powerpc: 32-bit fixes for xmon
[deliverable/linux.git] / arch / powerpc / kernel / prom.c
CommitLineData
9b6b563c
PM
1/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16#undef DEBUG
17
18#include <stdarg.h>
19#include <linux/config.h>
20#include <linux/kernel.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/threads.h>
24#include <linux/spinlock.h>
25#include <linux/types.h>
26#include <linux/pci.h>
27#include <linux/stringify.h>
28#include <linux/delay.h>
29#include <linux/initrd.h>
30#include <linux/bitops.h>
31#include <linux/module.h>
32
33#include <asm/prom.h>
34#include <asm/rtas.h>
35#include <asm/lmb.h>
36#include <asm/page.h>
37#include <asm/processor.h>
38#include <asm/irq.h>
39#include <asm/io.h>
40#include <asm/smp.h>
41#include <asm/system.h>
42#include <asm/mmu.h>
43#include <asm/pgtable.h>
44#include <asm/pci.h>
45#include <asm/iommu.h>
46#include <asm/btext.h>
47#include <asm/sections.h>
48#include <asm/machdep.h>
49#include <asm/pSeries_reconfig.h>
40ef8cbc 50#include <asm/pci-bridge.h>
9b6b563c
PM
51
52#ifdef DEBUG
53#define DBG(fmt...) printk(KERN_ERR fmt)
54#else
55#define DBG(fmt...)
56#endif
57
58struct pci_reg_property {
59 struct pci_address addr;
60 u32 size_hi;
61 u32 size_lo;
62};
63
64struct isa_reg_property {
65 u32 space;
66 u32 address;
67 u32 size;
68};
69
70
71typedef int interpret_func(struct device_node *, unsigned long *,
72 int, int, int);
73
74extern struct rtas_t rtas;
75extern struct lmb lmb;
76extern unsigned long klimit;
77
9b6b563c
PM
78static int __initdata dt_root_addr_cells;
79static int __initdata dt_root_size_cells;
80
81#ifdef CONFIG_PPC64
82static int __initdata iommu_is_off;
83int __initdata iommu_force_on;
cf00a8d1 84unsigned long tce_alloc_start, tce_alloc_end;
9b6b563c
PM
85#endif
86
87typedef u32 cell_t;
88
89#if 0
90static struct boot_param_header *initial_boot_params __initdata;
91#else
92struct boot_param_header *initial_boot_params;
93#endif
94
95static struct device_node *allnodes = NULL;
96
97/* use when traversing tree through the allnext, child, sibling,
98 * or parent members of struct device_node.
99 */
100static DEFINE_RWLOCK(devtree_lock);
101
102/* export that to outside world */
103struct device_node *of_chosen;
104
105struct device_node *dflt_interrupt_controller;
106int num_interrupt_controllers;
107
9b6b563c
PM
108/*
109 * Wrapper for allocating memory for various data that needs to be
110 * attached to device nodes as they are processed at boot or when
111 * added to the device tree later (e.g. DLPAR). At boot there is
112 * already a region reserved so we just increment *mem_start by size;
113 * otherwise we call kmalloc.
114 */
115static void * prom_alloc(unsigned long size, unsigned long *mem_start)
116{
117 unsigned long tmp;
118
119 if (!mem_start)
120 return kmalloc(size, GFP_KERNEL);
121
122 tmp = *mem_start;
123 *mem_start += size;
124 return (void *)tmp;
125}
126
127/*
128 * Find the device_node with a given phandle.
129 */
130static struct device_node * find_phandle(phandle ph)
131{
132 struct device_node *np;
133
134 for (np = allnodes; np != 0; np = np->allnext)
135 if (np->linux_phandle == ph)
136 return np;
137 return NULL;
138}
139
140/*
141 * Find the interrupt parent of a node.
142 */
143static struct device_node * __devinit intr_parent(struct device_node *p)
144{
145 phandle *parp;
146
147 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
148 if (parp == NULL)
149 return p->parent;
150 p = find_phandle(*parp);
151 if (p != NULL)
152 return p;
153 /*
154 * On a powermac booted with BootX, we don't get to know the
155 * phandles for any nodes, so find_phandle will return NULL.
156 * Fortunately these machines only have one interrupt controller
157 * so there isn't in fact any ambiguity. -- paulus
158 */
159 if (num_interrupt_controllers == 1)
160 p = dflt_interrupt_controller;
161 return p;
162}
163
164/*
165 * Find out the size of each entry of the interrupts property
166 * for a node.
167 */
168int __devinit prom_n_intr_cells(struct device_node *np)
169{
170 struct device_node *p;
171 unsigned int *icp;
172
173 for (p = np; (p = intr_parent(p)) != NULL; ) {
174 icp = (unsigned int *)
175 get_property(p, "#interrupt-cells", NULL);
176 if (icp != NULL)
177 return *icp;
178 if (get_property(p, "interrupt-controller", NULL) != NULL
179 || get_property(p, "interrupt-map", NULL) != NULL) {
180 printk("oops, node %s doesn't have #interrupt-cells\n",
181 p->full_name);
182 return 1;
183 }
184 }
185#ifdef DEBUG_IRQ
186 printk("prom_n_intr_cells failed for %s\n", np->full_name);
187#endif
188 return 1;
189}
190
191/*
192 * Map an interrupt from a device up to the platform interrupt
193 * descriptor.
