powerpc: Update for VSX core file and ptrace
[deliverable/linux.git] / arch / powerpc / kernel / process.c
CommitLineData
14cf11af 1/*
14cf11af
PM
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
14cf11af
PM
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
14cf11af
PM
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/init.h>
29#include <linux/prctl.h>
30#include <linux/init_task.h>
31#include <linux/module.h>
32#include <linux/kallsyms.h>
33#include <linux/mqueue.h>
34#include <linux/hardirq.h>
06d67d54 35#include <linux/utsname.h>
14cf11af
PM
36
37#include <asm/pgtable.h>
38#include <asm/uaccess.h>
39#include <asm/system.h>
40#include <asm/io.h>
41#include <asm/processor.h>
42#include <asm/mmu.h>
43#include <asm/prom.h>
76032de8 44#include <asm/machdep.h>
c6622f63 45#include <asm/time.h>
a7f31841 46#include <asm/syscalls.h>
06d67d54
PM
47#ifdef CONFIG_PPC64
48#include <asm/firmware.h>
06d67d54 49#endif
14cf11af
PM
50
51extern unsigned long _get_SP(void);
52
53#ifndef CONFIG_SMP
54struct task_struct *last_task_used_math = NULL;
55struct task_struct *last_task_used_altivec = NULL;
ce48b210 56struct task_struct *last_task_used_vsx = NULL;
14cf11af
PM
57struct task_struct *last_task_used_spe = NULL;
58#endif
59
14cf11af
PM
60/*
61 * Make sure the floating-point register state in the
62 * the thread_struct is up to date for task tsk.
63 */
64void flush_fp_to_thread(struct task_struct *tsk)
65{
66 if (tsk->thread.regs) {
67 /*
68 * We need to disable preemption here because if we didn't,
69 * another process could get scheduled after the regs->msr
70 * test but before we have finished saving the FP registers
71 * to the thread_struct. That process could take over the
72 * FPU, and then when we get scheduled again we would store
73 * bogus values for the remaining FP registers.
74 */
75 preempt_disable();
76 if (tsk->thread.regs->msr & MSR_FP) {
77#ifdef CONFIG_SMP
78 /*
79 * This should only ever be called for current or
80 * for a stopped child process. Since we save away
81 * the FP register state on context switch on SMP,
82 * there is something wrong if a stopped child appears
83 * to still have its FP state in the CPU registers.
84 */
85 BUG_ON(tsk != current);
86#endif
0ee6c15e 87 giveup_fpu(tsk);
14cf11af
PM
88 }
89 preempt_enable();
90 }
91}
92
93void enable_kernel_fp(void)
94{
95 WARN_ON(preemptible());
96
97#ifdef CONFIG_SMP
98 if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
99 giveup_fpu(current);
100 else
101 giveup_fpu(NULL); /* just enables FP for kernel */
102#else
103 giveup_fpu(last_task_used_math);
104#endif /* CONFIG_SMP */
105}
106EXPORT_SYMBOL(enable_kernel_fp);
107
108int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
109{
ce48b210
MN
110#ifdef CONFIG_VSX
111 int i;
112 elf_fpreg_t *reg;
113#endif
114
14cf11af
PM
115 if (!tsk->thread.regs)
116 return 0;
117 flush_fp_to_thread(current);
118
ce48b210
MN
119#ifdef CONFIG_VSX
120 reg = (elf_fpreg_t *)fpregs;
121 for (i = 0; i < ELF_NFPREG - 1; i++, reg++)
122 *reg = tsk->thread.TS_FPR(i);
123 memcpy(reg, &tsk->thread.fpscr, sizeof(elf_fpreg_t));
124#else
9c75a31c 125 memcpy(fpregs, &tsk->thread.TS_FPR(0), sizeof(*fpregs));
ce48b210 126#endif
14cf11af
PM
127
128 return 1;
129}
130
131#ifdef CONFIG_ALTIVEC
132void enable_kernel_altivec(void)
133{
134 WARN_ON(preemptible());
135
136#ifdef CONFIG_SMP
137 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
138 giveup_altivec(current);
139 else
140 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */
141#else
142 giveup_altivec(last_task_used_altivec);
143#endif /* CONFIG_SMP */
144}
145EXPORT_SYMBOL(enable_kernel_altivec);
146
147/*
148 * Make sure the VMX/Altivec register state in the
149 * the thread_struct is up to date for task tsk.
