[PATCH] powerpc: Add arch-dependent copy_oldmem_page
[deliverable/linux.git] / arch / powerpc / kernel / prom.c
CommitLineData
9b6b563c
PM
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16#undef DEBUG
17
18#include <stdarg.h>
19#include <linux/config.h>
20#include <linux/kernel.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/threads.h>
24#include <linux/spinlock.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/stringify.h>
28#include <linux/delay.h>
29#include <linux/initrd.h>
30#include <linux/bitops.h>
31#include <linux/module.h>
dcee3036 32#include <linux/kexec.h>
9b6b563c
PM
33
34#include <asm/prom.h>
35#include <asm/rtas.h>
36#include <asm/lmb.h>
37#include <asm/page.h>
38#include <asm/processor.h>
39#include <asm/irq.h>
40#include <asm/io.h>
0cc4746c 41#include <asm/kdump.h>
9b6b563c
PM
42#include <asm/smp.h>
43#include <asm/system.h>
44#include <asm/mmu.h>
45#include <asm/pgtable.h>
46#include <asm/pci.h>
47#include <asm/iommu.h>
48#include <asm/btext.h>
49#include <asm/sections.h>
50#include <asm/machdep.h>
51#include <asm/pSeries_reconfig.h>
40ef8cbc 52#include <asm/pci-bridge.h>
9b6b563c
PM
53
54#ifdef DEBUG
55#define DBG(fmt...) printk(KERN_ERR fmt)
56#else
57#define DBG(fmt...)
58#endif
59
60struct pci_reg_property {
61 struct pci_address addr;
62 u32 size_hi;
63 u32 size_lo;
64};
65
66struct isa_reg_property {
67 u32 space;
68 u32 address;
69 u32 size;
70};
71
72
73typedef int interpret_func(struct device_node *, unsigned long *,
74 int, int, int);
75
9b6b563c
PM
76static int __initdata dt_root_addr_cells;
77static int __initdata dt_root_size_cells;
78
79#ifdef CONFIG_PPC64
80static int __initdata iommu_is_off;
81int __initdata iommu_force_on;
cf00a8d1 82unsigned long tce_alloc_start, tce_alloc_end;
9b6b563c
PM
83#endif
84
85typedef u32 cell_t;
86
87#if 0
88static struct boot_param_header *initial_boot_params __initdata;
89#else
90struct boot_param_header *initial_boot_params;
91#endif
92
93static struct device_node *allnodes = NULL;
94
95/* use when traversing tree through the allnext, child, sibling,
96 * or parent members of struct device_node.
97 */
98static DEFINE_RWLOCK(devtree_lock);
99
100/* export that to outside world */
101struct device_node *of_chosen;
102
103struct device_node *dflt_interrupt_controller;
104int num_interrupt_controllers;
105
9b6b563c
PM
106/*
107 * Wrapper for allocating memory for various data that needs to be
108 * attached to device nodes as they are processed at boot or when
109 * added to the device tree later (e.g. DLPAR). At boot there is
110 * already a region reserved so we just increment *mem_start by size;
111 * otherwise we call kmalloc.
112 */
113static void * prom_alloc(unsigned long size, unsigned long *mem_start)
114{
115 unsigned long tmp;
116
117 if (!mem_start)
118 return kmalloc(size, GFP_KERNEL);
119
120 tmp = *mem_start;
121 *mem_start += size;
122 return (void *)tmp;
123}
124
125/*
126 * Find the device_node with a given phandle.
127 */
128static struct device_node * find_phandle(phandle ph)
129{
130 struct device_node *np;
131
132 for (np = allnodes; np != 0; np = np->allnext)
133 if (np->linux_phandle == ph)
134 return np;
135 return NULL;
136}
137
138/*
139 * Find the interrupt parent of a node.
140 */
141static struct device_node * __devinit intr_parent(struct device_node *p)
142{
143 phandle *parp;
144
145 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
146 if (parp == NULL)
147 return p->parent;
148 p = find_phandle(*parp);
149 if (p != NULL)
150 return p;
151 /*
152 * On a powermac booted with BootX, we don't get to know the
153 * phandles for any nodes, so find_phandle will return NULL.
154 * Fortunately these machines only have one interrupt controller
155 * so there isn't in fact any ambiguity. -- paulus
156 */
157 if (num_interrupt_controllers == 1)
158 p = dflt_interrupt_controller;
159 return p;
160}
161
162/*
163 * Find out the size of each entry of the interrupts property
164 * for a node.
165 */
166int __devinit prom_n_intr_cells(struct device_node *np)
167{
168 struct device_node *p;
169 unsigned int *icp;
170
171 for (p = np; (p = intr_parent(p)) != NULL; ) {
172 icp = (unsigned int *)
173 get_property(p, "#interrupt-cells", NULL);
174 if (icp != NULL)
175 return *icp;
176 if (get_property(p, "interrupt-controller", NULL) != NULL
177 || get_property(p, "interrupt-map", NULL) != NULL) {
178 printk("oops, node %s doesn't have #interrupt-cells\n",
179 p->full_name);
180 return 1;
181 }
182 }
183#ifdef DEBUG_IRQ
184 printk("prom_n_intr_cells failed for %s\n", np->full_name);
185#endif
186 return 1;
187}
188
189/*
190 * Map an interrupt from a device up to the platform interrupt
191 * descriptor.
192 */
193static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
194 struct device_node *np, unsigned int *ints,
195 int nintrc)
196{
197 struct device_node *p, *ipar;
198 unsigned int *imap, *imask, *ip;
199 int i, imaplen, match;
200 int newintrc = 0, newaddrc = 0;
201 unsigned int *reg;
202 int naddrc;
203
204 reg = (unsigned int *) get_property(np, "reg", NULL);
205 naddrc = prom_n_addr_cells(np);
206 p = intr_parent(np);
207 while (p != NULL) {
208 if (get_property(p, "interrupt-controller", NULL) != NULL)
209 /* this node is an interrupt controller, stop here */
210 break;
211 imap = (unsigned int *)
212 get_property(p, "interrupt-map", &imaplen);
213 if (imap == NULL) {
214 p = intr_parent(p);
215 continue;
216 }
217 imask = (unsigned int *)
218 get_property(p, "interrupt-map-mask", NULL);
219 if (imask == NULL) {
220 printk("oops, %s has interrupt-map but no mask\n",
221 p->full_name);
222 return 0;
223 }
224 imaplen /= sizeof(unsigned int);
225 match = 0;
226 ipar = NULL;
227 while (imaplen > 0 && !match) {
228 /* check the child-interrupt field */
229 match = 1;
230 for (i = 0; i < naddrc && match; ++i)
231 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
232 for (; i < naddrc + nintrc && match; ++i)
233 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
234 imap += naddrc + nintrc;
235 imaplen -= naddrc + nintrc;
236 /* grab the interrupt parent */
237 ipar = find_phandle((phandle) *imap++);
238 --imaplen;
239 if (ipar == NULL && num_interrupt_controllers == 1)
240 /* cope with BootX not giving us phandles */
241 ipar = dflt_interrupt_controller;
242 if (ipar == NULL) {
243 printk("oops, no int parent %x in map of %s\n",
244 imap[-1], p->full_name);
245 return 0;
246 }
247 /* find the parent's # addr and intr cells */
248 ip = (unsigned int *)
249 get_property(ipar, "#interrupt-cells", NULL);
250 if (ip == NULL) {
251 printk("oops, no #interrupt-cells on %s\n",
252 ipar->full_name);
253 return 0;
254 }
255 newintrc = *ip;
256 ip = (unsigned int *)
257 get_property(ipar, "#address-cells", NULL);
258 newaddrc = (ip == NULL)? 0: *ip;
259 imap += newaddrc + newintrc;
260 imaplen -= newaddrc + newintrc;
261 }
262 if (imaplen < 0) {
263 printk("oops, error decoding int-map on %s, len=%d\n",
264 p->full_name, imaplen);
265 return 0;
266 }
267 if (!match) {
268#ifdef DEBUG_IRQ
269 printk("oops, no match in %s int-map for %s\n",
270 p->full_name, np->full_name);
271#endif
272 return 0;
273 }
274 p = ipar;
275 naddrc = newaddrc;
276 nintrc = newintrc;
277 ints = imap - nintrc;
278 reg = ints - naddrc;
279 }
280 if (p == NULL) {
281#ifdef DEBUG_IRQ
282 printk("hmmm, int tree for %s doesn't have ctrler\n",
283 np->full_name);
284#endif
285 return 0;
286 }
287 *irq = ints;
288 *ictrler = p;
289 return nintrc;
290}
291
6d0124fc
PM
292static unsigned char map_isa_senses[4] = {
293 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
294 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
295 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
296 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
297};
298
299static unsigned char map_mpic_senses[4] = {
300 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
301 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
302 /* 2 seems to be used for the 8259 cascade... */
303 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
304 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
305};
306
9b6b563c
PM
307static int __devinit finish_node_interrupts(struct device_node *np,
308 unsigned long *mem_start,
309 int measure_only)
310{
311 unsigned int *ints;
312 int intlen, intrcells, intrcount;
6d0124fc 313 int i, j, n, sense;
9b6b563c
PM
314 unsigned int *irq, virq;
315 struct device_node *ic;
316
a575b807
PM
317 if (num_interrupt_controllers == 0) {
318 /*
319 * Old machines just have a list of interrupt numbers
320 * and no interrupt-controller nodes.