194 */
195static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
196 struct device_node *np, unsigned int *ints,
197 int nintrc)
198{
199 struct device_node *p, *ipar;
200 unsigned int *imap, *imask, *ip;
201 int i, imaplen, match;
202 int newintrc = 0, newaddrc = 0;
203 unsigned int *reg;
204 int naddrc;
205
206 reg = (unsigned int *) get_property(np, "reg", NULL);
207 naddrc = prom_n_addr_cells(np);
208 p = intr_parent(np);
209 while (p != NULL) {
210 if (get_property(p, "interrupt-controller", NULL) != NULL)
211 /* this node is an interrupt controller, stop here */
212 break;
213 imap = (unsigned int *)
214 get_property(p, "interrupt-map", &imaplen);
215 if (imap == NULL) {
216 p = intr_parent(p);
217 continue;
218 }
219 imask = (unsigned int *)
220 get_property(p, "interrupt-map-mask", NULL);
221 if (imask == NULL) {
222 printk("oops, %s has interrupt-map but no mask\n",
223 p->full_name);
224 return 0;
225 }
226 imaplen /= sizeof(unsigned int);
227 match = 0;
228 ipar = NULL;
229 while (imaplen > 0 && !match) {
230 /* check the child-interrupt field */
231 match = 1;
232 for (i = 0; i < naddrc && match; ++i)
233 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
234 for (; i < naddrc + nintrc && match; ++i)
235 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
236 imap += naddrc + nintrc;
237 imaplen -= naddrc + nintrc;
238 /* grab the interrupt parent */
239 ipar = find_phandle((phandle) *imap++);
240 --imaplen;
241 if (ipar == NULL && num_interrupt_controllers == 1)
242 /* cope with BootX not giving us phandles */
243 ipar = dflt_interrupt_controller;
244 if (ipar == NULL) {
245 printk("oops, no int parent %x in map of %s\n",
246 imap[-1], p->full_name);
247 return 0;
248 }
249 /* find the parent's # addr and intr cells */
250 ip = (unsigned int *)
251 get_property(ipar, "#interrupt-cells", NULL);
252 if (ip == NULL) {
253 printk("oops, no #interrupt-cells on %s\n",
254 ipar->full_name);
255 return 0;
256 }
257 newintrc = *ip;
258 ip = (unsigned int *)
259 get_property(ipar, "#address-cells", NULL);
260 newaddrc = (ip == NULL)? 0: *ip;
261 imap += newaddrc + newintrc;
262 imaplen -= newaddrc + newintrc;
263 }
264 if (imaplen < 0) {
265 printk("oops, error decoding int-map on %s, len=%d\n",
266 p->full_name, imaplen);
267 return 0;
268 }
269 if (!match) {
270#ifdef DEBUG_IRQ
271 printk("oops, no match in %s int-map for %s\n",
272 p->full_name, np->full_name);
273#endif
274 return 0;
275 }
276 p = ipar;
277 naddrc = newaddrc;
278 nintrc = newintrc;
279 ints = imap - nintrc;
280 reg = ints - naddrc;
281 }
282 if (p == NULL) {
283#ifdef DEBUG_IRQ
284 printk("hmmm, int tree for %s doesn't have ctrler\n",
285 np->full_name);
286#endif
287 return 0;
288 }
289 *irq = ints;
290 *ictrler = p;
291 return nintrc;
292}
293
6d0124fc
PM
294static unsigned char map_isa_senses[4] = {
295 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
296 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
297 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
298 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
299};
300
301static unsigned char map_mpic_senses[4] = {
302 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
303 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
304 /* 2 seems to be used for the 8259 cascade... */
305 IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
306 IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
307};
308
9b6b563c
PM
309static int __devinit finish_node_interrupts(struct device_node *np,
310 unsigned long *mem_start,
311 int measure_only)
312{
313 unsigned int *ints;
314 int intlen, intrcells, intrcount;
6d0124fc 315 int i, j, n, sense;
9b6b563c
PM
316 unsigned int *irq, virq;
317 struct device_node *ic;
318
a575b807
PM
319 if (num_interrupt_controllers == 0) {
320 /*
321 * Old machines just have a list of interrupt numbers
322 * and no interrupt-controller nodes.
323 */
324 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
325 &intlen);
326 /* XXX old interpret_pci_props looked in parent too */
327 /* XXX old interpret_macio_props looked for interrupts
328 before AAPL,interrupts */
329 if (ints == NULL)
330 ints = (unsigned int *) get_property(np, "interrupts",
331 &intlen);
332 if (ints == NULL)
333 return 0;
334
335 np->n_intrs = intlen / sizeof(unsigned int);
336 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
337 mem_start);
338 if (!np->intrs)
339 return -ENOMEM;
340 if (measure_only)
341 return 0;
342
343 for (i = 0; i < np->n_intrs; ++i) {
344 np->intrs[i].line = *ints++;
6d0124fc
PM
345 np->intrs[i].sense = IRQ_SENSE_LEVEL
346 | IRQ_POLARITY_NEGATIVE;
a575b807
PM
347 }
348 return 0;
349 }
350
9b6b563c
PM
351 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
352 if (ints == NULL)
353 return 0;
354 intrcells = prom_n_intr_cells(np);
355 intlen /= intrcells * sizeof(unsigned int);
356
357 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
358 if (!np->intrs)
359 return -ENOMEM;
360
361 if (measure_only)
362 return 0;
363
364 intrcount = 0;