150 */
151void flush_altivec_to_thread(struct task_struct *tsk)
152{
153 if (tsk->thread.regs) {
154 preempt_disable();
155 if (tsk->thread.regs->msr & MSR_VEC) {
156#ifdef CONFIG_SMP
157 BUG_ON(tsk != current);
158#endif
0ee6c15e 159 giveup_altivec(tsk);
14cf11af
PM
160 }
161 preempt_enable();
162 }
163}
164
f3e909c2 165int dump_task_altivec(struct task_struct *tsk, elf_vrregset_t *vrregs)
14cf11af 166{
1f7d6668
MN
167 /* ELF_NVRREG includes the VSCR and VRSAVE which we need to save
168 * separately, see below */
169 const int nregs = ELF_NVRREG - 2;
170 elf_vrreg_t *reg;
171 u32 *dest;
172
173 if (tsk == current)
174 flush_altivec_to_thread(tsk);
175
176 reg = (elf_vrreg_t *)vrregs;
177
178 /* copy the 32 vr registers */
179 memcpy(reg, &tsk->thread.vr[0], nregs * sizeof(*reg));
180 reg += nregs;
181
182 /* copy the vscr */
183 memcpy(reg, &tsk->thread.vscr, sizeof(*reg));
184 reg++;
185
186 /* vrsave is stored in the high 32bit slot of the final 128bits */
187 memset(reg, 0, sizeof(*reg));
188 dest = (u32 *)reg;
189 *dest = tsk->thread.vrsave;
190
14cf11af
PM
191 return 1;
192}
193#endif /* CONFIG_ALTIVEC */
194
ce48b210
MN
195#ifdef CONFIG_VSX
196#if 0
197/* not currently used, but some crazy RAID module might want to later */
198void enable_kernel_vsx(void)
199{
200 WARN_ON(preemptible());
201
202#ifdef CONFIG_SMP
203 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
204 giveup_vsx(current);
205 else
206 giveup_vsx(NULL); /* just enable vsx for kernel - force */
207#else
208 giveup_vsx(last_task_used_vsx);
209#endif /* CONFIG_SMP */
210}
211EXPORT_SYMBOL(enable_kernel_vsx);
212#endif
213
214void flush_vsx_to_thread(struct task_struct *tsk)
215{
216 if (tsk->thread.regs) {
217 preempt_disable();
218 if (tsk->thread.regs->msr & MSR_VSX) {
219#ifdef CONFIG_SMP
220 BUG_ON(tsk != current);
221#endif
222 giveup_vsx(tsk);
223 }
224 preempt_enable();
225 }
226}
227
228/*
229 * This dumps the lower half 64bits of the first 32 VSX registers.
230 * This needs to be called with dump_task_fp and dump_task_altivec to
231 * get all the VSX state.
232 */
233int dump_task_vsx(struct task_struct *tsk, elf_vrreg_t *vrregs)
234{
235 elf_vrreg_t *reg;
236 double buf[32];
237 int i;
238
239 if (tsk == current)
240 flush_vsx_to_thread(tsk);
241
242 reg = (elf_vrreg_t *)vrregs;
243
244 for (i = 0; i < 32 ; i++)
245 buf[i] = current->thread.fpr[i][TS_VSRLOWOFFSET];
246 memcpy(reg, buf, sizeof(buf));
247
248 return 1;
249}
250#endif /* CONFIG_VSX */
251
14cf11af
PM
252#ifdef CONFIG_SPE
253
254void enable_kernel_spe(void)
255{
256 WARN_ON(preemptible());
257
258#ifdef CONFIG_SMP
259 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
260 giveup_spe(current);
261 else
262 giveup_spe(NULL); /* just enable SPE for kernel - force */
263#else
264 giveup_spe(last_task_used_spe);
265#endif /* __SMP __ */
266}
267EXPORT_SYMBOL(enable_kernel_spe);
268
269void flush_spe_to_thread(struct task_struct *tsk)
270{
271 if (tsk->thread.regs) {
272 preempt_disable();
273 if (tsk->thread.regs->msr & MSR_SPE) {
274#ifdef CONFIG_SMP
275 BUG_ON(tsk != current);
276#endif
0ee6c15e 277 giveup_spe(tsk);
14cf11af
PM
278 }
279 preempt_enable();
280 }
281}
282
283int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
284{
285 flush_spe_to_thread(current);
286 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
287 memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
288 return 1;
289}
290#endif /* CONFIG_SPE */
291
5388fb10 292#ifndef CONFIG_SMP
48abec07
PM
293/*
294 * If we are doing lazy switching of CPU state (FP, altivec or SPE),
295 * and the current task has some state, discard it.
