new->thread.regs && last_task_used_spe == new)
832 new->thread.regs->msr |= MSR_SPE;
833#endif /* CONFIG_SPE */
c0c0d996 834
14cf11af
PM
835#endif /* CONFIG_SMP */
836
172ae2e7 837#ifdef CONFIG_PPC_ADV_DEBUG_REGS
f5f97210 838 switch_booke_debug_regs(&new->thread.debug);
c6c9eace 839#else
5aae8a53
P
840/*
841 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
842 * schedule DABR
843 */
844#ifndef CONFIG_HAVE_HW_BREAKPOINT
1c430c06 845 if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
21f58507 846 __set_breakpoint(&new->thread.hw_brk);
5aae8a53 847#endif /* CONFIG_HAVE_HW_BREAKPOINT */
d6a61bfc
LM
848#endif
849
c6c9eace 850
14cf11af
PM
851 new_thread = &new->thread;
852 old_thread = &current->thread;
06d67d54
PM
853
854#ifdef CONFIG_PPC64
855 /*
856 * Collect processor utilization data per process
857 */
858 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
859 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
860 long unsigned start_tb, current_tb;
861 start_tb = old_thread->start_tb;
862 cu->current_tb = current_tb = mfspr(SPRN_PURR);
863 old_thread->accum_tb += (current_tb - start_tb);
864 new_thread->start_tb = current_tb;
865 }
d6bf29b4
PZ
866#endif /* CONFIG_PPC64 */
867
868#ifdef CONFIG_PPC_BOOK3S_64
869 batch = &__get_cpu_var(ppc64_tlb_batch);
870 if (batch->active) {
871 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
872 if (batch->index)
873 __flush_tlb_pending(batch);
874 batch->active = 0;
875 }
876#endif /* CONFIG_PPC_BOOK3S_64 */
06d67d54 877
44387e9f
AB
878 /*
879 * We can't take a PMU exception inside _switch() since there is a
880 * window where the kernel stack SLB and the kernel stack are out
881 * of sync. Hard disable here.
882 */
883 hard_irq_disable();
bc2a9408
MN
884
885 tm_recheckpoint_new_task(new);
886
14cf11af
PM
887 last = _switch(old_thread, new_thread);
888
d6bf29b4
PZ
889#ifdef CONFIG_PPC_BOOK3S_64
890 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
891 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
892 batch = &__get_cpu_var(ppc64_tlb_batch);
893 batch->active = 1;
894 }
895#endif /* CONFIG_PPC_BOOK3S_64 */
896
14cf11af
PM
897 return last;
898}
899
06d67d54
PM
900static int instructions_to_print = 16;
901
06d67d54
PM
902static void show_instructions(struct pt_regs *regs)
903{
904 int i;
905 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
906 sizeof(int));
907
908 printk("Instruction dump:");
909
910 for (i = 0; i < instructions_to_print; i++) {
911 int instr;
912
913 if (!(i % 8))
914 printk("\n");
915
0de2d820
SW
916#if !defined(CONFIG_BOOKE)
917 /* If executing with the IMMU off, adjust pc rather
918 * than print XXXXXXXX.
919 */
920 if (!(regs->msr & MSR_IR))
921 pc = (unsigned long)phys_to_virt(pc);
922#endif
923
af308377
SR
924 /* We use __get_user here *only* to avoid an OOPS on a
925 * bad address because the pc *should* only be a
926 * kernel address.