365 for (i = 0; i < intlen; ++i, ints += intrcells) {
366 n = map_interrupt(&irq, &ic, np, ints, intrcells);
367 if (n <= 0)
368 continue;
369
370 /* don't map IRQ numbers under a cascaded 8259 controller */
371 if (ic && device_is_compatible(ic, "chrp,iic")) {
372 np->intrs[intrcount].line = irq[0];
6d0124fc
PM
373 sense = (n > 1)? (irq[1] & 3): 3;
374 np->intrs[intrcount].sense = map_isa_senses[sense];
9b6b563c 375 } else {
9b6b563c 376 virq = virt_irq_create_mapping(irq[0]);
6d0124fc 377#ifdef CONFIG_PPC64
9b6b563c
PM
378 if (virq == NO_IRQ) {
379 printk(KERN_CRIT "Could not allocate interrupt"
380 " number for %s\n", np->full_name);
381 continue;
382 }
9b6b563c 383#endif
6d0124fc
PM
384 np->intrs[intrcount].line = irq_offset_up(virq);
385 sense = (n > 1)? (irq[1] & 3): 1;
386 np->intrs[intrcount].sense = map_mpic_senses[sense];
9b6b563c
PM
387 }
388
389#ifdef CONFIG_PPC64
390 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
799d6046 391 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
9b6b563c
PM
392 char *name = get_property(ic->parent, "name", NULL);
393 if (name && !strcmp(name, "u3"))
394 np->intrs[intrcount].line += 128;
395 else if (!(name && !strcmp(name, "mac-io")))
396 /* ignore other cascaded controllers, such as
397 the k2-sata-root */
398 break;
399 }
400#endif
9b6b563c
PM
401 if (n > 2) {
402 printk("hmmm, got %d intr cells for %s:", n,
403 np->full_name);
404 for (j = 0; j < n; ++j)
405 printk(" %d", irq[j]);
406 printk("\n");
407 }
408 ++intrcount;
409 }
410 np->n_intrs = intrcount;
411
412 return 0;
413}
414
415static int __devinit interpret_pci_props(struct device_node *np,
416 unsigned long *mem_start,
417 int naddrc, int nsizec,
418 int measure_only)
419{
420 struct address_range *adr;
421 struct pci_reg_property *pci_addrs;
422 int i, l, n_addrs;
423
424 pci_addrs = (struct pci_reg_property *)
425 get_property(np, "assigned-addresses", &l);
426 if (!pci_addrs)
427 return 0;
428
429 n_addrs = l / sizeof(*pci_addrs);
430
431 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
432 if (!adr)
433 return -ENOMEM;
434
435 if (measure_only)
436 return 0;
437
438 np->addrs = adr;
439 np->n_addrs = n_addrs;
440
441 for (i = 0; i < n_addrs; i++) {
442 adr[i].space = pci_addrs[i].addr.a_hi;
443 adr[i].address = pci_addrs[i].addr.a_lo |
444 ((u64)pci_addrs[i].addr.a_mid << 32);
445 adr[i].size = pci_addrs[i].size_lo;
446 }
447
448 return 0;
449}
450
451static int __init interpret_dbdma_props(struct device_node *np,
452 unsigned long *mem_start,
453 int naddrc, int nsizec,
454 int measure_only)
455{
456 struct reg_property32 *rp;
457 struct address_range *adr;
458 unsigned long base_address;
459 int i, l;
460 struct device_node *db;
461
462 base_address = 0;
463 if (!measure_only) {
464 for (db = np->parent; db != NULL; db = db->parent) {
465 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
466 base_address = db->addrs[0].address;
467 break;
468 }
469 }
470 }
471
472 rp = (struct reg_property32 *) get_property(np, "reg", &l);
473 if (rp != 0 && l >= sizeof(struct reg_property32)) {
474 i = 0;
475 adr = (struct address_range *) (*mem_start);
476 while ((l -= sizeof(struct reg_property32)) >= 0) {
477 if (!measure_only) {
478 adr[i].space = 2;
479 adr[i].address = rp[i].address + base_address;
480 adr[i].size = rp[i].size;
481 }
482 ++i;
483 }
484 np->addrs = adr;
485 np->n_addrs = i;
486 (*mem_start) += i * sizeof(struct address_range);
487 }
488
489 return 0;
490}
491
492static int __init interpret_macio_props(struct device_node *np,
493 unsigned long *mem_start,
494 int naddrc, int nsizec,
495 int measure_only)
496{
497 struct reg_property32 *rp;
498 struct address_range *adr;
499 unsigned long base_address;
500 int i, l;
501 struct device_node *db;
502
503 base_address = 0;
504 if (!measure_only) {
505 for (db = np->parent; db != NULL; db = db->parent) {
506 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
507 base_address = db->addrs[0].address;
508 break;
509 }
510 }
511 }
512
513 rp = (struct reg_property32 *) get_property(np, "reg", &l);
514 if (rp != 0 && l >= sizeof(struct reg_property32)) {
515 i = 0;
516 adr = (struct address_range *) (*mem_start);
517 while ((l -= sizeof(struct reg_property32)) >= 0) {
518 if (!measure_only) {
519 adr[i].space = 2;
520 adr[i].address = rp[i].address + base_address;
521 adr[i].size = rp[i].size;
522 }
523 ++i;
524 }
525 np->addrs = adr;
526 np->n_addrs = i;
527 (*mem_start) += i * sizeof(struct address_range);
528 }
529
530 return 0;
531}
532
533static int __init interpret_isa_props(struct device_node *np,
534 unsigned long *mem_start,
535 int naddrc, int nsizec,
536 int measure_only)
537{
538 struct isa_reg_property *rp;
539 struct address_range *adr;
540 int i, l;
541
542 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
543 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
544 i = 0;
545 adr = (struct address_range *) (*mem_start);
546 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
547 if (!measure_only) {
548 adr[i].space = rp[i].space;