296 */
5388fb10 297void discard_lazy_cpu_state(void)
48abec07 298{
48abec07
PM
299 preempt_disable();
300 if (last_task_used_math == current)
301 last_task_used_math = NULL;
302#ifdef CONFIG_ALTIVEC
303 if (last_task_used_altivec == current)
304 last_task_used_altivec = NULL;
305#endif /* CONFIG_ALTIVEC */
ce48b210
MN
306#ifdef CONFIG_VSX
307 if (last_task_used_vsx == current)
308 last_task_used_vsx = NULL;
309#endif /* CONFIG_VSX */
48abec07
PM
310#ifdef CONFIG_SPE
311 if (last_task_used_spe == current)
312 last_task_used_spe = NULL;
313#endif
314 preempt_enable();
48abec07 315}
5388fb10 316#endif /* CONFIG_SMP */
48abec07 317
a2ceff5e
ME
318static DEFINE_PER_CPU(unsigned long, current_dabr);
319
14cf11af
PM
320int set_dabr(unsigned long dabr)
321{
a2ceff5e
ME
322 __get_cpu_var(current_dabr) = dabr;
323
791cc501 324#ifdef CONFIG_PPC_MERGE /* XXX for now */
cab0af98
ME
325 if (ppc_md.set_dabr)
326 return ppc_md.set_dabr(dabr);
791cc501 327#endif
14cf11af 328
791cc501
BH
329 /* XXX should we have a CPU_FTR_HAS_DABR ? */
330#if defined(CONFIG_PPC64) || defined(CONFIG_6xx)
cab0af98 331 mtspr(SPRN_DABR, dabr);
791cc501 332#endif
cab0af98 333 return 0;
14cf11af
PM
334}
335
06d67d54
PM
336#ifdef CONFIG_PPC64
337DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
06d67d54 338#endif
14cf11af
PM
339
340struct task_struct *__switch_to(struct task_struct *prev,
341 struct task_struct *new)
342{
343 struct thread_struct *new_thread, *old_thread;
344 unsigned long flags;
345 struct task_struct *last;
346
347#ifdef CONFIG_SMP
348 /* avoid complexity of lazy save/restore of fpu
349 * by just saving it every time we switch out if
350 * this task used the fpu during the last quantum.
351 *
352 * If it tries to use the fpu again, it'll trap and
353 * reload its fp regs. So we don't have to do a restore
354 * every switch, just a save.
355 * -- Cort
356 */
357 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
358 giveup_fpu(prev);
359#ifdef CONFIG_ALTIVEC
360 /*
361 * If the previous thread used altivec in the last quantum
362 * (thus changing altivec regs) then save them.
363 * We used to check the VRSAVE register but not all apps
364 * set it, so we don't rely on it now (and in fact we need
365 * to save & restore VSCR even if VRSAVE == 0). -- paulus
366 *
367 * On SMP we always save/restore altivec regs just to avoid the
368 * complexity of changing processors.
369 * -- Cort
370 */
371 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
372 giveup_altivec(prev);
14cf11af 373#endif /* CONFIG_ALTIVEC */
ce48b210
MN
374#ifdef CONFIG_VSX
375 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
376 giveup_vsx(prev);
377#endif /* CONFIG_VSX */
14cf11af
PM
378#ifdef CONFIG_SPE
379 /*
380 * If the previous thread used spe in the last quantum
381 * (thus changing spe regs) then save them.
382 *
383 * On SMP we always save/restore spe regs just to avoid the
384 * complexity of changing processors.
385 */
386 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
387 giveup_spe(prev);
c0c0d996
PM
388#endif /* CONFIG_SPE */
389
390#else /* CONFIG_SMP */
391#ifdef CONFIG_ALTIVEC
392 /* Avoid the trap. On smp this this never happens since
393 * we don't set last_task_used_altivec -- Cort
394 */
395 if (new->thread.regs && last_task_used_altivec == new)
396 new->thread.regs->msr |= MSR_VEC;
397#endif /* CONFIG_ALTIVEC */
ce48b210
MN
398#ifdef CONFIG_VSX
399 if (new->thread.regs && last_task_used_vsx == new)
400 new->thread.regs->msr |= MSR_VSX;
401#endif /* CONFIG_VSX */
c0c0d996 402#ifdef CONFIG_SPE
14cf11af
PM
403 /* Avoid the trap. On smp this this never happens since
404 * we don't set last_task_used_spe
405 */
406 if (new->thread.regs && last_task_used_spe == new)
407 new->thread.regs->msr |= MSR_SPE;
408#endif /* CONFIG_SPE */
c0c0d996 409
14cf11af
PM
410#endif /* CONFIG_SMP */
411
a2ceff5e 412 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
14cf11af 413 set_dabr(new->thread.dabr);
14cf11af
PM
414
415 new_thread = &new->thread;
416 old_thread = &current->thread;
06d67d54
PM
417
418#ifdef CONFIG_PPC64
419 /*
420 * Collect processor utilization data per process
421 */
422 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
423 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
424 long unsigned start_tb, current_tb;
425 start_tb = old_thread->start_tb;
426 cu->current_tb = current_tb = mfspr(SPRN_PURR);
427 old_thread->accum_tb += (current_tb - start_tb);
428 new_thread->start_tb = current_tb;
429 }
430#endif
431
14cf11af 432 local_irq_save(flags);
c6622f63
PM
433
434 account_system_vtime(current);
81a3843f 435 account_process_vtime(current);
c6622f63
PM
436 calculate_steal_time();
437
44387e9f
AB
438 /*
439 * We can't take a PMU exception inside _switch() since there is a
440 * window where the kernel stack SLB and the kernel stack are out
441 * of sync. Hard disable here.