927 */
00ae36de
AB
928 if (!__kernel_text_address(pc) ||
929 __get_user(instr, (unsigned int __user *)pc)) {
40c8cefa 930 printk(KERN_CONT "XXXXXXXX ");
06d67d54
PM
931 } else {
932 if (regs->nip == pc)
40c8cefa 933 printk(KERN_CONT "<%08x> ", instr);
06d67d54 934 else
40c8cefa 935 printk(KERN_CONT "%08x ", instr);
06d67d54
PM
936 }
937
938 pc += sizeof(int);
939 }
940
941 printk("\n");
942}
943
944static struct regbit {
945 unsigned long bit;
946 const char *name;
947} msr_bits[] = {
3bfd0c9c
AB
948#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
949 {MSR_SF, "SF"},
950 {MSR_HV, "HV"},
951#endif
952 {MSR_VEC, "VEC"},
953 {MSR_VSX, "VSX"},
954#ifdef CONFIG_BOOKE
955 {MSR_CE, "CE"},
956#endif
06d67d54
PM
957 {MSR_EE, "EE"},
958 {MSR_PR, "PR"},
959 {MSR_FP, "FP"},
960 {MSR_ME, "ME"},
3bfd0c9c 961#ifdef CONFIG_BOOKE
1b98326b 962 {MSR_DE, "DE"},
3bfd0c9c
AB
963#else
964 {MSR_SE, "SE"},
965 {MSR_BE, "BE"},
966#endif
06d67d54
PM
967 {MSR_IR, "IR"},
968 {MSR_DR, "DR"},
3bfd0c9c
AB
969 {MSR_PMM, "PMM"},
970#ifndef CONFIG_BOOKE
971 {MSR_RI, "RI"},
972 {MSR_LE, "LE"},
973#endif
06d67d54
PM
974 {0, NULL}
975};
976
977static void printbits(unsigned long val, struct regbit *bits)
978{
979 const char *sep = "";
980
981 printk("<");
982 for (; bits->bit; ++bits)
983 if (val & bits->bit) {
984 printk("%s%s", sep, bits->name);
985 sep = ",";
986 }
987 printk(">");
988}
989
990#ifdef CONFIG_PPC64
f6f7dde3 991#define REG "%016lx"
06d67d54
PM
992#define REGS_PER_LINE 4
993#define LAST_VOLATILE 13
994#else
f6f7dde3 995#define REG "%08lx"
06d67d54
PM
996#define REGS_PER_LINE 8
997#define LAST_VOLATILE 12
998#endif
999
14cf11af
PM
1000void show_regs(struct pt_regs * regs)
1001{
1002 int i, trap;
1003
a43cb95d
TH
1004 show_regs_print_info(KERN_DEFAULT);
1005
06d67d54
PM
1006 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1007 regs->nip, regs->link, regs->ctr);
1008 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 1009 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
1010 printk("MSR: "REG" ", regs->msr);
1011 printbits(regs->msr, msr_bits);
f6f7dde3 1012 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af 1013 trap = TRAP(regs);
5115a026 1014 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
9db8bcfd 1015 printk("CFAR: "REG" ", regs->orig_gpr3);
c5400649 1016 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
ba28c9aa 1017#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
9db8bcfd 1018 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
14170789 1019#else
9db8bcfd
AB
1020 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1021#endif
1022#ifdef CONFIG_PPC64
1023 printk("SOFTE: %ld ", regs->softe);
1024#endif
1025#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
6d888d1a
AB
1026 if (MSR_TM_ACTIVE(regs->msr))
1027 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
14170789 1028#endif
14cf11af
PM
1029
1030 for (i = 0; i < 32; i++) {
06d67d54 1031 if ((i % REGS_PER_LINE) == 0)
a2367194 1032 printk("\nGPR%02d: ", i);
06d67d54
PM
1033 printk(REG " ", regs->gpr[i]);
1034 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
1035 break;
1036 }
1037 printk("\n");
1038#ifdef CONFIG_KALLSYMS
1039 /*
1040 * Lookup NIP late so we have the best change of getting the
1041 * above info out without failing
1042 */
058c78f4
BH
1043 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1044 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
afc07701 1045#endif
14cf11af 1046 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
1047 if (!user_mode(regs))
1048 show_instructions(regs);
14cf11af
PM
1049}
1050
1051void exit_thread(void)
1052{
48abec07 1053 discard_lazy_cpu_state();
14cf11af
PM
1054}
1055
1056void flush_thread(void)
1057{
48abec07 1058 discard_lazy_cpu_state();
14cf11af 1059
e0780b72 1060#ifdef CONFIG_HAVE_HW_BREAKPOINT
5aae8a53 1061 flush_ptrace_hw_breakpoint(current);
e0780b72 1062#else /* CONFIG_HAVE_HW_BREAKPOINT */
3bffb652 1063 set_debug_reg_defaults(&current->thread);
e0780b72 1064#endif /* CONFIG_HAVE_HW_BREAKPOINT */
14cf11af
PM
1065}
1066
1067void
1068release_thread(struct task_struct *t)
1069{
1070}
1071
1072/*
55ccf3fe
SS
1073 * this gets called so that we can store coprocessor state into memory and
1074 * copy the current task into the new thread.