549 adr[i].address = rp[i].address;
550 adr[i].size = rp[i].size;
551 }
552 ++i;
553 }
554 np->addrs = adr;
555 np->n_addrs = i;
556 (*mem_start) += i * sizeof(struct address_range);
557 }
558
559 return 0;
560}
561
562static int __init interpret_root_props(struct device_node *np,
563 unsigned long *mem_start,
564 int naddrc, int nsizec,
565 int measure_only)
566{
567 struct address_range *adr;
568 int i, l;
569 unsigned int *rp;
570 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
571
572 rp = (unsigned int *) get_property(np, "reg", &l);
573 if (rp != 0 && l >= rpsize) {
574 i = 0;
575 adr = (struct address_range *) (*mem_start);
576 while ((l -= rpsize) >= 0) {
577 if (!measure_only) {
578 adr[i].space = 0;
579 adr[i].address = rp[naddrc - 1];
580 adr[i].size = rp[naddrc + nsizec - 1];
581 }
582 ++i;
583 rp += naddrc + nsizec;
584 }
585 np->addrs = adr;
586 np->n_addrs = i;
587 (*mem_start) += i * sizeof(struct address_range);
588 }
589
590 return 0;
591}
592
593static int __devinit finish_node(struct device_node *np,
594 unsigned long *mem_start,
595 interpret_func *ifunc,
596 int naddrc, int nsizec,
597 int measure_only)
598{
599 struct device_node *child;
600 int *ip, rc = 0;
601
602 /* get the device addresses and interrupts */
603 if (ifunc != NULL)
604 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
605 if (rc)
606 goto out;
607
608 rc = finish_node_interrupts(np, mem_start, measure_only);
609 if (rc)
610 goto out;
611
612 /* Look for #address-cells and #size-cells properties. */
613 ip = (int *) get_property(np, "#address-cells", NULL);
614 if (ip != NULL)
615 naddrc = *ip;
616 ip = (int *) get_property(np, "#size-cells", NULL);
617 if (ip != NULL)
618 nsizec = *ip;
619
620 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
621 ifunc = interpret_root_props;
622 else if (np->type == 0)
623 ifunc = NULL;
624 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
625 ifunc = interpret_pci_props;
626 else if (!strcmp(np->type, "dbdma"))
627 ifunc = interpret_dbdma_props;
628 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
629 ifunc = interpret_macio_props;
630 else if (!strcmp(np->type, "isa"))
631 ifunc = interpret_isa_props;
632 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
633 ifunc = interpret_root_props;
634 else if (!((ifunc == interpret_dbdma_props
635 || ifunc == interpret_macio_props)
636 && (!strcmp(np->type, "escc")
637 || !strcmp(np->type, "media-bay"))))
638 ifunc = NULL;
639
640 for (child = np->child; child != NULL; child = child->sibling) {
641 rc = finish_node(child, mem_start, ifunc,
642 naddrc, nsizec, measure_only);
643 if (rc)
644 goto out;
645 }
646out:
647 return rc;
648}
649
650static void __init scan_interrupt_controllers(void)
651{
652 struct device_node *np;
653 int n = 0;
654 char *name, *ic;
655 int iclen;
656
657 for (np = allnodes; np != NULL; np = np->allnext) {
658 ic = get_property(np, "interrupt-controller", &iclen);
659 name = get_property(np, "name", NULL);
660 /* checking iclen makes sure we don't get a false
661 match on /chosen.interrupt_controller */
662 if ((name != NULL
663 && strcmp(name, "interrupt-controller") == 0)
664 || (ic != NULL && iclen == 0
665 && strcmp(name, "AppleKiwi"))) {
666 if (n == 0)
667 dflt_interrupt_controller = np;
668 ++n;
669 }
670 }
671 num_interrupt_controllers = n;
672}
673
674/**
675 * finish_device_tree is called once things are running normally
676 * (i.e. with text and data mapped to the address they were linked at).
677 * It traverses the device tree and fills in some of the additional,
678 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
679 * mapping is also initialized at this point.
680 */
681void __init finish_device_tree(void)
682{
683 unsigned long start, end, size = 0;
684
685 DBG(" -> finish_device_tree\n");
686
687#ifdef CONFIG_PPC64
688 /* Initialize virtual IRQ map */
689 virt_irq_init();
690#endif
691 scan_interrupt_controllers();
692
693 /*
694 * Finish device-tree (pre-parsing some properties etc...)
695 * We do this in 2 passes. One with "measure_only" set, which
696 * will only measure the amount of memory needed, then we can
697 * allocate that memory, and call finish_node again. However,
698 * we must be careful as most routines will fail nowadays when
699 * prom_alloc() returns 0, so we must make sure our first pass
700 * doesn't start at 0. We pre-initialize size to 16 for that
701 * reason and then remove those additional 16 bytes
702 */
703 size = 16;
704 finish_node(allnodes, &size, NULL, 0, 0, 1);
705 size -= 16;
706 end = start = (unsigned long) __va(lmb_alloc(size, 128));
707 finish_node(allnodes, &end, NULL, 0, 0, 0);
708 BUG_ON(end != start + size);
709
710 DBG(" <- finish_device_tree\n");
711}
712
713static inline char *find_flat_dt_string(u32 offset)
714{
715 return ((char *)initial_boot_params) +
716 initial_boot_params->off_dt_strings + offset;
717}
718
719/**
720 * This function is used to scan the flattened device-tree, it is