442 */
443 hard_irq_disable();
14cf11af
PM
444 last = _switch(old_thread, new_thread);
445
446 local_irq_restore(flags);
447
448 return last;
449}
450
06d67d54
PM
451static int instructions_to_print = 16;
452
06d67d54
PM
453static void show_instructions(struct pt_regs *regs)
454{
455 int i;
456 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
457 sizeof(int));
458
459 printk("Instruction dump:");
460
461 for (i = 0; i < instructions_to_print; i++) {
462 int instr;
463
464 if (!(i % 8))
465 printk("\n");
466
0de2d820
SW
467#if !defined(CONFIG_BOOKE)
468 /* If executing with the IMMU off, adjust pc rather
469 * than print XXXXXXXX.
470 */
471 if (!(regs->msr & MSR_IR))
472 pc = (unsigned long)phys_to_virt(pc);
473#endif
474
af308377
SR
475 /* We use __get_user here *only* to avoid an OOPS on a
476 * bad address because the pc *should* only be a
477 * kernel address.
478 */
00ae36de
AB
479 if (!__kernel_text_address(pc) ||
480 __get_user(instr, (unsigned int __user *)pc)) {
06d67d54
PM
481 printk("XXXXXXXX ");
482 } else {
483 if (regs->nip == pc)
484 printk("<%08x> ", instr);
485 else
486 printk("%08x ", instr);
487 }
488
489 pc += sizeof(int);
490 }
491
492 printk("\n");
493}
494
495static struct regbit {
496 unsigned long bit;
497 const char *name;
498} msr_bits[] = {
499 {MSR_EE, "EE"},
500 {MSR_PR, "PR"},
501 {MSR_FP, "FP"},
ce48b210
MN
502 {MSR_VEC, "VEC"},
503 {MSR_VSX, "VSX"},
06d67d54
PM
504 {MSR_ME, "ME"},
505 {MSR_IR, "IR"},
506 {MSR_DR, "DR"},
507 {0, NULL}
508};
509
510static void printbits(unsigned long val, struct regbit *bits)
511{
512 const char *sep = "";
513
514 printk("<");
515 for (; bits->bit; ++bits)
516 if (val & bits->bit) {
517 printk("%s%s", sep, bits->name);
518 sep = ",";
519 }
520 printk(">");
521}
522
523#ifdef CONFIG_PPC64
f6f7dde3 524#define REG "%016lx"
06d67d54
PM
525#define REGS_PER_LINE 4
526#define LAST_VOLATILE 13
527#else
f6f7dde3 528#define REG "%08lx"
06d67d54
PM
529#define REGS_PER_LINE 8
530#define LAST_VOLATILE 12
531#endif
532
14cf11af
PM
533void show_regs(struct pt_regs * regs)
534{
535 int i, trap;
536
06d67d54
PM
537 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
538 regs->nip, regs->link, regs->ctr);
539 printk("REGS: %p TRAP: %04lx %s (%s)\n",
96b644bd 540 regs, regs->trap, print_tainted(), init_utsname()->release);
06d67d54
PM
541 printk("MSR: "REG" ", regs->msr);
542 printbits(regs->msr, msr_bits);
f6f7dde3 543 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
14cf11af
PM
544 trap = TRAP(regs);
545 if (trap == 0x300 || trap == 0x600)
14170789
KG
546#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
547 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
548#else
06d67d54 549 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
14170789 550#endif
06d67d54 551 printk("TASK = %p[%d] '%s' THREAD: %p",
19c5870c 552 current, task_pid_nr(current), current->comm, task_thread_info(current));
14cf11af
PM
553
554#ifdef CONFIG_SMP
79ccd1be 555 printk(" CPU: %d", raw_smp_processor_id());
14cf11af
PM
556#endif /* CONFIG_SMP */
557
558 for (i = 0; i < 32; i++) {
06d67d54 559 if ((i % REGS_PER_LINE) == 0)
14cf11af 560 printk("\n" KERN_INFO "GPR%02d: ", i);
06d67d54
PM
561 printk(REG " ", regs->gpr[i]);
562 if (i == LAST_VOLATILE && !FULL_REGS(regs))
14cf11af
PM
563 break;
564 }
565 printk("\n");
566#ifdef CONFIG_KALLSYMS
567 /*
568 * Lookup NIP late so we have the best change of getting the
569 * above info out without failing
570 */
06d67d54 571 printk("NIP ["REG"] ", regs->nip);
14cf11af 572 print_symbol("%s\n", regs->nip);
06d67d54 573 printk("LR ["REG"] ", regs->link);
14cf11af
PM
574 print_symbol("%s\n", regs->link);
575#endif
576 show_stack(current, (unsigned long *) regs->gpr[1]);
06d67d54
PM
577 if (!user_mode(regs))
578 show_instructions(regs);
14cf11af
PM
579}
580
581void exit_thread(void)
582{
48abec07 583 discard_lazy_cpu_state();
14cf11af
PM
584}
585
586void flush_thread(void)
587{
06d67d54
PM
588#ifdef CONFIG_PPC64
589 struct thread_info *t = current_thread_info();
590
f144e7c7
MD
591 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) {
592 clear_ti_thread_flag(t, TIF_ABI_PENDING);
593 if (test_ti_thread_flag(t, TIF_32BIT))
594 clear_ti_thread_flag(t, TIF_32BIT);
595 else
596 set_ti_thread_flag(t, TIF_32BIT);
597 }
06d67d54 598#endif
06d67d54 599
48abec07 600 discard_lazy_cpu_state();
14cf11af 601
14cf11af
PM
602 if (current->thread.dabr) {
603 current->thread.dabr = 0;
604 set_dabr(0);
605 }
14cf11af
PM
606}
607
608void
609release_thread(struct task_struct *t)
610{
611}
612
613/*
614 * This gets called before we allocate a new thread and copy
615 * the current task into it.