14cf11af 1075 */
55ccf3fe 1076int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
14cf11af 1077{
55ccf3fe
SS
1078 flush_fp_to_thread(src);
1079 flush_altivec_to_thread(src);
1080 flush_vsx_to_thread(src);
1081 flush_spe_to_thread(src);
621b5060
MN
1082 /*
1083 * Flush TM state out so we can copy it. __switch_to_tm() does this
1084 * flush but it removes the checkpointed state from the current CPU and
1085 * transitions the CPU out of TM mode. Hence we need to call
1086 * tm_recheckpoint_new_task() (on the same task) to restore the
1087 * checkpointed state back and the TM mode.
1088 */
1089 __switch_to_tm(src);
1090 tm_recheckpoint_new_task(src);
330a1eb7 1091
55ccf3fe 1092 *dst = *src;
330a1eb7
ME
1093
1094 clear_task_ebb(dst);
1095
55ccf3fe 1096 return 0;
14cf11af
PM
1097}
1098
cec15488
ME
1099static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1100{
1101#ifdef CONFIG_PPC_STD_MMU_64
1102 unsigned long sp_vsid;
1103 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1104
1105 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1106 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1107 << SLB_VSID_SHIFT_1T;
1108 else
1109 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1110 << SLB_VSID_SHIFT;
1111 sp_vsid |= SLB_VSID_KERNEL | llp;
1112 p->thread.ksp_vsid = sp_vsid;
1113#endif
1114}
1115
14cf11af
PM
1116/*
1117 * Copy a thread..
1118 */
efcac658
AK
1119extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1120
6f2c55b8 1121int copy_thread(unsigned long clone_flags, unsigned long usp,
afa86fc4 1122 unsigned long arg, struct task_struct *p)
14cf11af
PM
1123{
1124 struct pt_regs *childregs, *kregs;
1125 extern void ret_from_fork(void);
58254e10
AV
1126 extern void ret_from_kernel_thread(void);
1127 void (*f)(void);
0cec6fd1 1128 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af 1129
14cf11af
PM
1130 /* Copy registers */
1131 sp -= sizeof(struct pt_regs);
1132 childregs = (struct pt_regs *) sp;
ab75819d 1133 if (unlikely(p->flags & PF_KTHREAD)) {
138d1ce8 1134 struct thread_info *ti = (void *)task_stack_page(p);
58254e10 1135 memset(childregs, 0, sizeof(struct pt_regs));
14cf11af 1136 childregs->gpr[1] = sp + sizeof(struct pt_regs);
7cedd601
AB
1137 /* function */
1138 if (usp)
1139 childregs->gpr[14] = ppc_function_entry((void *)usp);
58254e10 1140#ifdef CONFIG_PPC64
b5e2fc1c 1141 clear_tsk_thread_flag(p, TIF_32BIT);
138d1ce8 1142 childregs->softe = 1;
06d67d54 1143#endif
58254e10 1144 childregs->gpr[15] = arg;
14cf11af 1145 p->thread.regs = NULL; /* no user register state */
138d1ce8 1146 ti->flags |= _TIF_RESTOREALL;
58254e10 1147 f = ret_from_kernel_thread;
14cf11af 1148 } else {
afa86fc4 1149 struct pt_regs *regs = current_pt_regs();
58254e10
AV
1150 CHECK_FULL_REGS(regs);
1151 *childregs = *regs;
ea516b11
AV
1152 if (usp)
1153 childregs->gpr[1] = usp;
14cf11af 1154 p->thread.regs = childregs;
58254e10 1155 childregs->gpr[3] = 0; /* Result from fork() */
06d67d54
PM
1156 if (clone_flags & CLONE_SETTLS) {
1157#ifdef CONFIG_PPC64
9904b005 1158 if (!is_32bit_task())
06d67d54
PM
1159 childregs->gpr[13] = childregs->gpr[6];
1160 else
1161#endif
1162 childregs->gpr[2] = childregs->gpr[6];
1163 }
58254e10
AV
1164
1165 f = ret_from_fork;
14cf11af 1166 }
14cf11af 1167 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
1168
1169 /*
1170 * The way this works is that at some point in the future
1171 * some task will call _switch to switch to the new task.
1172 * That will pop off the stack frame created below and start
1173 * the new task running at ret_from_fork. The new task will
1174 * do some house keeping and then return from the fork or clone
1175 * system call, using the stack frame created above.