721 * used to extract the memory informations at boot before we can
722 * unflatten the tree
723 */
3c726f8d
BH
724int __init of_scan_flat_dt(int (*it)(unsigned long node,
725 const char *uname, int depth,
726 void *data),
727 void *data)
9b6b563c
PM
728{
729 unsigned long p = ((unsigned long)initial_boot_params) +
730 initial_boot_params->off_dt_struct;
731 int rc = 0;
732 int depth = -1;
733
734 do {
735 u32 tag = *((u32 *)p);
736 char *pathp;
737
738 p += 4;
739 if (tag == OF_DT_END_NODE) {
740 depth --;
741 continue;
742 }
743 if (tag == OF_DT_NOP)
744 continue;
745 if (tag == OF_DT_END)
746 break;
747 if (tag == OF_DT_PROP) {
748 u32 sz = *((u32 *)p);
749 p += 8;
750 if (initial_boot_params->version < 0x10)
751 p = _ALIGN(p, sz >= 8 ? 8 : 4);
752 p += sz;
753 p = _ALIGN(p, 4);
754 continue;
755 }
756 if (tag != OF_DT_BEGIN_NODE) {
757 printk(KERN_WARNING "Invalid tag %x scanning flattened"
758 " device tree !\n", tag);
759 return -EINVAL;
760 }
761 depth++;
762 pathp = (char *)p;
763 p = _ALIGN(p + strlen(pathp) + 1, 4);
764 if ((*pathp) == '/') {
765 char *lp, *np;
766 for (lp = NULL, np = pathp; *np; np++)
767 if ((*np) == '/')
768 lp = np+1;
769 if (lp != NULL)
770 pathp = lp;
771 }
772 rc = it(p, pathp, depth, data);
773 if (rc != 0)
774 break;
775 } while(1);
776
777 return rc;
778}
779
780/**
781 * This function can be used within scan_flattened_dt callback to get
782 * access to properties
783 */
3c726f8d
BH
784void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
785 unsigned long *size)
9b6b563c
PM
786{
787 unsigned long p = node;
788
789 do {
790 u32 tag = *((u32 *)p);
791 u32 sz, noff;
792 const char *nstr;
793
794 p += 4;
795 if (tag == OF_DT_NOP)
796 continue;
797 if (tag != OF_DT_PROP)
798 return NULL;
799
800 sz = *((u32 *)p);
801 noff = *((u32 *)(p + 4));
802 p += 8;
803 if (initial_boot_params->version < 0x10)
804 p = _ALIGN(p, sz >= 8 ? 8 : 4);
805
806 nstr = find_flat_dt_string(noff);
807 if (nstr == NULL) {
808 printk(KERN_WARNING "Can't find property index"
809 " name !\n");
810 return NULL;
811 }
812 if (strcmp(name, nstr) == 0) {
813 if (size)
814 *size = sz;
815 return (void *)p;
816 }
817 p += sz;
818 p = _ALIGN(p, 4);
819 } while(1);
820}
821
822static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
823 unsigned long align)
824{
825 void *res;
826
827 *mem = _ALIGN(*mem, align);
828 res = (void *)*mem;
829 *mem += size;
830
831 return res;
832}
833
834static unsigned long __init unflatten_dt_node(unsigned long mem,
835 unsigned long *p,
836 struct device_node *dad,
837 struct device_node ***allnextpp,
838 unsigned long fpsize)
839{
840 struct device_node *np;
841 struct property *pp, **prev_pp = NULL;
842 char *pathp;
843 u32 tag;
844 unsigned int l, allocl;
845 int has_name = 0;
846 int new_format = 0;
847
848 tag = *((u32 *)(*p));
849 if (tag != OF_DT_BEGIN_NODE) {
850 printk("Weird tag at start of node: %x\n", tag);
851 return mem;
852 }
853 *p += 4;
854 pathp = (char *)*p;
855 l = allocl = strlen(pathp) + 1;
856 *p = _ALIGN(*p + l, 4);
857
858 /* version 0x10 has a more compact unit name here instead of the full
859 * path. we accumulate the full path size using "fpsize", we'll rebuild
860 * it later. We detect this because the first character of the name is
861 * not '/'.
862 */
863 if ((*pathp) != '/') {
864 new_format = 1;
865 if (fpsize == 0) {
866 /* root node: special case. fpsize accounts for path
867 * plus terminating zero. root node only has '/', so
868 * fpsize should be 2, but we want to avoid the first
869 * level nodes to have two '/' so we use fpsize 1 here
870 */
871 fpsize = 1;
872 allocl = 2;
873 } else {
874 /* account for '/' and path size minus terminal 0
875 * already in 'l'
876 */
877 fpsize += l;
878 allocl = fpsize;
879 }
880 }
881
882
883 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
884 __alignof__(struct device_node));
885 if (allnextpp) {
886 memset(np, 0, sizeof(*np));
887 np->full_name = ((char*)np) + sizeof(struct device_node);
888 if (new_format) {
889 char *p = np->full_name;
890 /* rebuild full path for new format */
891 if (dad && dad->parent) {
892 strcpy(p, dad->full_name);
893#ifdef DEBUG
894 if ((strlen(p) + l + 1) != allocl) {
895 DBG("%s: p: %d, l: %d, a: %d\n",
896 pathp, strlen(p), l, allocl);
897 }
898#endif
899 p += strlen(p);
900 }
901 *(p++) = '/';
902 memcpy(p, pathp, l);
903 } else
904 memcpy(np->full_name, pathp, l);
905 prev_pp = &np->properties;
906 **allnextpp = np;
907 *allnextpp = &np->allnext;
908 if (dad != NULL) {
909 np->parent = dad;
910 /* we temporarily use the next field as `last_child'*/
911 if (dad->next == 0)
912 dad->child = np;
913 else
914 dad->next->sibling = np;
915 dad->next = np;
916 }
917 kref_init(&np->kref);
918 }
919 while(1) {
920 u32 sz, noff;
921 char *pname;
922
923 tag = *((u32 *)(*p));
924 if (tag == OF_DT_NOP) {
925 *p += 4;
926 continue;
927 }
928 if (tag != OF_DT_PROP)
929 break;
930 *p += 4;
931 sz = *((u32 *)(*p));
932 noff = *((u32 *)((*p) + 4));
933 *p += 8;
934 if (initial_boot_params->version < 0x10)