321 */
322 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
323 &intlen);
324 /* XXX old interpret_pci_props looked in parent too */
325 /* XXX old interpret_macio_props looked for interrupts
326 before AAPL,interrupts */
327 if (ints == NULL)
328 ints = (unsigned int *) get_property(np, "interrupts",
329 &intlen);
330 if (ints == NULL)
331 return 0;
332
333 np->n_intrs = intlen / sizeof(unsigned int);
334 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
335 mem_start);
336 if (!np->intrs)
337 return -ENOMEM;
338 if (measure_only)
339 return 0;
340
341 for (i = 0; i < np->n_intrs; ++i) {
342 np->intrs[i].line = *ints++;
6d0124fc
PM
343 np->intrs[i].sense = IRQ_SENSE_LEVEL
344 | IRQ_POLARITY_NEGATIVE;
a575b807
PM
345 }
346 return 0;
347 }
348
9b6b563c
PM
349 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
350 if (ints == NULL)
351 return 0;
352 intrcells = prom_n_intr_cells(np);
353 intlen /= intrcells * sizeof(unsigned int);
354
355 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
356 if (!np->intrs)
357 return -ENOMEM;
358
359 if (measure_only)
360 return 0;
361
362 intrcount = 0;
363 for (i = 0; i < intlen; ++i, ints += intrcells) {
364 n = map_interrupt(&irq, &ic, np, ints, intrcells);
365 if (n <= 0)
366 continue;
367
368 /* don't map IRQ numbers under a cascaded 8259 controller */
369 if (ic && device_is_compatible(ic, "chrp,iic")) {
370 np->intrs[intrcount].line = irq[0];
6d0124fc
PM
371 sense = (n > 1)? (irq[1] & 3): 3;
372 np->intrs[intrcount].sense = map_isa_senses[sense];
9b6b563c 373 } else {
9b6b563c 374 virq = virt_irq_create_mapping(irq[0]);
6d0124fc 375#ifdef CONFIG_PPC64
9b6b563c
PM
376 if (virq == NO_IRQ) {
377 printk(KERN_CRIT "Could not allocate interrupt"
378 " number for %s\n", np->full_name);
379 continue;
380 }
9b6b563c 381#endif
6d0124fc
PM
382 np->intrs[intrcount].line = irq_offset_up(virq);
383 sense = (n > 1)? (irq[1] & 3): 1;
384 np->intrs[intrcount].sense = map_mpic_senses[sense];
9b6b563c
PM
385 }
386
387#ifdef CONFIG_PPC64
388 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
799d6046 389 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
9b6b563c
PM
390 char *name = get_property(ic->parent, "name", NULL);
391 if (name && !strcmp(name, "u3"))
392 np->intrs[intrcount].line += 128;
393 else if (!(name && !strcmp(name, "mac-io")))
394 /* ignore other cascaded controllers, such as
395 the k2-sata-root */
396 break;
397 }
398#endif
9b6b563c
PM
399 if (n > 2) {
400 printk("hmmm, got %d intr cells for %s:", n,
401 np->full_name);
402 for (j = 0; j < n; ++j)
403 printk(" %d", irq[j]);
404 printk("\n");
405 }
406 ++intrcount;
407 }
408 np->n_intrs = intrcount;
409
410 return 0;
411}
412
413static int __devinit interpret_pci_props(struct device_node *np,
414 unsigned long *mem_start,
415 int naddrc, int nsizec,
416 int measure_only)
417{
418 struct address_range *adr;
419 struct pci_reg_property *pci_addrs;
420 int i, l, n_addrs;
421
422 pci_addrs = (struct pci_reg_property *)
423 get_property(np, "assigned-addresses", &l);
424 if (!pci_addrs)
425 return 0;
426
427 n_addrs = l / sizeof(*pci_addrs);
428
429 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
430 if (!adr)
431 return -ENOMEM;
432
433 if (measure_only)
434 return 0;
435
436 np->addrs = adr;
437 np->n_addrs = n_addrs;
438
439 for (i = 0; i < n_addrs; i++) {
440 adr[i].space = pci_addrs[i].addr.a_hi;
441 adr[i].address = pci_addrs[i].addr.a_lo |
442 ((u64)pci_addrs[i].addr.a_mid << 32);
443 adr[i].size = pci_addrs[i].size_lo;
444 }
445
446 return 0;
447}
448
449static int __init interpret_dbdma_props(struct device_node *np,
450 unsigned long *mem_start,
451 int naddrc, int nsizec,
452 int measure_only)
453{
454 struct reg_property32 *rp;
455 struct address_range *adr;
456 unsigned long base_address;
457 int i, l;
458 struct device_node *db;
459
460 base_address = 0;
461 if (!measure_only) {
462 for (db = np->parent; db != NULL; db = db->parent) {
463 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
464 base_address = db->addrs[0].address;
465 break;
466 }
467 }
468 }
469
470 rp = (struct reg_property32 *) get_property(np, "reg", &l);
471 if (rp != 0 && l >= sizeof(struct reg_property32)) {
472 i = 0;
473 adr = (struct address_range *) (*mem_start);
474 while ((l -= sizeof(struct reg_property32)) >= 0) {
475 if (!measure_only) {
476 adr[i].space = 2;
477 adr[i].address = rp[i].address + base_address;
478 adr[i].size = rp[i].size;
479 }
480 ++i;
481 }
482 np->addrs = adr;
483 np->n_addrs = i;
484 (*mem_start) += i * sizeof(struct address_range);
485 }
486
487 return 0;
488}
489
490static int __init interpret_macio_props(struct device_node *np,
491 unsigned long *mem_start,
492 int naddrc, int nsizec,
493 int measure_only)
494{
495 struct reg_property32 *rp;
496 struct address_range *adr;
497 unsigned long base_address;
498 int i, l;
499 struct device_node *db;
500
501 base_address = 0;
502 if (!measure_only) {
503 for (db = np->parent; db != NULL; db = db->parent) {
504 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
505 base_address = db->addrs[0].address;
506 break;
507 }
508 }
509 }
510
511 rp = (struct reg_property32 *) get_property(np, "reg", &l);
512 if (rp != 0 && l >= sizeof(struct reg_property32)) {
513 i = 0;
514 adr = (struct address_range *) (*mem_start);
515 while ((l -= sizeof(struct reg_property32)) >= 0) {
516 if (!measure_only) {
517 adr[i].space = 2;
518 adr[i].address = rp[i].address + base_address;
519 adr[i].size = rp[i].size;
520 }
521 ++i;
522 }
523 np->addrs = adr;
524 np->n_addrs = i;
525 (*mem_start) += i * sizeof(struct address_range);
526 }
527
528 return 0;
529}
530
531static int __init interpret_isa_props(struct device_node *np,
532 unsigned long *mem_start,
533 int naddrc, int nsizec,
534 int measure_only)
535{
536 struct isa_reg_property *rp;
537 struct address_range *adr;
538 int i, l;
539
540 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
541 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
542 i = 0;
543 adr = (struct address_range *) (*mem_start);
544 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
545 if (!measure_only) {
546 adr[i].space = rp[i].space;
547 adr[i].address = rp[i].address;
548 adr[i].size = rp[i].size;
549 }
550 ++i;
551 }
552 np->addrs = adr;
553 np->n_addrs = i;
554 (*mem_start) += i * sizeof(struct address_range);
555 }
556
557 return 0;
558}
559
560static int __init interpret_root_props(struct device_node *np,
561 unsigned long *mem_start,
562 int naddrc, int nsizec,
563 int measure_only)
564{
565 struct address_range *adr;
566 int i, l;
567 unsigned int *rp;
568 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
569
570 rp = (unsigned int *) get_property(np, "reg", &l);
571 if (rp != 0 && l >= rpsize) {
572 i = 0;
573 adr = (struct address_range *) (*mem_start);
574 while ((l -= rpsize) >= 0) {
575 if (!measure_only) {
576 adr[i].space = 0;
577 adr[i].address = rp[naddrc - 1];
578 adr[i].size = rp[naddrc + nsizec - 1];
579 }
580 ++i;
581 rp += naddrc + nsizec;
582 }
583 np->addrs = adr;
584 np->n_addrs = i;
585 (*mem_start) += i * sizeof(struct address_range);
586 }
587
588 return 0;
589}
590
591static int __devinit finish_node(struct device_node *np,