1176 */
af945cf4 1177 ((unsigned long *)sp)[0] = 0;
14cf11af
PM
1178 sp -= sizeof(struct pt_regs);
1179 kregs = (struct pt_regs *) sp;
1180 sp -= STACK_FRAME_OVERHEAD;
1181 p->thread.ksp = sp;
cbc9565e 1182#ifdef CONFIG_PPC32
85218827
KG
1183 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1184 _ALIGN_UP(sizeof(struct thread_info), 16);
cbc9565e 1185#endif
28d170ab
ON
1186#ifdef CONFIG_HAVE_HW_BREAKPOINT
1187 p->thread.ptrace_bps[0] = NULL;
1188#endif
1189
18461960
PM
1190 p->thread.fp_save_area = NULL;
1191#ifdef CONFIG_ALTIVEC
1192 p->thread.vr_save_area = NULL;
1193#endif
1194
cec15488
ME
1195 setup_ksp_vsid(p, sp);
1196
efcac658
AK
1197#ifdef CONFIG_PPC64
1198 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021cb26
AB
1199 p->thread.dscr_inherit = current->thread.dscr_inherit;
1200 p->thread.dscr = current->thread.dscr;
efcac658 1201 }
92779245
HM
1202 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1203 p->thread.ppr = INIT_PPR;
efcac658 1204#endif
7cedd601 1205 kregs->nip = ppc_function_entry(f);
14cf11af
PM
1206 return 0;
1207}
1208
1209/*
1210 * Set up a thread for executing a new program
1211 */
06d67d54 1212void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 1213{
90eac727
ME
1214#ifdef CONFIG_PPC64
1215 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1216#endif
1217
06d67d54
PM
1218 /*
1219 * If we exec out of a kernel thread then thread.regs will not be
1220 * set. Do it now.
1221 */
1222 if (!current->thread.regs) {
0cec6fd1
AV
1223 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1224 current->thread.regs = regs - 1;
06d67d54
PM
1225 }
1226
14cf11af
PM
1227 memset(regs->gpr, 0, sizeof(regs->gpr));
1228 regs->ctr = 0;
1229 regs->link = 0;
1230 regs->xer = 0;
1231 regs->ccr = 0;
14cf11af 1232 regs->gpr[1] = sp;
06d67d54 1233
474f8196
RM
1234 /*
1235 * We have just cleared all the nonvolatile GPRs, so make
1236 * FULL_REGS(regs) return true. This is necessary to allow
1237 * ptrace to examine the thread immediately after exec.
1238 */
1239 regs->trap &= ~1UL;
1240
06d67d54
PM
1241#ifdef CONFIG_PPC32
1242 regs->mq = 0;
1243 regs->nip = start;
14cf11af 1244 regs->msr = MSR_USER;
06d67d54 1245#else
9904b005 1246 if (!is_32bit_task()) {
94af3abf 1247 unsigned long entry;
06d67d54 1248
94af3abf
RR
1249 if (is_elf2_task()) {
1250 /* Look ma, no function descriptors! */
1251 entry = start;
06d67d54 1252
94af3abf
RR
1253 /*
1254 * Ulrich says:
1255 * The latest iteration of the ABI requires that when
1256 * calling a function (at its global entry point),
1257 * the caller must ensure r12 holds the entry point
1258 * address (so that the function can quickly
1259 * establish addressability).
1260 */
1261 regs->gpr[12] = start;
1262 /* Make sure that's restored on entry to userspace. */
1263 set_thread_flag(TIF_RESTOREALL);
1264 } else {
1265 unsigned long toc;
1266
1267 /* start is a relocated pointer to the function
1268 * descriptor for the elf _start routine. The first
1269 * entry in the function descriptor is the entry
1270 * address of _start and the second entry is the TOC
1271 * value we need to use.
1272 */
1273 __get_user(entry, (unsigned long __user *)start);
1274 __get_user(toc, (unsigned long __user *)start+1);
1275
1276 /* Check whether the e_entry function descriptor entries
1277 * need to be relocated before we can use them.