935 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
936
937 pname = find_flat_dt_string(noff);
938 if (pname == NULL) {
939 printk("Can't find property name in list !\n");
940 break;
941 }
942 if (strcmp(pname, "name") == 0)
943 has_name = 1;
944 l = strlen(pname) + 1;
945 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
946 __alignof__(struct property));
947 if (allnextpp) {
948 if (strcmp(pname, "linux,phandle") == 0) {
949 np->node = *((u32 *)*p);
950 if (np->linux_phandle == 0)
951 np->linux_phandle = np->node;
952 }
953 if (strcmp(pname, "ibm,phandle") == 0)
954 np->linux_phandle = *((u32 *)*p);
955 pp->name = pname;
956 pp->length = sz;
957 pp->value = (void *)*p;
958 *prev_pp = pp;
959 prev_pp = &pp->next;
960 }
961 *p = _ALIGN((*p) + sz, 4);
962 }
963 /* with version 0x10 we may not have the name property, recreate
964 * it here from the unit name if absent
965 */
966 if (!has_name) {
967 char *p = pathp, *ps = pathp, *pa = NULL;
968 int sz;
969
970 while (*p) {
971 if ((*p) == '@')
972 pa = p;
973 if ((*p) == '/')
974 ps = p + 1;
975 p++;
976 }
977 if (pa < ps)
978 pa = p;
979 sz = (pa - ps) + 1;
980 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
981 __alignof__(struct property));
982 if (allnextpp) {
983 pp->name = "name";
984 pp->length = sz;
985 pp->value = (unsigned char *)(pp + 1);
986 *prev_pp = pp;
987 prev_pp = &pp->next;
988 memcpy(pp->value, ps, sz - 1);
989 ((char *)pp->value)[sz - 1] = 0;
990 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
991 }
992 }
993 if (allnextpp) {
994 *prev_pp = NULL;
995 np->name = get_property(np, "name", NULL);
996 np->type = get_property(np, "device_type", NULL);
997
998 if (!np->name)
999 np->name = "<NULL>";
1000 if (!np->type)
1001 np->type = "<NULL>";
1002 }
1003 while (tag == OF_DT_BEGIN_NODE) {
1004 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1005 tag = *((u32 *)(*p));
1006 }
1007 if (tag != OF_DT_END_NODE) {
1008 printk("Weird tag at end of node: %x\n", tag);
1009 return mem;
1010 }
1011 *p += 4;
1012 return mem;
1013}
1014
1015
1016/**
1017 * unflattens the device-tree passed by the firmware, creating the
1018 * tree of struct device_node. It also fills the "name" and "type"
1019 * pointers of the nodes so the normal device-tree walking functions
1020 * can be used (this used to be done by finish_device_tree)
1021 */
1022void __init unflatten_device_tree(void)
1023{
1024 unsigned long start, mem, size;
1025 struct device_node **allnextp = &allnodes;
1026 char *p = NULL;
1027 int l = 0;
1028
1029 DBG(" -> unflatten_device_tree()\n");
1030
1031 /* First pass, scan for size */
1032 start = ((unsigned long)initial_boot_params) +
1033 initial_boot_params->off_dt_struct;
1034 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1035 size = (size | 3) + 1;
1036
1037 DBG(" size is %lx, allocating...\n", size);
1038
1039 /* Allocate memory for the expanded device tree */
1040 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1041 if (!mem) {
1042 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1043 panic("Couldn't allocate memory with lmb_alloc()!\n");
1044 }
1045 mem = (unsigned long) __va(mem);
1046
1047 ((u32 *)mem)[size / 4] = 0xdeadbeef;
1048
1049 DBG(" unflattening %lx...\n", mem);
1050
1051 /* Second pass, do actual unflattening */
1052 start = ((unsigned long)initial_boot_params) +
1053 initial_boot_params->off_dt_struct;
1054 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1055 if (*((u32 *)start) != OF_DT_END)
1056 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1057 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1058 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1059 ((u32 *)mem)[size / 4] );
1060 *allnextp = NULL;
1061
1062 /* Get pointer to OF "/chosen" node for use everywhere */
1063 of_chosen = of_find_node_by_path("/chosen");
a575b807
PM
1064 if (of_chosen == NULL)
1065 of_chosen = of_find_node_by_path("/chosen@0");
9b6b563c
PM
1066
1067 /* Retreive command line */
1068 if (of_chosen != NULL) {
1069 p = (char *)get_property(of_chosen, "bootargs", &l);
1070 if (p != NULL && l > 0)
1071 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1072 }
1073#ifdef CONFIG_CMDLINE
1074 if (l == 0 || (l == 1 && (*p) == 0))
1075 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1076#endif /* CONFIG_CMDLINE */
1077
1078 DBG("Command line is: %s\n", cmd_line);
1079
1080 DBG(" <- unflatten_device_tree()\n");
1081}
1082
1083
1084static int __init early_init_dt_scan_cpus(unsigned long node,
1085 const char *uname, int depth, void *data)
1086{
3c726f8d 1087 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
9b6b563c
PM
1088 u32 *prop;
1089 unsigned long size = 0;
1090
1091 /* We are scanning "cpu" nodes only */
1092 if (type == NULL || strcmp(type, "cpu") != 0)
1093 return 0;
1094
80579e1f
PM
1095 boot_cpuid = 0;
1096 boot_cpuid_phys = 0;
9b6b563c
PM
1097 if (initial_boot_params && initial_boot_params->version >= 2) {
1098 /* version 2 of the kexec param format adds the phys cpuid
1099 * of booted proc.