592 unsigned long *mem_start,
593 interpret_func *ifunc,
594 int naddrc, int nsizec,
595 int measure_only)
596{
597 struct device_node *child;
598 int *ip, rc = 0;
599
600 /* get the device addresses and interrupts */
601 if (ifunc != NULL)
602 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
603 if (rc)
604 goto out;
605
606 rc = finish_node_interrupts(np, mem_start, measure_only);
607 if (rc)
608 goto out;
609
610 /* Look for #address-cells and #size-cells properties. */
611 ip = (int *) get_property(np, "#address-cells", NULL);
612 if (ip != NULL)
613 naddrc = *ip;
614 ip = (int *) get_property(np, "#size-cells", NULL);
615 if (ip != NULL)
616 nsizec = *ip;
617
618 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
619 ifunc = interpret_root_props;
620 else if (np->type == 0)
621 ifunc = NULL;
622 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
623 ifunc = interpret_pci_props;
624 else if (!strcmp(np->type, "dbdma"))
625 ifunc = interpret_dbdma_props;
626 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
627 ifunc = interpret_macio_props;
628 else if (!strcmp(np->type, "isa"))
629 ifunc = interpret_isa_props;
630 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
631 ifunc = interpret_root_props;
632 else if (!((ifunc == interpret_dbdma_props
633 || ifunc == interpret_macio_props)
634 && (!strcmp(np->type, "escc")
635 || !strcmp(np->type, "media-bay"))))
636 ifunc = NULL;
637
638 for (child = np->child; child != NULL; child = child->sibling) {
639 rc = finish_node(child, mem_start, ifunc,
640 naddrc, nsizec, measure_only);
641 if (rc)
642 goto out;
643 }
644out:
645 return rc;
646}
647
648static void __init scan_interrupt_controllers(void)
649{
650 struct device_node *np;
651 int n = 0;
652 char *name, *ic;
653 int iclen;
654
655 for (np = allnodes; np != NULL; np = np->allnext) {
656 ic = get_property(np, "interrupt-controller", &iclen);
657 name = get_property(np, "name", NULL);
658 /* checking iclen makes sure we don't get a false
659 match on /chosen.interrupt_controller */
660 if ((name != NULL
661 && strcmp(name, "interrupt-controller") == 0)
662 || (ic != NULL && iclen == 0
663 && strcmp(name, "AppleKiwi"))) {
664 if (n == 0)
665 dflt_interrupt_controller = np;
666 ++n;
667 }
668 }
669 num_interrupt_controllers = n;
670}
671
672/**
673 * finish_device_tree is called once things are running normally
674 * (i.e. with text and data mapped to the address they were linked at).
675 * It traverses the device tree and fills in some of the additional,
676 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
677 * mapping is also initialized at this point.
678 */
679void __init finish_device_tree(void)
680{
681 unsigned long start, end, size = 0;
682
683 DBG(" -> finish_device_tree\n");
684
685#ifdef CONFIG_PPC64
686 /* Initialize virtual IRQ map */
687 virt_irq_init();
688#endif
689 scan_interrupt_controllers();
690
691 /*
692 * Finish device-tree (pre-parsing some properties etc...)
693 * We do this in 2 passes. One with "measure_only" set, which
694 * will only measure the amount of memory needed, then we can
695 * allocate that memory, and call finish_node again. However,
696 * we must be careful as most routines will fail nowadays when
697 * prom_alloc() returns 0, so we must make sure our first pass
698 * doesn't start at 0. We pre-initialize size to 16 for that
699 * reason and then remove those additional 16 bytes
700 */
701 size = 16;
702 finish_node(allnodes, &size, NULL, 0, 0, 1);
703 size -= 16;
704 end = start = (unsigned long) __va(lmb_alloc(size, 128));
705 finish_node(allnodes, &end, NULL, 0, 0, 0);
706 BUG_ON(end != start + size);
707
708 DBG(" <- finish_device_tree\n");
709}
710
711static inline char *find_flat_dt_string(u32 offset)
712{
713 return ((char *)initial_boot_params) +
714 initial_boot_params->off_dt_strings + offset;
715}
716
717/**
718 * This function is used to scan the flattened device-tree, it is
719 * used to extract the memory informations at boot before we can
720 * unflatten the tree
721 */
3c726f8d
BH
722int __init of_scan_flat_dt(int (*it)(unsigned long node,
723 const char *uname, int depth,
724 void *data),
725 void *data)
9b6b563c
PM
726{
727 unsigned long p = ((unsigned long)initial_boot_params) +
728 initial_boot_params->off_dt_struct;
729 int rc = 0;
730 int depth = -1;
731
732 do {
733 u32 tag = *((u32 *)p);
734 char *pathp;
735
736 p += 4;
737 if (tag == OF_DT_END_NODE) {
738 depth --;
739 continue;
740 }
741 if (tag == OF_DT_NOP)
742 continue;
743 if (tag == OF_DT_END)
744 break;
745 if (tag == OF_DT_PROP) {
746 u32 sz = *((u32 *)p);
747 p += 8;
748 if (initial_boot_params->version < 0x10)
749 p = _ALIGN(p, sz >= 8 ? 8 : 4);
750 p += sz;
751 p = _ALIGN(p, 4);
752 continue;
753 }
754 if (tag != OF_DT_BEGIN_NODE) {
755 printk(KERN_WARNING "Invalid tag %x scanning flattened"
756 " device tree !\n", tag);
757 return -EINVAL;
758 }
759 depth++;
760 pathp = (char *)p;
761 p = _ALIGN(p + strlen(pathp) + 1, 4);
762 if ((*pathp) == '/') {
763 char *lp, *np;
764 for (lp = NULL, np = pathp; *np; np++)
765 if ((*np) == '/')
766 lp = np+1;
767 if (lp != NULL)
768 pathp = lp;
769 }
770 rc = it(p, pathp, depth, data);
771 if (rc != 0)
772 break;
773 } while(1);
774
775 return rc;
776}
777
778/**
779 * This function can be used within scan_flattened_dt callback to get
780 * access to properties
781 */
3c726f8d
BH
782void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
783 unsigned long *size)
9b6b563c
PM
784{
785 unsigned long p = node;
786
787 do {
788 u32 tag = *((u32 *)p);
789 u32 sz, noff;
790 const char *nstr;
791
792 p += 4;
793 if (tag == OF_DT_NOP)
794 continue;
795 if (tag != OF_DT_PROP)
796 return NULL;
797
798 sz = *((u32 *)p);
799 noff = *((u32 *)(p + 4));
800 p += 8;
801 if (initial_boot_params->version < 0x10)
802 p = _ALIGN(p, sz >= 8 ? 8 : 4);
803
804 nstr = find_flat_dt_string(noff);
805 if (nstr == NULL) {
806 printk(KERN_WARNING "Can't find property index"
807 " name !\n");
808 return NULL;
809 }
810 if (strcmp(name, nstr) == 0) {
811 if (size)
812 *size = sz;
813 return (void *)p;
814 }
815 p += sz;
816 p = _ALIGN(p, 4);
817 } while(1);
818}
819
820static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
821 unsigned long align)
822{
823 void *res;
824
825 *mem = _ALIGN(*mem, align);
826 res = (void *)*mem;
827 *mem += size;
828
829 return res;
830}
831
832static unsigned long __init unflatten_dt_node(unsigned long mem,
833 unsigned long *p,
834 struct device_node *dad,
835 struct device_node ***allnextpp,
836 unsigned long fpsize)
837{
838 struct device_node *np;
839 struct property *pp, **prev_pp = NULL;
840 char *pathp;
841 u32 tag;
842 unsigned int l, allocl;
843 int has_name = 0;
844 int new_format = 0;
845
846 tag = *((u32 *)(*p));
847 if (tag != OF_DT_BEGIN_NODE) {
848 printk("Weird tag at start of node: %x\n", tag);
849 return mem;
850 }
851 *p += 4;
852 pathp = (char *)*p;
853 l = allocl = strlen(pathp) + 1;
854 *p = _ALIGN(*p + l, 4);
855
856 /* version 0x10 has a more compact unit name here instead of the full
857 * path. we accumulate the full path size using "fpsize", we'll rebuild
858 * it later. We detect this because the first character of the name is
859 * not '/'.