1278 */
1279 if (load_addr != 0) {
1280 entry += load_addr;
1281 toc += load_addr;
1282 }
1283 regs->gpr[2] = toc;
06d67d54
PM
1284 }
1285 regs->nip = entry;
06d67d54 1286 regs->msr = MSR_USER64;
d4bf9a78
SR
1287 } else {
1288 regs->nip = start;
1289 regs->gpr[2] = 0;
1290 regs->msr = MSR_USER32;
06d67d54
PM
1291 }
1292#endif
48abec07 1293 discard_lazy_cpu_state();
ce48b210
MN
1294#ifdef CONFIG_VSX
1295 current->thread.used_vsr = 0;
1296#endif
de79f7b9 1297 memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
18461960 1298 current->thread.fp_save_area = NULL;
14cf11af 1299#ifdef CONFIG_ALTIVEC
de79f7b9
PM
1300 memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1301 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
18461960 1302 current->thread.vr_save_area = NULL;
14cf11af
PM
1303 current->thread.vrsave = 0;
1304 current->thread.used_vr = 0;
1305#endif /* CONFIG_ALTIVEC */
1306#ifdef CONFIG_SPE
1307 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1308 current->thread.acc = 0;
1309 current->thread.spefscr = 0;
1310 current->thread.used_spe = 0;
1311#endif /* CONFIG_SPE */
bc2a9408
MN
1312#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1313 if (cpu_has_feature(CPU_FTR_TM))
1314 regs->msr |= MSR_TM;
1315 current->thread.tm_tfhar = 0;
1316 current->thread.tm_texasr = 0;
1317 current->thread.tm_tfiar = 0;
1318#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
14cf11af 1319}
e1802b06 1320EXPORT_SYMBOL(start_thread);
14cf11af
PM
1321
1322#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1323 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1324
1325int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1326{
1327 struct pt_regs *regs = tsk->thread.regs;
1328
1329 /* This is a bit hairy. If we are an SPE enabled processor
1330 * (have embedded fp) we store the IEEE exception enable flags in
1331 * fpexc_mode. fpexc_mode is also used for setting FP exception
1332 * mode (asyn, precise, disabled) for 'Classic' FP. */
1333 if (val & PR_FP_EXC_SW_ENABLE) {
1334#ifdef CONFIG_SPE
5e14d21e 1335 if (cpu_has_feature(CPU_FTR_SPE)) {
640e9225
JM
1336 /*
1337 * When the sticky exception bits are set
1338 * directly by userspace, it must call prctl
1339 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1340 * in the existing prctl settings) or
1341 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1342 * the bits being set). <fenv.h> functions
1343 * saving and restoring the whole
1344 * floating-point environment need to do so
1345 * anyway to restore the prctl settings from
1346 * the saved environment.
1347 */
1348 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e
KG
1349 tsk->thread.fpexc_mode = val &
1350 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1351 return 0;
1352 } else {
1353 return -EINVAL;
1354 }
14cf11af
PM
1355#else
1356 return -EINVAL;
1357#endif
14cf11af 1358 }
06d67d54
PM
1359
1360 /* on a CONFIG_SPE this does not hurt us. The bits that
1361 * __pack_fe01 use do not overlap with bits used for
1362 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1363 * on CONFIG_SPE implementations are reserved so writing to
1364 * them does not change anything */
1365 if (val > PR_FP_EXC_PRECISE)
1366 return -EINVAL;
1367 tsk->thread.fpexc_mode = __pack_fe01(val);
1368 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1369 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1370 | tsk->thread.fpexc_mode;
14cf11af
PM
1371 return 0;
1372}
1373
1374int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1375{
1376 unsigned int val;
1377
1378 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1379#ifdef CONFIG_SPE
640e9225
JM
1380 if (cpu_has_feature(CPU_FTR_SPE)) {
1381 /*
1382 * When the sticky exception bits are set
1383 * directly by userspace, it must call prctl
1384 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1385 * in the existing prctl settings) or
1386 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1387 * the bits being set). <fenv.h> functions
1388 * saving and restoring the whole
1389 * floating-point environment need to do so
1390 * anyway to restore the prctl settings from
1391 * the saved environment.