616 */
617void prepare_to_copy(struct task_struct *tsk)
618{
619 flush_fp_to_thread(current);
620 flush_altivec_to_thread(current);
ce48b210 621 flush_vsx_to_thread(current);
14cf11af
PM
622 flush_spe_to_thread(current);
623}
624
625/*
626 * Copy a thread..
627 */
06d67d54
PM
628int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
629 unsigned long unused, struct task_struct *p,
630 struct pt_regs *regs)
14cf11af
PM
631{
632 struct pt_regs *childregs, *kregs;
633 extern void ret_from_fork(void);
0cec6fd1 634 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
14cf11af
PM
635
636 CHECK_FULL_REGS(regs);
637 /* Copy registers */
638 sp -= sizeof(struct pt_regs);
639 childregs = (struct pt_regs *) sp;
640 *childregs = *regs;
641 if ((childregs->msr & MSR_PR) == 0) {
642 /* for kernel thread, set `current' and stackptr in new task */
643 childregs->gpr[1] = sp + sizeof(struct pt_regs);
06d67d54 644#ifdef CONFIG_PPC32
14cf11af 645 childregs->gpr[2] = (unsigned long) p;
06d67d54 646#else
b5e2fc1c 647 clear_tsk_thread_flag(p, TIF_32BIT);
06d67d54 648#endif
14cf11af
PM
649 p->thread.regs = NULL; /* no user register state */
650 } else {
651 childregs->gpr[1] = usp;
652 p->thread.regs = childregs;
06d67d54
PM
653 if (clone_flags & CLONE_SETTLS) {
654#ifdef CONFIG_PPC64
655 if (!test_thread_flag(TIF_32BIT))
656 childregs->gpr[13] = childregs->gpr[6];
657 else
658#endif
659 childregs->gpr[2] = childregs->gpr[6];
660 }
14cf11af
PM
661 }
662 childregs->gpr[3] = 0; /* Result from fork() */
663 sp -= STACK_FRAME_OVERHEAD;
14cf11af
PM
664
665 /*
666 * The way this works is that at some point in the future
667 * some task will call _switch to switch to the new task.
668 * That will pop off the stack frame created below and start
669 * the new task running at ret_from_fork. The new task will
670 * do some house keeping and then return from the fork or clone
671 * system call, using the stack frame created above.
672 */
673 sp -= sizeof(struct pt_regs);
674 kregs = (struct pt_regs *) sp;
675 sp -= STACK_FRAME_OVERHEAD;
676 p->thread.ksp = sp;
85218827
KG
677 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
678 _ALIGN_UP(sizeof(struct thread_info), 16);
14cf11af 679
06d67d54
PM
680#ifdef CONFIG_PPC64
681 if (cpu_has_feature(CPU_FTR_SLB)) {
1189be65 682 unsigned long sp_vsid;
3c726f8d 683 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
06d67d54 684
1189be65
PM
685 if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
686 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
687 << SLB_VSID_SHIFT_1T;
688 else
689 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
690 << SLB_VSID_SHIFT;
3c726f8d 691 sp_vsid |= SLB_VSID_KERNEL | llp;
06d67d54
PM
692 p->thread.ksp_vsid = sp_vsid;
693 }
694
695 /*
696 * The PPC64 ABI makes use of a TOC to contain function
697 * pointers. The function (ret_from_except) is actually a pointer
698 * to the TOC entry. The first entry is a pointer to the actual
699 * function.
700 */
701 kregs->nip = *((unsigned long *)ret_from_fork);
702#else
703 kregs->nip = (unsigned long)ret_from_fork;
06d67d54 704#endif
14cf11af
PM
705
706 return 0;
707}
708
709/*
710 * Set up a thread for executing a new program
711 */
06d67d54 712void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
14cf11af 713{
90eac727
ME
714#ifdef CONFIG_PPC64
715 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
716#endif
717
14cf11af 718 set_fs(USER_DS);
06d67d54
PM
719
720 /*
721 * If we exec out of a kernel thread then thread.regs will not be
722 * set. Do it now.