860 */
861 if ((*pathp) != '/') {
862 new_format = 1;
863 if (fpsize == 0) {
864 /* root node: special case. fpsize accounts for path
865 * plus terminating zero. root node only has '/', so
866 * fpsize should be 2, but we want to avoid the first
867 * level nodes to have two '/' so we use fpsize 1 here
868 */
869 fpsize = 1;
870 allocl = 2;
871 } else {
872 /* account for '/' and path size minus terminal 0
873 * already in 'l'
874 */
875 fpsize += l;
876 allocl = fpsize;
877 }
878 }
879
880
881 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
882 __alignof__(struct device_node));
883 if (allnextpp) {
884 memset(np, 0, sizeof(*np));
885 np->full_name = ((char*)np) + sizeof(struct device_node);
886 if (new_format) {
887 char *p = np->full_name;
888 /* rebuild full path for new format */
889 if (dad && dad->parent) {
890 strcpy(p, dad->full_name);
891#ifdef DEBUG
892 if ((strlen(p) + l + 1) != allocl) {
893 DBG("%s: p: %d, l: %d, a: %d\n",
894 pathp, strlen(p), l, allocl);
895 }
896#endif
897 p += strlen(p);
898 }
899 *(p++) = '/';
900 memcpy(p, pathp, l);
901 } else
902 memcpy(np->full_name, pathp, l);
903 prev_pp = &np->properties;
904 **allnextpp = np;
905 *allnextpp = &np->allnext;
906 if (dad != NULL) {
907 np->parent = dad;
908 /* we temporarily use the next field as `last_child'*/
909 if (dad->next == 0)
910 dad->child = np;
911 else
912 dad->next->sibling = np;
913 dad->next = np;
914 }
915 kref_init(&np->kref);
916 }
917 while(1) {
918 u32 sz, noff;
919 char *pname;
920
921 tag = *((u32 *)(*p));
922 if (tag == OF_DT_NOP) {
923 *p += 4;
924 continue;
925 }
926 if (tag != OF_DT_PROP)
927 break;
928 *p += 4;
929 sz = *((u32 *)(*p));
930 noff = *((u32 *)((*p) + 4));
931 *p += 8;
932 if (initial_boot_params->version < 0x10)
933 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
934
935 pname = find_flat_dt_string(noff);
936 if (pname == NULL) {
937 printk("Can't find property name in list !\n");
938 break;
939 }
940 if (strcmp(pname, "name") == 0)
941 has_name = 1;
942 l = strlen(pname) + 1;
943 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
944 __alignof__(struct property));
945 if (allnextpp) {
946 if (strcmp(pname, "linux,phandle") == 0) {
947 np->node = *((u32 *)*p);
948 if (np->linux_phandle == 0)
949 np->linux_phandle = np->node;
950 }
951 if (strcmp(pname, "ibm,phandle") == 0)
952 np->linux_phandle = *((u32 *)*p);
953 pp->name = pname;
954 pp->length = sz;
955 pp->value = (void *)*p;
956 *prev_pp = pp;
957 prev_pp = &pp->next;
958 }
959 *p = _ALIGN((*p) + sz, 4);
960 }
961 /* with version 0x10 we may not have the name property, recreate
962 * it here from the unit name if absent
963 */
964 if (!has_name) {
965 char *p = pathp, *ps = pathp, *pa = NULL;
966 int sz;
967
968 while (*p) {
969 if ((*p) == '@')
970 pa = p;
971 if ((*p) == '/')
972 ps = p + 1;
973 p++;
974 }
975 if (pa < ps)
976 pa = p;
977 sz = (pa - ps) + 1;
978 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
979 __alignof__(struct property));
980 if (allnextpp) {
981 pp->name = "name";
982 pp->length = sz;
983 pp->value = (unsigned char *)(pp + 1);
984 *prev_pp = pp;
985 prev_pp = &pp->next;
986 memcpy(pp->value, ps, sz - 1);
987 ((char *)pp->value)[sz - 1] = 0;
988 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
989 }
990 }
991 if (allnextpp) {
992 *prev_pp = NULL;
993 np->name = get_property(np, "name", NULL);
994 np->type = get_property(np, "device_type", NULL);
995
996 if (!np->name)
997 np->name = "<NULL>";
998 if (!np->type)
999 np->type = "<NULL>";
1000 }
1001 while (tag == OF_DT_BEGIN_NODE) {
1002 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1003 tag = *((u32 *)(*p));
1004 }
1005 if (tag != OF_DT_END_NODE) {
1006 printk("Weird tag at end of node: %x\n", tag);
1007 return mem;
1008 }
1009 *p += 4;
1010 return mem;
1011}
1012
1013
1014/**
1015 * unflattens the device-tree passed by the firmware, creating the
1016 * tree of struct device_node. It also fills the "name" and "type"
1017 * pointers of the nodes so the normal device-tree walking functions
1018 * can be used (this used to be done by finish_device_tree)
1019 */
1020void __init unflatten_device_tree(void)
1021{
1022 unsigned long start, mem, size;
1023 struct device_node **allnextp = &allnodes;
1024 char *p = NULL;
1025 int l = 0;
1026
1027 DBG(" -> unflatten_device_tree()\n");
1028
1029 /* First pass, scan for size */
1030 start = ((unsigned long)initial_boot_params) +
1031 initial_boot_params->off_dt_struct;
1032 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1033 size = (size | 3) + 1;
1034
1035 DBG(" size is %lx, allocating...\n", size);
1036
1037 /* Allocate memory for the expanded device tree */
1038 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1039 if (!mem) {
1040 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1041 panic("Couldn't allocate memory with lmb_alloc()!\n");
1042 }
1043 mem = (unsigned long) __va(mem);
1044
1045 ((u32 *)mem)[size / 4] = 0xdeadbeef;
1046
1047 DBG(" unflattening %lx...\n", mem);
1048
1049 /* Second pass, do actual unflattening */
1050 start = ((unsigned long)initial_boot_params) +
1051 initial_boot_params->off_dt_struct;
1052 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1053 if (*((u32 *)start) != OF_DT_END)
1054 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1055 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1056 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1057 ((u32 *)mem)[size / 4] );
1058 *allnextp = NULL;
1059
1060 /* Get pointer to OF "/chosen" node for use everywhere */
1061 of_chosen = of_find_node_by_path("/chosen");
a575b807
PM
1062 if (of_chosen == NULL)
1063 of_chosen = of_find_node_by_path("/chosen@0");
9b6b563c
PM
1064
1065 /* Retreive command line */
1066 if (of_chosen != NULL) {
1067 p = (char *)get_property(of_chosen, "bootargs", &l);
1068 if (p != NULL && l > 0)
1069 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1070 }
1071#ifdef CONFIG_CMDLINE
1072 if (l == 0 || (l == 1 && (*p) == 0))
1073 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1074#endif /* CONFIG_CMDLINE */
1075
1076 DBG("Command line is: %s\n", cmd_line);
1077
1078 DBG(" <- unflatten_device_tree()\n");
1079}
1080
1081
1082static int __init early_init_dt_scan_cpus(unsigned long node,
1083 const char *uname, int depth, void *data)
1084{
9b6b563c 1085 u32 *prop;
676e2497
SR
1086 unsigned long size;
1087 char *type = of_get_flat_dt_prop(node, "device_type", &size);
9b6b563c
PM
1088
1089 /* We are scanning "cpu" nodes only */
1090 if (type == NULL || strcmp(type, "cpu") != 0)
1091 return 0;
1092
80579e1f
PM
1093 boot_cpuid = 0;
1094 boot_cpuid_phys = 0;
9b6b563c
PM
1095 if (initial_boot_params && initial_boot_params->version >= 2) {
1096 /* version 2 of the kexec param format adds the phys cpuid
1097 * of booted proc.