1392 */
1393 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
5e14d21e 1394 val = tsk->thread.fpexc_mode;
640e9225 1395 } else
5e14d21e 1396 return -EINVAL;
14cf11af
PM
1397#else
1398 return -EINVAL;
1399#endif
1400 else
1401 val = __unpack_fe01(tsk->thread.fpexc_mode);
1402 return put_user(val, (unsigned int __user *) adr);
1403}
1404
fab5db97
PM
1405int set_endian(struct task_struct *tsk, unsigned int val)
1406{
1407 struct pt_regs *regs = tsk->thread.regs;
1408
1409 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1410 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1411 return -EINVAL;
1412
1413 if (regs == NULL)
1414 return -EINVAL;
1415
1416 if (val == PR_ENDIAN_BIG)
1417 regs->msr &= ~MSR_LE;
1418 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1419 regs->msr |= MSR_LE;
1420 else
1421 return -EINVAL;
1422
1423 return 0;
1424}
1425
1426int get_endian(struct task_struct *tsk, unsigned long adr)
1427{
1428 struct pt_regs *regs = tsk->thread.regs;
1429 unsigned int val;
1430
1431 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1432 !cpu_has_feature(CPU_FTR_REAL_LE))
1433 return -EINVAL;
1434
1435 if (regs == NULL)
1436 return -EINVAL;
1437
1438 if (regs->msr & MSR_LE) {
1439 if (cpu_has_feature(CPU_FTR_REAL_LE))
1440 val = PR_ENDIAN_LITTLE;
1441 else
1442 val = PR_ENDIAN_PPC_LITTLE;
1443 } else
1444 val = PR_ENDIAN_BIG;
1445
1446 return put_user(val, (unsigned int __user *)adr);
1447}
1448
e9370ae1
PM
1449int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1450{
1451 tsk->thread.align_ctl = val;
1452 return 0;
1453}
1454
1455int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1456{
1457 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1458}
1459
bb72c481
PM
1460static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1461 unsigned long nbytes)
1462{
1463 unsigned long stack_page;
1464 unsigned long cpu = task_cpu(p);
1465
1466 /*
1467 * Avoid crashing if the stack has overflowed and corrupted
1468 * task_cpu(p), which is in the thread_info struct.
1469 */
1470 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1471 stack_page = (unsigned long) hardirq_ctx[cpu];
1472 if (sp >= stack_page + sizeof(struct thread_struct)
1473 && sp <= stack_page + THREAD_SIZE - nbytes)
1474 return 1;
1475
1476 stack_page = (unsigned long) softirq_ctx[cpu];
1477 if (sp >= stack_page + sizeof(struct thread_struct)
1478 && sp <= stack_page + THREAD_SIZE - nbytes)
1479 return 1;
1480 }
1481 return 0;
1482}
1483
2f25194d 1484int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
1485 unsigned long nbytes)
1486{
0cec6fd1 1487 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
1488
1489 if (sp >= stack_page + sizeof(struct thread_struct)
1490 && sp <= stack_page + THREAD_SIZE - nbytes)
1491 return 1;
1492
bb72c481 1493 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1494}
1495
2f25194d
AB
1496EXPORT_SYMBOL(validate_sp);
1497
14cf11af
PM
1498unsigned long get_wchan(struct task_struct *p)
1499{
1500 unsigned long ip, sp;
1501 int count = 0;
1502
1503 if (!p || p == current || p->state == TASK_RUNNING)
1504 return 0;
1505
1506 sp = p->thread.ksp;
ec2b36b9 1507 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1508 return 0;
1509
1510 do {
1511 sp = *(unsigned long *)sp;
ec2b36b9 1512 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1513 return 0;
1514 if (count > 0) {
ec2b36b9 1515 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1516 if (!in_sched_functions(ip))
1517 return ip;
1518 }
1519 } while (count++ < 16);
1520 return 0;
1521}
06d67d54 1522
c4d04be1 1523static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
06d67d54
PM
1524
1525void show_stack(struct task_struct *tsk, unsigned long *stack)
1526{
1527 unsigned long sp, ip, lr, newsp;
1528 int count = 0;
1529 int firstframe = 1;
6794c782
SR
1530#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1531 int curr_frame = current->curr_ret_stack;
1532 extern void return_to_handler(void);
9135c3cc
SR
1533 unsigned long rth = (unsigned long)return_to_handler;
1534 unsigned long mrth = -1;
6794c782 1535#ifdef CONFIG_PPC64
9135c3cc
SR
1536 extern void mod_return_to_handler(void);
1537 rth = *(unsigned long *)rth;
1538 mrth = (unsigned long)mod_return_to_handler;
1539 mrth = *(unsigned long *)mrth;
6794c782
SR
1540#endif
1541#endif
06d67d54
PM
1542
1543 sp = (unsigned long) stack;
1544 if (tsk == NULL)
1545 tsk = current;
1546 if (sp == 0) {
1547 if (tsk == current)
acf620ec 1548 sp = current_stack_pointer();
06d67d54
PM
1549 else
1550 sp = tsk->thread.ksp;
1551 }
1552
1553 lr = 0;
1554 printk("Call Trace:\n");
1555 do {
ec2b36b9 1556 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1557 return;
1558
1559 stack = (unsigned long *) sp;
1560 newsp = stack[0];
ec2b36b9 1561 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54 1562 if (!firstframe || ip != lr) {
058c78f4 1563 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
6794c782 1564#ifdef CONFIG_FUNCTION_GRAPH_TRACER
9135c3cc 1565 if ((ip == rth || ip == mrth) && curr_frame >= 0) {
6794c782
SR
1566 printk(" (%pS)",
1567 (void *)current->ret_stack[curr_frame].ret);
1568 curr_frame--;
1569 }
1570#endif
06d67d54
PM
1571 if (firstframe)
1572 printk(" (unreliable)");
1573 printk("\n");
1574 }
1575 firstframe = 0;
1576
1577 /*
1578 * See if this is an exception frame.