1100 */
1101 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
9b6b563c 1102 } else {
80579e1f 1103 /* Check if it's the boot-cpu, set it's hw index now */
3c726f8d
BH
1104 if (of_get_flat_dt_prop(node,
1105 "linux,boot-cpu", NULL) != NULL) {
1106 prop = of_get_flat_dt_prop(node, "reg", NULL);
80579e1f
PM
1107 if (prop != NULL)
1108 boot_cpuid_phys = *prop;
9b6b563c
PM
1109 }
1110 }
80579e1f 1111 set_hard_smp_processor_id(0, boot_cpuid_phys);
9b6b563c
PM
1112
1113#ifdef CONFIG_ALTIVEC
1114 /* Check if we have a VMX and eventually update CPU features */
3c726f8d 1115 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", &size);
9b6b563c
PM
1116 if (prop && (*prop) > 0) {
1117 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1118 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1119 }
1120
1121 /* Same goes for Apple's "altivec" property */
3c726f8d 1122 prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
9b6b563c
PM
1123 if (prop) {
1124 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1125 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1126 }
1127#endif /* CONFIG_ALTIVEC */
1128
1129#ifdef CONFIG_PPC_PSERIES
1130 /*
1131 * Check for an SMT capable CPU and set the CPU feature. We do
1132 * this by looking at the size of the ibm,ppc-interrupt-server#s
1133 * property
1134 */
3c726f8d 1135 prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
9b6b563c
PM
1136 &size);
1137 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1138 if (prop && ((size / sizeof(u32)) > 1))
1139 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1140#endif
1141
1142 return 0;
1143}
1144
1145static int __init early_init_dt_scan_chosen(unsigned long node,
1146 const char *uname, int depth, void *data)
1147{
1148 u32 *prop;
1149 unsigned long *lprop;
1150
1151 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1152
a575b807
PM
1153 if (depth != 1 ||
1154 (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
9b6b563c
PM
1155 return 0;
1156
1157 /* get platform type */
3c726f8d 1158 prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
9b6b563c
PM
1159 if (prop == NULL)
1160 return 0;
60dda256 1161#ifdef CONFIG_PPC_MULTIPLATFORM
9b6b563c
PM
1162 _machine = *prop;
1163#endif
1164
1165#ifdef CONFIG_PPC64
1166 /* check if iommu is forced on or off */
3c726f8d 1167 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
9b6b563c 1168 iommu_is_off = 1;
3c726f8d 1169 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
9b6b563c
PM
1170 iommu_force_on = 1;
1171#endif
1172
3c726f8d 1173 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
9b6b563c
PM
1174 if (lprop)
1175 memory_limit = *lprop;
1176
1177#ifdef CONFIG_PPC64
3c726f8d 1178 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
9b6b563c
PM
1179 if (lprop)
1180 tce_alloc_start = *lprop;
3c726f8d 1181 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
9b6b563c
PM
1182 if (lprop)
1183 tce_alloc_end = *lprop;
1184#endif
1185
1186#ifdef CONFIG_PPC_RTAS
1187 /* To help early debugging via the front panel, we retreive a minimal
1188 * set of RTAS infos now if available
1189 */
1190 {
1191 u64 *basep, *entryp;
1192
3c726f8d
BH
1193 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1194 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1195 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
9b6b563c
PM
1196 if (basep && entryp && prop) {
1197 rtas.base = *basep;
1198 rtas.entry = *entryp;
1199 rtas.size = *prop;
1200 }
1201 }
1202#endif /* CONFIG_PPC_RTAS */
1203
1204 /* break now */
1205 return 1;
1206}
1207
1208static int __init early_init_dt_scan_root(unsigned long node,
1209 const char *uname, int depth, void *data)
1210{
1211 u32 *prop;
1212
1213 if (depth != 0)
1214 return 0;
1215
3c726f8d 1216 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
9b6b563c
PM
1217 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1218 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1219
3c726f8d 1220 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
9b6b563c
PM
1221 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1222 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1223
1224 /* break now */
1225 return 1;
1226}
1227
1228static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1229{
1230 cell_t *p = *cellp;
1231 unsigned long r;
1232
1233 /* Ignore more than 2 cells */
1234 while (s > sizeof(unsigned long) / 4) {
1235 p++;
1236 s--;
1237 }
1238 r = *p++;
1239#ifdef CONFIG_PPC64
1240 if (s > 1) {
1241 r <<= 32;
1242 r |= *(p++);
1243 s--;
1244 }
1245#endif
1246
1247 *cellp = p;
1248 return r;
1249}
1250
1251
1252static int __init early_init_dt_scan_memory(unsigned long node,
1253 const char *uname, int depth, void *data)
1254{
3c726f8d 1255 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
9b6b563c
PM
1256 cell_t *reg, *endp;
1257 unsigned long l;
1258
1259 /* We are scanning "memory" nodes only */
a23414be
PM
1260 if (type == NULL) {
1261 /*
1262 * The longtrail doesn't have a device_type on the
1263 * /memory node, so look for the node called /memory@0.
1264 */
1265 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1266 return 0;
1267 } else if (strcmp(type, "memory") != 0)
9b6b563c
PM
1268 return 0;
1269
3c726f8d 1270 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
9b6b563c
PM
1271 if (reg == NULL)
1272 return 0;
1273
1274 endp = reg + (l / sizeof(cell_t));
1275
358c86fd 1276 DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
9b6b563c
PM
1277 uname, l, reg[0], reg[1], reg[2], reg[3]);
1278
1279 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1280 unsigned long base, size;
1281
1282 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1283 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1284
1285 if (size == 0)
1286 continue;
1287 DBG(" - %lx , %lx\n", base, size);
1288#ifdef CONFIG_PPC64
1289 if (iommu_is_off) {
1290 if (base >= 0x80000000ul)
1291 continue;
1292 if ((base + size) > 0x80000000ul)
1293 size = 0x80000000ul - base;
1294 }
1295#endif
1296 lmb_add(base, size);
1297 }
1298 return 0;
1299}
1300
1301static void __init early_reserve_mem(void)
1302{
1303 unsigned long base, size;
1304 unsigned long *reserve_map;
1305
1306 reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1307 initial_boot_params->off_mem_rsvmap);
1308 while (1) {
1309 base = *(reserve_map++);
1310 size = *(reserve_map++);
1311 if (size == 0)
1312 break;
1313 DBG("reserving: %lx -> %lx\n", base, size);
1314 lmb_reserve(base, size);
1315 }
1316
1317#if 0
1318 DBG("memory reserved, lmbs :\n");
1319 lmb_dump_all();
1320#endif
1321}
1322
1323void __init early_init_devtree(void *params)
1324{
1325 DBG(" -> early_init_devtree()\n");
1326
1327 /* Setup flat device-tree pointer */
1328 initial_boot_params = params;
1329
1330 /* Retrieve various informations from the /chosen node of the
1331 * device-tree, including the platform type, initrd location and
1332 * size, TCE reserve, and more ...