1098 */
1099 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
9b6b563c 1100 } else {
80579e1f 1101 /* Check if it's the boot-cpu, set it's hw index now */
3c726f8d
BH
1102 if (of_get_flat_dt_prop(node,
1103 "linux,boot-cpu", NULL) != NULL) {
1104 prop = of_get_flat_dt_prop(node, "reg", NULL);
80579e1f
PM
1105 if (prop != NULL)
1106 boot_cpuid_phys = *prop;
9b6b563c
PM
1107 }
1108 }
80579e1f 1109 set_hard_smp_processor_id(0, boot_cpuid_phys);
9b6b563c
PM
1110
1111#ifdef CONFIG_ALTIVEC
1112 /* Check if we have a VMX and eventually update CPU features */
676e2497 1113 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
9b6b563c
PM
1114 if (prop && (*prop) > 0) {
1115 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1116 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1117 }
1118
1119 /* Same goes for Apple's "altivec" property */
3c726f8d 1120 prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
9b6b563c
PM
1121 if (prop) {
1122 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1123 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1124 }
1125#endif /* CONFIG_ALTIVEC */
1126
1127#ifdef CONFIG_PPC_PSERIES
1128 /*
1129 * Check for an SMT capable CPU and set the CPU feature. We do
1130 * this by looking at the size of the ibm,ppc-interrupt-server#s
1131 * property
1132 */
3c726f8d 1133 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
9b6b563c
PM
1134 &size);
1135 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1136 if (prop && ((size / sizeof(u32)) > 1))
1137 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1138#endif
1139
1140 return 0;
1141}
1142
1143static int __init early_init_dt_scan_chosen(unsigned long node,
1144 const char *uname, int depth, void *data)
1145{
1146 u32 *prop;
1147 unsigned long *lprop;
1148
1149 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1150
a575b807
PM
1151 if (depth != 1 ||
1152 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
9b6b563c
PM
1153 return 0;
1154
1155 /* get platform type */
3c726f8d 1156 prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
9b6b563c
PM
1157 if (prop == NULL)
1158 return 0;
60dda256 1159#ifdef CONFIG_PPC_MULTIPLATFORM
9b6b563c
PM
1160 _machine = *prop;
1161#endif
1162
1163#ifdef CONFIG_PPC64
1164 /* check if iommu is forced on or off */
3c726f8d 1165 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
9b6b563c 1166 iommu_is_off = 1;
3c726f8d 1167 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
9b6b563c
PM
1168 iommu_force_on = 1;
1169#endif
1170
3c726f8d 1171 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
9b6b563c
PM
1172 if (lprop)
1173 memory_limit = *lprop;
1174
1175#ifdef CONFIG_PPC64
3c726f8d 1176 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
9b6b563c
PM
1177 if (lprop)
1178 tce_alloc_start = *lprop;
3c726f8d 1179 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
9b6b563c
PM
1180 if (lprop)
1181 tce_alloc_end = *lprop;
1182#endif
1183
1184#ifdef CONFIG_PPC_RTAS
1185 /* To help early debugging via the front panel, we retreive a minimal
1186 * set of RTAS infos now if available
1187 */
1188 {
1189 u64 *basep, *entryp;
1190
3c726f8d
BH
1191 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1192 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1193 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
9b6b563c
PM
1194 if (basep && entryp && prop) {
1195 rtas.base = *basep;
1196 rtas.entry = *entryp;
1197 rtas.size = *prop;
1198 }
1199 }
1200#endif /* CONFIG_PPC_RTAS */
1201
dcee3036
ME
1202#ifdef CONFIG_KEXEC
1203 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
1204 if (lprop)
1205 crashk_res.start = *lprop;
1206
1207 lprop = (u64*)of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
1208 if (lprop)
1209 crashk_res.end = crashk_res.start + *lprop - 1;
1210#endif
1211
9b6b563c
PM
1212 /* break now */
1213 return 1;
1214}
1215
1216static int __init early_init_dt_scan_root(unsigned long node,
1217 const char *uname, int depth, void *data)
1218{
1219 u32 *prop;
1220
1221 if (depth != 0)
1222 return 0;
1223
3c726f8d 1224 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
9b6b563c
PM
1225 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1226 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1227
3c726f8d 1228 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
9b6b563c
PM
1229 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1230 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1231
1232 /* break now */
1233 return 1;
1234}
1235
1236static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1237{
1238 cell_t *p = *cellp;
1239 unsigned long r;
1240
1241 /* Ignore more than 2 cells */
1242 while (s > sizeof(unsigned long) / 4) {
1243 p++;
1244 s--;
1245 }
1246 r = *p++;
1247#ifdef CONFIG_PPC64
1248 if (s > 1) {
1249 r <<= 32;
1250 r |= *(p++);
1251 s--;
1252 }
1253#endif
1254
1255 *cellp = p;
1256 return r;
1257}
1258
1259
1260static int __init early_init_dt_scan_memory(unsigned long node,
1261 const char *uname, int depth, void *data)
1262{
3c726f8d 1263 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
9b6b563c
PM
1264 cell_t *reg, *endp;
1265 unsigned long l;
1266
1267 /* We are scanning "memory" nodes only */
a23414be
PM
1268 if (type == NULL) {
1269 /*
1270 * The longtrail doesn't have a device_type on the
1271 * /memory node, so look for the node called /memory@0.
1272 */
1273 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1274 return 0;
1275 } else if (strcmp(type, "memory") != 0)
9b6b563c
PM
1276 return 0;
1277
3c726f8d 1278 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
9b6b563c
PM
1279 if (reg == NULL)
1280 return 0;
1281
1282 endp = reg + (l / sizeof(cell_t));
1283
358c86fd 1284 DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
9b6b563c
PM
1285 uname, l, reg[0], reg[1], reg[2], reg[3]);
1286
1287 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1288 unsigned long base, size;
1289
1290 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1291 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1292
1293 if (size == 0)
1294 continue;
1295 DBG(" - %lx , %lx\n", base, size);
1296#ifdef CONFIG_PPC64
1297 if (iommu_is_off) {
1298 if (base >= 0x80000000ul)
1299 continue;
1300 if ((base + size) > 0x80000000ul)
1301 size = 0x80000000ul - base;
1302 }
1303#endif
1304 lmb_add(base, size);
1305 }
1306 return 0;
1307}
1308
1309static void __init early_reserve_mem(void)
1310{
1311 unsigned long base, size;
1312 unsigned long *reserve_map;
1313
1314 reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1315 initial_boot_params->off_mem_rsvmap);
1316 while (1) {
1317 base = *(reserve_map++);
1318 size = *(reserve_map++);
1319 if (size == 0)
1320 break;
1321 DBG("reserving: %lx -> %lx\n", base, size);
1322 lmb_reserve(base, size);
1323 }
1324
1325#if 0
1326 DBG("memory reserved, lmbs :\n");
1327 lmb_dump_all();
1328#endif
1329}
1330
1331void __init early_init_devtree(void *params)
1332{
1333 DBG(" -> early_init_devtree()\n");
1334
1335 /* Setup flat device-tree pointer */
1336 initial_boot_params = params;
1337
1338 /* Retrieve various informations from the /chosen node of the
1339 * device-tree, including the platform type, initrd location and
1340 * size, TCE reserve, and more ...
1341 */
3c726f8d 1342 of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
9b6b563c
PM
1343
1344 /* Scan memory nodes and rebuild LMBs */
1345 lmb_init();
3c726f8d
BH
1346 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1347 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
9b6b563c
PM
1348 lmb_enforce_memory_limit(memory_limit);
1349 lmb_analyze();
9b6b563c
PM
1350
1351 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1352
1353 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
0cc4746c
ME
1354 lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1355#ifdef CONFIG_CRASH_DUMP
1356 lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1357#endif
9b6b563c
PM
1358 early_reserve_mem();
1359
1360 DBG("Scanning CPUs ...\n");
1361
3c726f8d
BH
1362 /* Retreive CPU related informations from the flat tree
1363 * (altivec support, boot CPU ID, ...)