723 */
724 if (!current->thread.regs) {
0cec6fd1
AV
725 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
726 current->thread.regs = regs - 1;
06d67d54
PM
727 }
728
14cf11af
PM
729 memset(regs->gpr, 0, sizeof(regs->gpr));
730 regs->ctr = 0;
731 regs->link = 0;
732 regs->xer = 0;
733 regs->ccr = 0;
14cf11af 734 regs->gpr[1] = sp;
06d67d54 735
474f8196
RM
736 /*
737 * We have just cleared all the nonvolatile GPRs, so make
738 * FULL_REGS(regs) return true. This is necessary to allow
739 * ptrace to examine the thread immediately after exec.
740 */
741 regs->trap &= ~1UL;
742
06d67d54
PM
743#ifdef CONFIG_PPC32
744 regs->mq = 0;
745 regs->nip = start;
14cf11af 746 regs->msr = MSR_USER;
06d67d54 747#else
d4bf9a78 748 if (!test_thread_flag(TIF_32BIT)) {
90eac727 749 unsigned long entry, toc;
06d67d54
PM
750
751 /* start is a relocated pointer to the function descriptor for
752 * the elf _start routine. The first entry in the function
753 * descriptor is the entry address of _start and the second
754 * entry is the TOC value we need to use.
755 */
756 __get_user(entry, (unsigned long __user *)start);
757 __get_user(toc, (unsigned long __user *)start+1);
758
759 /* Check whether the e_entry function descriptor entries
760 * need to be relocated before we can use them.
761 */
762 if (load_addr != 0) {
763 entry += load_addr;
764 toc += load_addr;
765 }
766 regs->nip = entry;
767 regs->gpr[2] = toc;
768 regs->msr = MSR_USER64;
d4bf9a78
SR
769 } else {
770 regs->nip = start;
771 regs->gpr[2] = 0;
772 regs->msr = MSR_USER32;
06d67d54
PM
773 }
774#endif
775
48abec07 776 discard_lazy_cpu_state();
ce48b210
MN
777#ifdef CONFIG_VSX
778 current->thread.used_vsr = 0;
779#endif
14cf11af 780 memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
25c8a78b 781 current->thread.fpscr.val = 0;
14cf11af
PM
782#ifdef CONFIG_ALTIVEC
783 memset(current->thread.vr, 0, sizeof(current->thread.vr));
784 memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
06d67d54 785 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
14cf11af
PM
786 current->thread.vrsave = 0;
787 current->thread.used_vr = 0;
788#endif /* CONFIG_ALTIVEC */
789#ifdef CONFIG_SPE
790 memset(current->thread.evr, 0, sizeof(current->thread.evr));
791 current->thread.acc = 0;
792 current->thread.spefscr = 0;
793 current->thread.used_spe = 0;
794#endif /* CONFIG_SPE */
795}
796
797#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
798 | PR_FP_EXC_RES | PR_FP_EXC_INV)
799
800int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
801{
802 struct pt_regs *regs = tsk->thread.regs;
803
804 /* This is a bit hairy. If we are an SPE enabled processor
805 * (have embedded fp) we store the IEEE exception enable flags in
806 * fpexc_mode. fpexc_mode is also used for setting FP exception
807 * mode (asyn, precise, disabled) for 'Classic' FP. */
808 if (val & PR_FP_EXC_SW_ENABLE) {
809#ifdef CONFIG_SPE
5e14d21e
KG
810 if (cpu_has_feature(CPU_FTR_SPE)) {
811 tsk->thread.fpexc_mode = val &
812 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
813 return 0;
814 } else {
815 return -EINVAL;
816 }
14cf11af
PM
817#else
818 return -EINVAL;
819#endif
14cf11af 820 }
06d67d54
PM
821
822 /* on a CONFIG_SPE this does not hurt us. The bits that
823 * __pack_fe01 use do not overlap with bits used for
824 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
825 * on CONFIG_SPE implementations are reserved so writing to
826 * them does not change anything */
827 if (val > PR_FP_EXC_PRECISE)
828 return -EINVAL;
829 tsk->thread.fpexc_mode = __pack_fe01(val);
830 if (regs != NULL && (regs->msr & MSR_FP) != 0)
831 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
832 | tsk->thread.fpexc_mode;
14cf11af
PM
833 return 0;
834}
835
836int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
837{