1579 * We look for the "regshere" marker in the current frame.
1580 */
ec2b36b9
BH
1581 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1582 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1583 struct pt_regs *regs = (struct pt_regs *)
1584 (sp + STACK_FRAME_OVERHEAD);
06d67d54 1585 lr = regs->link;
9be9be2e 1586 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
058c78f4 1587 regs->trap, (void *)regs->nip, (void *)lr);
06d67d54
PM
1588 firstframe = 1;
1589 }
1590
1591 sp = newsp;
1592 } while (count++ < kstack_depth_to_print);
1593}
1594
cb2c9b27 1595#ifdef CONFIG_PPC64
fe1952fc 1596/* Called with hard IRQs off */
0e37739b 1597void notrace __ppc64_runlatch_on(void)
cb2c9b27 1598{
fe1952fc 1599 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1600 unsigned long ctrl;
1601
fe1952fc
BH
1602 ctrl = mfspr(SPRN_CTRLF);
1603 ctrl |= CTRL_RUNLATCH;
1604 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1605
fae2e0fb 1606 ti->local_flags |= _TLF_RUNLATCH;
cb2c9b27
AB
1607}
1608
fe1952fc 1609/* Called with hard IRQs off */
0e37739b 1610void notrace __ppc64_runlatch_off(void)
cb2c9b27 1611{
fe1952fc 1612 struct thread_info *ti = current_thread_info();
cb2c9b27
AB
1613 unsigned long ctrl;
1614
fae2e0fb 1615 ti->local_flags &= ~_TLF_RUNLATCH;
cb2c9b27 1616
4138d653
AB
1617 ctrl = mfspr(SPRN_CTRLF);
1618 ctrl &= ~CTRL_RUNLATCH;
1619 mtspr(SPRN_CTRLT, ctrl);
cb2c9b27 1620}
fe1952fc 1621#endif /* CONFIG_PPC64 */
f6a61680 1622
d839088c
AB
1623unsigned long arch_align_stack(unsigned long sp)
1624{
1625 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1626 sp -= get_random_int() & ~PAGE_MASK;
1627 return sp & ~0xf;
1628}
912f9ee2
AB
1629
1630static inline unsigned long brk_rnd(void)
1631{
1632 unsigned long rnd = 0;
1633
1634 /* 8MB for 32bit, 1GB for 64bit */
1635 if (is_32bit_task())
1636 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1637 else
1638 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1639
1640 return rnd << PAGE_SHIFT;
1641}
1642
1643unsigned long arch_randomize_brk(struct mm_struct *mm)
1644{
8bbde7a7
AB
1645 unsigned long base = mm->brk;
1646 unsigned long ret;
1647
ce7a35c7 1648#ifdef CONFIG_PPC_STD_MMU_64
8bbde7a7
AB
1649 /*
1650 * If we are using 1TB segments and we are allowed to randomise
1651 * the heap, we can put it above 1TB so it is backed by a 1TB
1652 * segment. Otherwise the heap will be in the bottom 1TB
1653 * which always uses 256MB segments and this may result in a
1654 * performance penalty.
1655 */
1656 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1657 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1658#endif
1659
1660 ret = PAGE_ALIGN(base + brk_rnd());
912f9ee2
AB
1661
1662 if (ret < mm->brk)
1663 return mm->brk;
1664
1665 return ret;
1666}
501cb16d
AB
1667
1668unsigned long randomize_et_dyn(unsigned long base)
1669{
1670 unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1671
1672 if (ret < base)
1673 return base;
1674
1675 return ret;
1676}
This page took 0.920082 seconds and 5 git commands to generate.