9b6b563c 1364 */
3c726f8d 1365 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
9b6b563c 1366
9b6b563c
PM
1367 DBG(" <- early_init_devtree()\n");
1368}
1369
1370#undef printk
1371
1372int
1373prom_n_addr_cells(struct device_node* np)
1374{
1375 int* ip;
1376 do {
1377 if (np->parent)
1378 np = np->parent;
1379 ip = (int *) get_property(np, "#address-cells", NULL);
1380 if (ip != NULL)
1381 return *ip;
1382 } while (np->parent);
1383 /* No #address-cells property for the root node, default to 1 */
1384 return 1;
1385}
1dfc6772 1386EXPORT_SYMBOL(prom_n_addr_cells);
9b6b563c
PM
1387
1388int
1389prom_n_size_cells(struct device_node* np)
1390{
1391 int* ip;
1392 do {
1393 if (np->parent)
1394 np = np->parent;
1395 ip = (int *) get_property(np, "#size-cells", NULL);
1396 if (ip != NULL)
1397 return *ip;
1398 } while (np->parent);
1399 /* No #size-cells property for the root node, default to 1 */
1400 return 1;
1401}
1dfc6772 1402EXPORT_SYMBOL(prom_n_size_cells);
9b6b563c
PM
1403
1404/**
1405 * Work out the sense (active-low level / active-high edge)
1406 * of each interrupt from the device tree.
1407 */
1408void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1409{
1410 struct device_node *np;
1411 int i, j;
1412
1413 /* default to level-triggered */
6d0124fc 1414 memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
9b6b563c
PM
1415
1416 for (np = allnodes; np != 0; np = np->allnext) {
1417 for (j = 0; j < np->n_intrs; j++) {
1418 i = np->intrs[j].line;
1419 if (i >= off && i < max)
6d0124fc 1420 senses[i-off] = np->intrs[j].sense;
9b6b563c
PM
1421 }
1422 }
1423}
1424
1425/**
1426 * Construct and return a list of the device_nodes with a given name.
1427 */
1428struct device_node *find_devices(const char *name)
1429{
1430 struct device_node *head, **prevp, *np;
1431
1432 prevp = &head;
1433 for (np = allnodes; np != 0; np = np->allnext) {
1434 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1435 *prevp = np;
1436 prevp = &np->next;
1437 }
1438 }
1439 *prevp = NULL;
1440 return head;
1441}
1442EXPORT_SYMBOL(find_devices);
1443
1444/**
1445 * Construct and return a list of the device_nodes with a given type.
1446 */
1447struct device_node *find_type_devices(const char *type)
1448{
1449 struct device_node *head, **prevp, *np;
1450
1451 prevp = &head;
1452 for (np = allnodes; np != 0; np = np->allnext) {
1453 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1454 *prevp = np;
1455 prevp = &np->next;
1456 }
1457 }
1458 *prevp = NULL;
1459 return head;
1460}
1461EXPORT_SYMBOL(find_type_devices);
1462
1463/**
1464 * Returns all nodes linked together
1465 */
1466struct device_node *find_all_nodes(void)
1467{
1468 struct device_node *head, **prevp, *np;
1469
1470 prevp = &head;
1471 for (np = allnodes; np != 0; np = np->allnext) {
1472 *prevp = np;
1473 prevp = &np->next;
1474 }
1475 *prevp = NULL;
1476 return head;
1477}
1478EXPORT_SYMBOL(find_all_nodes);
1479
1480/** Checks if the given "compat" string matches one of the strings in
1481 * the device's "compatible" property
1482 */
1483int device_is_compatible(struct device_node *device, const char *compat)
1484{
1485 const char* cp;
1486 int cplen, l;
1487
1488 cp = (char *) get_property(device, "compatible", &cplen);
1489 if (cp == NULL)
1490 return 0;
1491 while (cplen > 0) {
1492 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1493 return 1;
1494 l = strlen(cp) + 1;
1495 cp += l;
1496 cplen -= l;
1497 }
1498
1499 return 0;
1500}
1501EXPORT_SYMBOL(device_is_compatible);
1502
1503
1504/**
1505 * Indicates whether the root node has a given value in its
1506 * compatible property.
1507 */
1508int machine_is_compatible(const char *compat)
1509{
1510 struct device_node *root;
1511 int rc = 0;
1512
1513 root = of_find_node_by_path("/");
1514 if (root) {
1515 rc = device_is_compatible(root, compat);
1516 of_node_put(root);
1517 }
1518 return rc;
1519}
1520EXPORT_SYMBOL(machine_is_compatible);
1521
1522/**
1523 * Construct and return a list of the device_nodes with a given type
1524 * and compatible property.
1525 */
1526struct device_node *find_compatible_devices(const char *type,
1527 const char *compat)
1528{
1529 struct device_node *head, **prevp, *np;
1530
1531 prevp = &head;
1532 for (np = allnodes; np != 0; np = np->allnext) {
1533 if (type != NULL
1534 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1535 continue;
1536 if (device_is_compatible(np, compat)) {
1537 *prevp = np;
1538 prevp = &np->next;
1539 }
1540 }
1541 *prevp = NULL;
1542 return head;
1543}
1544EXPORT_SYMBOL(find_compatible_devices);
1545
1546/**
1547 * Find the device_node with a given full_name.
1548 */
1549struct device_node *find_path_device(const char *path)
1550{
1551 struct device_node *np;
1552
1553 for (np = allnodes; np != 0; np = np->allnext)
1554 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1555 return np;
1556 return NULL;
1557}
1558EXPORT_SYMBOL(find_path_device);
1559
1560/*******
1561 *
1562 * New implementation of the OF "find" APIs, return a refcounted
1563 * object, call of_node_put() when done. The device tree and list
1564 * are protected by a rw_lock.
1565 *
1566 * Note that property management will need some locking as well,
1567 * this isn't dealt with yet.
1568 *
1569 *******/
1570
1571/**
1572 * of_find_node_by_name - Find a node by its "name" property
1573 * @from: The node to start searching from or NULL, the node
1574 * you pass will not be searched, only the next one
1575 * will; typically, you pass what the previous call
1576 * returned. of_node_put() will be called on it
1577 * @name: The name string to match against
1578 *
1579 * Returns a node pointer with refcount incremented, use
1580 * of_node_put() on it when done.
1581 */
1582struct device_node *of_find_node_by_name(struct device_node *from,
1583 const char *name)
1584{
1585 struct device_node *np;
1586
1587 read_lock(&devtree_lock);
1588 np = from ? from->allnext : allnodes;
1589 for (; np != 0; np = np->allnext)
1590 if (np->name != 0 && strcasecmp(np->name, name) == 0
1591 && of_node_get(np))
1592 break;
1593 if (from)
1594 of_node_put(from);
1595 read_unlock(&devtree_lock);
1596 return np;
1597}
1598EXPORT_SYMBOL(of_find_node_by_name);
1599
1600/**
1601 * of_find_node_by_type - Find a node by its "device_type" property
1602 * @from: The node to start searching from or NULL, the node
1603 * you pass will not be searched, only the next one
1604 * will; typically, you pass what the previous call
1605 * returned. of_node_put() will be called on it
1606 * @name: The type string to match against
1607 *
1608 * Returns a node pointer with refcount incremented, use
1609 * of_node_put() on it when done.
1610 */
1611struct device_node *of_find_node_by_type(struct device_node *from,
1612 const char *type)
1613{
1614 struct device_node *np;
1615
1616 read_lock(&devtree_lock);
1617 np = from ? from->allnext : allnodes;
1618 for (; np != 0; np = np->allnext)
1619 if (np->type != 0 && strcasecmp(np->type, type) == 0
1620 && of_node_get(np))
1621 break;
1622 if (from)
1623 of_node_put(from);
1624 read_unlock(&devtree_lock);
1625 return np;
1626}
1627EXPORT_SYMBOL(of_find_node_by_type);
1628
1629/**
1630 * of_find_compatible_node - Find a node based on type and one of the
1631 * tokens in its "compatible" property
1632 * @from: The node to start searching from or NULL, the node
1633 * you pass will not be searched, only the next one
1634 * will; typically, you pass what the previous call
1635 * returned. of_node_put() will be called on it
1636 * @type: The type string to match "device_type" or NULL to ignore
1637 * @compatible: The string to match to one of the tokens in the device
1638 * "compatible" list.