838 unsigned int val;
839
840 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
841#ifdef CONFIG_SPE
5e14d21e
KG
842 if (cpu_has_feature(CPU_FTR_SPE))
843 val = tsk->thread.fpexc_mode;
844 else
845 return -EINVAL;
14cf11af
PM
846#else
847 return -EINVAL;
848#endif
849 else
850 val = __unpack_fe01(tsk->thread.fpexc_mode);
851 return put_user(val, (unsigned int __user *) adr);
852}
853
fab5db97
PM
854int set_endian(struct task_struct *tsk, unsigned int val)
855{
856 struct pt_regs *regs = tsk->thread.regs;
857
858 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
859 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
860 return -EINVAL;
861
862 if (regs == NULL)
863 return -EINVAL;
864
865 if (val == PR_ENDIAN_BIG)
866 regs->msr &= ~MSR_LE;
867 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
868 regs->msr |= MSR_LE;
869 else
870 return -EINVAL;
871
872 return 0;
873}
874
875int get_endian(struct task_struct *tsk, unsigned long adr)
876{
877 struct pt_regs *regs = tsk->thread.regs;
878 unsigned int val;
879
880 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
881 !cpu_has_feature(CPU_FTR_REAL_LE))
882 return -EINVAL;
883
884 if (regs == NULL)
885 return -EINVAL;
886
887 if (regs->msr & MSR_LE) {
888 if (cpu_has_feature(CPU_FTR_REAL_LE))
889 val = PR_ENDIAN_LITTLE;
890 else
891 val = PR_ENDIAN_PPC_LITTLE;
892 } else
893 val = PR_ENDIAN_BIG;
894
895 return put_user(val, (unsigned int __user *)adr);
896}
897
e9370ae1
PM
898int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
899{
900 tsk->thread.align_ctl = val;
901 return 0;
902}
903
904int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
905{
906 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
907}
908
06d67d54
PM
909#define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff))
910
14cf11af
PM
911int sys_clone(unsigned long clone_flags, unsigned long usp,
912 int __user *parent_tidp, void __user *child_threadptr,
913 int __user *child_tidp, int p6,
914 struct pt_regs *regs)
915{
916 CHECK_FULL_REGS(regs);
917 if (usp == 0)
918 usp = regs->gpr[1]; /* stack pointer for child */
06d67d54
PM
919#ifdef CONFIG_PPC64
920 if (test_thread_flag(TIF_32BIT)) {
921 parent_tidp = TRUNC_PTR(parent_tidp);
922 child_tidp = TRUNC_PTR(child_tidp);
923 }
924#endif
14cf11af
PM
925 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
926}
927
928int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
929 unsigned long p4, unsigned long p5, unsigned long p6,
930 struct pt_regs *regs)
931{
932 CHECK_FULL_REGS(regs);
933 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
934}
935
936int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
937 unsigned long p4, unsigned long p5, unsigned long p6,
938 struct pt_regs *regs)
939{
940 CHECK_FULL_REGS(regs);
941 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
942 regs, 0, NULL, NULL);
943}
944
945int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
946 unsigned long a3, unsigned long a4, unsigned long a5,
947 struct pt_regs *regs)
948{
949 int error;
06d67d54 950 char *filename;
14cf11af
PM
951
952 filename = getname((char __user *) a0);
953 error = PTR_ERR(filename);
954 if (IS_ERR(filename))
955 goto out;
956 flush_fp_to_thread(current);
957 flush_altivec_to_thread(current);
958 flush_spe_to_thread(current);
20c8c210
PM
959 error = do_execve(filename, (char __user * __user *) a1,
960 (char __user * __user *) a2, regs);
14cf11af
PM
961 putname(filename);
962out:
963 return error;
964}
965
bb72c481
PM
966#ifdef CONFIG_IRQSTACKS
967static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
968 unsigned long nbytes)
969{
970 unsigned long stack_page;
971 unsigned long cpu = task_cpu(p);
972
973 /*
974 * Avoid crashing if the stack has overflowed and corrupted
975 * task_cpu(p), which is in the thread_info struct.