1639 *
1640 * Returns a node pointer with refcount incremented, use
1641 * of_node_put() on it when done.
1642 */
1643struct device_node *of_find_compatible_node(struct device_node *from,
1644 const char *type, const char *compatible)
1645{
1646 struct device_node *np;
1647
1648 read_lock(&devtree_lock);
1649 np = from ? from->allnext : allnodes;
1650 for (; np != 0; np = np->allnext) {
1651 if (type != NULL
1652 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1653 continue;
1654 if (device_is_compatible(np, compatible) && of_node_get(np))
1655 break;
1656 }
1657 if (from)
1658 of_node_put(from);
1659 read_unlock(&devtree_lock);
1660 return np;
1661}
1662EXPORT_SYMBOL(of_find_compatible_node);
1663
1664/**
1665 * of_find_node_by_path - Find a node matching a full OF path
1666 * @path: The full path to match
1667 *
1668 * Returns a node pointer with refcount incremented, use
1669 * of_node_put() on it when done.
1670 */
1671struct device_node *of_find_node_by_path(const char *path)
1672{
1673 struct device_node *np = allnodes;
1674
1675 read_lock(&devtree_lock);
1676 for (; np != 0; np = np->allnext) {
1677 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1678 && of_node_get(np))
1679 break;
1680 }
1681 read_unlock(&devtree_lock);
1682 return np;
1683}
1684EXPORT_SYMBOL(of_find_node_by_path);
1685
1686/**
1687 * of_find_node_by_phandle - Find a node given a phandle
1688 * @handle: phandle of the node to find
1689 *
1690 * Returns a node pointer with refcount incremented, use
1691 * of_node_put() on it when done.
1692 */
1693struct device_node *of_find_node_by_phandle(phandle handle)
1694{
1695 struct device_node *np;
1696
1697 read_lock(&devtree_lock);
1698 for (np = allnodes; np != 0; np = np->allnext)
1699 if (np->linux_phandle == handle)
1700 break;
1701 if (np)
1702 of_node_get(np);
1703 read_unlock(&devtree_lock);
1704 return np;
1705}
1706EXPORT_SYMBOL(of_find_node_by_phandle);
1707
1708/**
1709 * of_find_all_nodes - Get next node in global list
1710 * @prev: Previous node or NULL to start iteration
1711 * of_node_put() will be called on it
1712 *
1713 * Returns a node pointer with refcount incremented, use
1714 * of_node_put() on it when done.
1715 */
1716struct device_node *of_find_all_nodes(struct device_node *prev)
1717{
1718 struct device_node *np;
1719
1720 read_lock(&devtree_lock);
1721 np = prev ? prev->allnext : allnodes;
1722 for (; np != 0; np = np->allnext)
1723 if (of_node_get(np))
1724 break;
1725 if (prev)
1726 of_node_put(prev);
1727 read_unlock(&devtree_lock);
1728 return np;
1729}
1730EXPORT_SYMBOL(of_find_all_nodes);
1731
1732/**
1733 * of_get_parent - Get a node's parent if any
1734 * @node: Node to get parent
1735 *
1736 * Returns a node pointer with refcount incremented, use
1737 * of_node_put() on it when done.
1738 */
1739struct device_node *of_get_parent(const struct device_node *node)
1740{
1741 struct device_node *np;
1742
1743 if (!node)
1744 return NULL;
1745
1746 read_lock(&devtree_lock);
1747 np = of_node_get(node->parent);
1748 read_unlock(&devtree_lock);
1749 return np;
1750}
1751EXPORT_SYMBOL(of_get_parent);
1752
1753/**
1754 * of_get_next_child - Iterate a node childs
1755 * @node: parent node
1756 * @prev: previous child of the parent node, or NULL to get first
1757 *
1758 * Returns a node pointer with refcount incremented, use
1759 * of_node_put() on it when done.
1760 */
1761struct device_node *of_get_next_child(const struct device_node *node,
1762 struct device_node *prev)
1763{
1764 struct device_node *next;
1765
1766 read_lock(&devtree_lock);
1767 next = prev ? prev->sibling : node->child;
1768 for (; next != 0; next = next->sibling)
1769 if (of_node_get(next))
1770 break;
1771 if (prev)
1772 of_node_put(prev);
1773 read_unlock(&devtree_lock);
1774 return next;
1775}
1776EXPORT_SYMBOL(of_get_next_child);
1777
1778/**
1779 * of_node_get - Increment refcount of a node
1780 * @node: Node to inc refcount, NULL is supported to
1781 * simplify writing of callers
1782 *
1783 * Returns node.
1784 */
1785struct device_node *of_node_get(struct device_node *node)
1786{
1787 if (node)
1788 kref_get(&node->kref);
1789 return node;
1790}
1791EXPORT_SYMBOL(of_node_get);
1792
1793static inline struct device_node * kref_to_device_node(struct kref *kref)
1794{
1795 return container_of(kref, struct device_node, kref);
1796}
1797
1798/**
1799 * of_node_release - release a dynamically allocated node
1800 * @kref: kref element of the node to be released
1801 *
1802 * In of_node_put() this function is passed to kref_put()
1803 * as the destructor.
1804 */
1805static void of_node_release(struct kref *kref)
1806{
1807 struct device_node *node = kref_to_device_node(kref);
1808 struct property *prop = node->properties;
1809
1810 if (!OF_IS_DYNAMIC(node))
1811 return;
1812 while (prop) {
1813 struct property *next = prop->next;
1814 kfree(prop->name);
1815 kfree(prop->value);
1816 kfree(prop);
1817 prop = next;
1818 }
1819 kfree(node->intrs);
1820 kfree(node->addrs);
1821 kfree(node->full_name);
1822 kfree(node->data);
1823 kfree(node);
1824}
1825
1826/**
1827 * of_node_put - Decrement refcount of a node
1828 * @node: Node to dec refcount, NULL is supported to
1829 * simplify writing of callers
1830 *
1831 */
1832void of_node_put(struct device_node *node)
1833{
1834 if (node)
1835 kref_put(&node->kref, of_node_release);
1836}
1837EXPORT_SYMBOL(of_node_put);
1838
1839/*
1840 * Plug a device node into the tree and global list.
1841 */
1842void of_attach_node(struct device_node *np)
1843{
1844 write_lock(&devtree_lock);
1845 np->sibling = np->parent->child;
1846 np->allnext = allnodes;
1847 np->parent->child = np;
1848 allnodes = np;
1849 write_unlock(&devtree_lock);
1850}
1851
1852/*
1853 * "Unplug" a node from the device tree. The caller must hold
1854 * a reference to the node. The memory associated with the node
1855 * is not freed until its refcount goes to zero.
1856 */
1857void of_detach_node(const struct device_node *np)
1858{
1859 struct device_node *parent;
1860
1861 write_lock(&devtree_lock);
1862
1863 parent = np->parent;
1864
1865 if (allnodes == np)
1866 allnodes = np->allnext;
1867 else {
1868 struct device_node *prev;
1869 for (prev = allnodes;
1870 prev->allnext != np;
1871 prev = prev->allnext)
1872 ;
1873 prev->allnext = np->allnext;
1874 }
1875
1876 if (parent->child == np)
1877 parent->child = np->sibling;
1878 else {
1879 struct device_node *prevsib;
1880 for (prevsib = np->parent->child;
1881 prevsib->sibling != np;
1882 prevsib = prevsib->sibling)
1883 ;
1884 prevsib->sibling = np->sibling;
1885 }
1886
1887 write_unlock(&devtree_lock);
1888}
1889
1890#ifdef CONFIG_PPC_PSERIES
1891/*
1892 * Fix up the uninitialized fields in a new device node:
1893 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1894 *
1895 * A lot of boot-time code is duplicated here, because functions such
1896 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1897 * slab allocator.
1898 *
1899 * This should probably be split up into smaller chunks.
1900 */
1901
1902static int of_finish_dynamic_node(struct device_node *node,
1903 unsigned long *unused1, int unused2,
1904 int unused3, int unused4)
1905{
1906 struct device_node *parent = of_get_parent(node);
1907 int err = 0;
1908 phandle *ibm_phandle;
1909
1910 node->name = get_property(node, "name", NULL);
1911 node->type = get_property(node, "device_type", NULL);
1912
1913 if (!parent) {
1914 err = -ENODEV;
1915 goto out;
1916 }
1917
1918 /* We don't support that function on PowerMac, at least
1919 * not yet
1920 */
799d6046 1921 if (_machine == PLATFORM_POWERMAC)
9b6b563c
PM
1922 return -ENODEV;
1923
1924 /* fix up new node's linux_phandle field */
1925 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1926 node->linux_phandle = *ibm_phandle;
1927
1928out:
1929 of_node_put(parent);
1930 return err;
1931}
1932
1933static int prom_reconfig_notifier(struct notifier_block *nb,
1934 unsigned long action, void *node)
1935{
1936 int err;
1937
1938 switch (action) {
1939 case PSERIES_RECONFIG_ADD:
1940 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1941 if (err < 0) {
1942 printk(KERN_ERR "finish_node returned %d\n", err);
1943 err = NOTIFY_BAD;
1944 }
1945 break;
1946 default:
1947 err = NOTIFY_DONE;
1948 break;
1949 }
1950 return err;
1951}
1952
1953static struct notifier_block prom_reconfig_nb = {
1954 .notifier_call = prom_reconfig_notifier,
1955 .priority = 10, /* This one needs to run first */
1956};
1957
1958static int __init prom_reconfig_setup(void)
1959{
1960 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1961}
1962__initcall(prom_reconfig_setup);
1963#endif
1964
1965/*
1966 * Find a property with a given name for a given node
1967 * and return the value.
1968 */
1969unsigned char *get_property(struct device_node *np, const char *name,
1970 int *lenp)
1971{
1972 struct property *pp;
1973
1974 for (pp = np->properties; pp != 0; pp = pp->next)
1975 if (strcmp(pp->name, name) == 0) {
1976 if (lenp != 0)
1977 *lenp = pp->length;
1978 return pp->value;
1979 }
1980 return NULL;
1981}
1982EXPORT_SYMBOL(get_property);
1983
1984/*
1985 * Add a property to a node
1986 */
183d0202 1987int prom_add_property(struct device_node* np, struct property* prop)
9b6b563c 1988{
183d0202 1989 struct property **next;
9b6b563c
PM
1990
1991 prop->next = NULL;
183d0202
BH
1992 write_lock(&devtree_lock);
1993 next = &np->properties;
1994 while (*next) {
1995 if (strcmp(prop->name, (*next)->name) == 0) {
1996 /* duplicate ! don't insert it */
1997 write_unlock(&devtree_lock);
1998 return -1;
1999 }
9b6b563c 2000 next = &(*next)->next;
183d0202 2001 }
9b6b563c 2002 *next = prop;
183d0202
BH
2003 write_unlock(&devtree_lock);
2004
799d6046 2005#ifdef CONFIG_PROC_DEVICETREE
183d0202
BH
2006 /* try to add to proc as well if it was initialized */
2007 if (np->pde)
2008 proc_device_tree_add_prop(np->pde, prop);
799d6046 2009#endif /* CONFIG_PROC_DEVICETREE */
183d0202
BH
2010
2011 return 0;
9b6b563c
PM
2012}
2013
2014/* I quickly hacked that one, check against spec ! */
2015static inline unsigned long
2016bus_space_to_resource_flags(unsigned int bus_space)
2017{
2018 u8 space = (bus_space >> 24) & 0xf;
2019 if (space == 0)
2020 space = 0x02;
2021 if (space == 0x02)
2022 return IORESOURCE_MEM;
2023 else if (space == 0x01)
2024 return IORESOURCE_IO;
2025 else {
2026 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2027 bus_space);
2028 return 0;
2029 }
2030}
2031
60dda256 2032#ifdef CONFIG_PCI
9b6b563c
PM
2033static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2034 struct address_range *range)
2035{
2036 unsigned long mask;
2037 int i;
2038
2039 /* Check this one */
2040 mask = bus_space_to_resource_flags(range->space);
2041 for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2042 if ((pdev->resource[i].flags & mask) == mask &&
2043 pdev->resource[i].start <= range->address &&
2044 pdev->resource[i].end > range->address) {
2045 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2046 /* Add better message */
2047 printk(KERN_WARNING "PCI/OF resource overlap !\n");
2048 return NULL;
2049 }
2050 break;
2051 }
2052 }
2053 if (i == DEVICE_COUNT_RESOURCE)
2054 return NULL;
2055 return &pdev->resource[i];
2056}
2057
2058/*
2059 * Request an OF device resource. Currently handles child of PCI devices,
2060 * or other nodes attached to the root node. Ultimately, put some
2061 * link to resources in the OF node.
2062 */
2063struct resource *request_OF_resource(struct device_node* node, int index,
2064 const char* name_postfix)
2065{
2066 struct pci_dev* pcidev;
2067 u8 pci_bus, pci_devfn;
2068 unsigned long iomask;
2069 struct device_node* nd;
2070 struct resource* parent;
2071 struct resource *res = NULL;
2072 int nlen, plen;
2073
2074 if (index >= node->n_addrs)
2075 goto fail;
2076
2077 /* Sanity check on bus space */
2078 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2079 if (iomask & IORESOURCE_MEM)
2080 parent = &iomem_resource;
2081 else if (iomask & IORESOURCE_IO)
2082 parent = &ioport_resource;
2083 else
2084 goto fail;
2085
2086 /* Find a PCI parent if any */
2087 nd = node;
2088 pcidev = NULL;
2089 while (nd) {
2090 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2091 pcidev = pci_find_slot(pci_bus, pci_devfn);
2092 if (pcidev) break;
2093 nd = nd->parent;
2094 }
2095 if (pcidev)
2096 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2097 if (!parent) {
2098 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2099 node->name);
2100 goto fail;
2101 }
2102
2103 res = __request_region(parent, node->addrs[index].address,
2104 node->addrs[index].size, NULL);
2105 if (!res)
2106 goto fail;
2107 nlen = strlen(node->name);
2108 plen = name_postfix ? strlen(name_postfix) : 0;
2109 res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2110 if (res->name) {
2111 strcpy((char *)res->name, node->name);
2112 if (plen)
2113 strcpy((char *)res->name+nlen, name_postfix);
2114 }
2115 return res;
2116fail:
2117 return NULL;
2118}
2119EXPORT_SYMBOL(request_OF_resource);
2120
2121int release_OF_resource(struct device_node *node, int index)
2122{
2123 struct pci_dev* pcidev;
2124 u8 pci_bus, pci_devfn;
2125 unsigned long iomask, start, end;
2126 struct device_node* nd;
2127 struct resource* parent;
2128 struct resource *res = NULL;
2129
2130 if (index >= node->n_addrs)
2131 return -EINVAL;
2132
2133 /* Sanity check on bus space */
2134 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2135 if (iomask & IORESOURCE_MEM)
2136 parent = &iomem_resource;
2137 else if (iomask & IORESOURCE_IO)
2138 parent = &ioport_resource;
2139 else
2140 return -EINVAL;
2141
2142 /* Find a PCI parent if any */
2143 nd = node;
2144 pcidev = NULL;
2145 while(nd) {
2146 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2147 pcidev = pci_find_slot(pci_bus, pci_devfn);
2148 if (pcidev) break;
2149 nd = nd->parent;
2150 }
2151 if (pcidev)
2152 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2153 if (!parent) {
2154 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2155 node->name);
2156 return -ENODEV;
2157 }
2158
2159 /* Find us in the parent and its childs */
2160 res = parent->child;
2161 start = node->addrs[index].address;
2162 end = start + node->addrs[index].size - 1;
2163 while (res) {
2164 if (res->start == start && res->end == end &&
2165 (res->flags & IORESOURCE_BUSY))
2166 break;
2167 if (res->start <= start && res->end >= end)
2168 res = res->child;
2169 else
2170 res = res->sibling;
2171 }
2172 if (!res)
2173 return -ENODEV;
2174
2175 if (res->name) {
2176 kfree(res->name);
2177 res->name = NULL;
2178 }
2179 release_resource(res);
2180 kfree(res);
2181
2182 return 0;
2183}
2184EXPORT_SYMBOL(release_OF_resource);
60dda256 2185#endif /* CONFIG_PCI */
This page took 0.151286 seconds and 5 git commands to generate.