976 */
977 if (cpu < NR_CPUS && cpu_possible(cpu)) {
978 stack_page = (unsigned long) hardirq_ctx[cpu];
979 if (sp >= stack_page + sizeof(struct thread_struct)
980 && sp <= stack_page + THREAD_SIZE - nbytes)
981 return 1;
982
983 stack_page = (unsigned long) softirq_ctx[cpu];
984 if (sp >= stack_page + sizeof(struct thread_struct)
985 && sp <= stack_page + THREAD_SIZE - nbytes)
986 return 1;
987 }
988 return 0;
989}
990
991#else
992#define valid_irq_stack(sp, p, nb) 0
993#endif /* CONFIG_IRQSTACKS */
994
2f25194d 995int validate_sp(unsigned long sp, struct task_struct *p,
14cf11af
PM
996 unsigned long nbytes)
997{
0cec6fd1 998 unsigned long stack_page = (unsigned long)task_stack_page(p);
14cf11af
PM
999
1000 if (sp >= stack_page + sizeof(struct thread_struct)
1001 && sp <= stack_page + THREAD_SIZE - nbytes)
1002 return 1;
1003
bb72c481 1004 return valid_irq_stack(sp, p, nbytes);
14cf11af
PM
1005}
1006
2f25194d
AB
1007EXPORT_SYMBOL(validate_sp);
1008
14cf11af
PM
1009unsigned long get_wchan(struct task_struct *p)
1010{
1011 unsigned long ip, sp;
1012 int count = 0;
1013
1014 if (!p || p == current || p->state == TASK_RUNNING)
1015 return 0;
1016
1017 sp = p->thread.ksp;
ec2b36b9 1018 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1019 return 0;
1020
1021 do {
1022 sp = *(unsigned long *)sp;
ec2b36b9 1023 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
14cf11af
PM
1024 return 0;
1025 if (count > 0) {
ec2b36b9 1026 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
14cf11af
PM
1027 if (!in_sched_functions(ip))
1028 return ip;
1029 }
1030 } while (count++ < 16);
1031 return 0;
1032}
06d67d54
PM
1033
1034static int kstack_depth_to_print = 64;
1035
1036void show_stack(struct task_struct *tsk, unsigned long *stack)
1037{
1038 unsigned long sp, ip, lr, newsp;
1039 int count = 0;
1040 int firstframe = 1;
1041
1042 sp = (unsigned long) stack;
1043 if (tsk == NULL)
1044 tsk = current;
1045 if (sp == 0) {
1046 if (tsk == current)
1047 asm("mr %0,1" : "=r" (sp));
1048 else
1049 sp = tsk->thread.ksp;
1050 }
1051
1052 lr = 0;
1053 printk("Call Trace:\n");
1054 do {
ec2b36b9 1055 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
06d67d54
PM
1056 return;
1057
1058 stack = (unsigned long *) sp;
1059 newsp = stack[0];
ec2b36b9 1060 ip = stack[STACK_FRAME_LR_SAVE];
06d67d54
PM
1061 if (!firstframe || ip != lr) {
1062 printk("["REG"] ["REG"] ", sp, ip);
1063 print_symbol("%s", ip);
1064 if (firstframe)
1065 printk(" (unreliable)");
1066 printk("\n");
1067 }
1068 firstframe = 0;
1069
1070 /*
1071 * See if this is an exception frame.
1072 * We look for the "regshere" marker in the current frame.
1073 */
ec2b36b9
BH
1074 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1075 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
06d67d54
PM
1076 struct pt_regs *regs = (struct pt_regs *)
1077 (sp + STACK_FRAME_OVERHEAD);
1078 printk("--- Exception: %lx", regs->trap);
1079 print_symbol(" at %s\n", regs->nip);
1080 lr = regs->link;
1081 print_symbol(" LR = %s\n", lr);
1082 firstframe = 1;
1083 }
1084
1085 sp = newsp;
1086 } while (count++ < kstack_depth_to_print);
1087}
1088
1089void dump_stack(void)
1090{
1091 show_stack(current, NULL);
1092}
1093EXPORT_SYMBOL(dump_stack);
cb2c9b27
AB
1094
1095#ifdef CONFIG_PPC64
1096void ppc64_runlatch_on(void)
1097{
1098 unsigned long ctrl;
1099
1100 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1101 HMT_medium();
1102
1103 ctrl = mfspr(SPRN_CTRLF);
1104 ctrl |= CTRL_RUNLATCH;
1105 mtspr(SPRN_CTRLT, ctrl);
1106
1107 set_thread_flag(TIF_RUNLATCH);
1108 }
1109}
1110
1111void ppc64_runlatch_off(void)
1112{
1113 unsigned long ctrl;
1114
1115 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
1116 HMT_medium();
1117
1118 clear_thread_flag(TIF_RUNLATCH);
1119
1120 ctrl = mfspr(SPRN_CTRLF);
1121 ctrl &= ~CTRL_RUNLATCH;
1122 mtspr(SPRN_CTRLT, ctrl);
1123 }
1124}
1125#endif
f6a61680
BH
1126
1127#if THREAD_SHIFT < PAGE_SHIFT
1128
1129static struct kmem_cache *thread_info_cache;
1130
1131struct thread_info *alloc_thread_info(struct task_struct *tsk)
1132{
1133 struct thread_info *ti;
1134
1135 ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
1136 if (unlikely(ti == NULL))
1137 return NULL;
1138#ifdef CONFIG_DEBUG_STACK_USAGE
1139 memset(ti, 0, THREAD_SIZE);
1140#endif
1141 return ti;
1142}
1143
1144void free_thread_info(struct thread_info *ti)
1145{
1146 kmem_cache_free(thread_info_cache, ti);
1147}
1148
1149void thread_info_cache_init(void)
1150{
1151 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1152 THREAD_SIZE, 0, NULL);
1153 BUG_ON(thread_info_cache == NULL);
1154}
1155
1156#endif /* THREAD_SHIFT < PAGE_SHIFT */
This page took 0.323253 seconds and 5 git commands to generate.