1333 */
3c726f8d 1334 of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
9b6b563c
PM
1335
1336 /* Scan memory nodes and rebuild LMBs */
1337 lmb_init();
3c726f8d
BH
1338 of_scan_flat_dt(early_init_dt_scan_root, NULL);
1339 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
9b6b563c
PM
1340 lmb_enforce_memory_limit(memory_limit);
1341 lmb_analyze();
9b6b563c
PM
1342 lmb_reserve(0, __pa(klimit));
1343
1344 DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1345
1346 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1347 early_reserve_mem();
1348
1349 DBG("Scanning CPUs ...\n");
1350
3c726f8d
BH
1351 /* Retreive CPU related informations from the flat tree
1352 * (altivec support, boot CPU ID, ...)
9b6b563c 1353 */
3c726f8d 1354 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
9b6b563c 1355
9b6b563c
PM
1356 DBG(" <- early_init_devtree()\n");
1357}
1358
1359#undef printk
1360
1361int
1362prom_n_addr_cells(struct device_node* np)
1363{
1364 int* ip;
1365 do {
1366 if (np->parent)
1367 np = np->parent;
1368 ip = (int *) get_property(np, "#address-cells", NULL);
1369 if (ip != NULL)
1370 return *ip;
1371 } while (np->parent);
1372 /* No #address-cells property for the root node, default to 1 */
1373 return 1;
1374}
1375
1376int
1377prom_n_size_cells(struct device_node* np)
1378{
1379 int* ip;
1380 do {
1381 if (np->parent)
1382 np = np->parent;
1383 ip = (int *) get_property(np, "#size-cells", NULL);
1384 if (ip != NULL)
1385 return *ip;
1386 } while (np->parent);
1387 /* No #size-cells property for the root node, default to 1 */
1388 return 1;
1389}
1390
1391/**
1392 * Work out the sense (active-low level / active-high edge)
1393 * of each interrupt from the device tree.
1394 */
1395void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1396{
1397 struct device_node *np;
1398 int i, j;
1399
1400 /* default to level-triggered */
6d0124fc 1401 memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
9b6b563c
PM
1402
1403 for (np = allnodes; np != 0; np = np->allnext) {
1404 for (j = 0; j < np->n_intrs; j++) {
1405 i = np->intrs[j].line;
1406 if (i >= off && i < max)
6d0124fc 1407 senses[i-off] = np->intrs[j].sense;
9b6b563c
PM
1408 }
1409 }
1410}
1411
1412/**
1413 * Construct and return a list of the device_nodes with a given name.
1414 */
1415struct device_node *find_devices(const char *name)
1416{
1417 struct device_node *head, **prevp, *np;
1418
1419 prevp = &head;
1420 for (np = allnodes; np != 0; np = np->allnext) {
1421 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1422 *prevp = np;
1423 prevp = &np->next;
1424 }
1425 }
1426 *prevp = NULL;
1427 return head;
1428}
1429EXPORT_SYMBOL(find_devices);
1430
1431/**
1432 * Construct and return a list of the device_nodes with a given type.
1433 */
1434struct device_node *find_type_devices(const char *type)
1435{
1436 struct device_node *head, **prevp, *np;
1437
1438 prevp = &head;
1439 for (np = allnodes; np != 0; np = np->allnext) {
1440 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1441 *prevp = np;
1442 prevp = &np->next;
1443 }
1444 }
1445 *prevp = NULL;
1446 return head;
1447}
1448EXPORT_SYMBOL(find_type_devices);
1449
1450/**
1451 * Returns all nodes linked together
1452 */
1453struct device_node *find_all_nodes(void)
1454{
1455 struct device_node *head, **prevp, *np;
1456
1457 prevp = &head;
1458 for (np = allnodes; np != 0; np = np->allnext) {
1459 *prevp = np;
1460 prevp = &np->next;
1461 }
1462 *prevp = NULL;
1463 return head;
1464}
1465EXPORT_SYMBOL(find_all_nodes);
1466
1467/** Checks if the given "compat" string matches one of the strings in
1468 * the device's "compatible" property
1469 */
1470int device_is_compatible(struct device_node *device, const char *compat)
1471{
1472 const char* cp;
1473 int cplen, l;
1474
1475 cp = (char *) get_property(device, "compatible", &cplen);
1476 if (cp == NULL)
1477 return 0;
1478 while (cplen > 0) {
1479 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1480 return 1;
1481 l = strlen(cp) + 1;
1482 cp += l;
1483 cplen -= l;
1484 }
1485
1486 return 0;
1487}
1488EXPORT_SYMBOL(device_is_compatible);
1489
1490
1491/**
1492 * Indicates whether the root node has a given value in its
1493 * compatible property.
1494 */
1495int machine_is_compatible(const char *compat)
1496{
1497 struct device_node *root;
1498 int rc = 0;
1499
1500 root = of_find_node_by_path("/");
1501 if (root) {
1502 rc = device_is_compatible(root, compat);
1503 of_node_put(root);
1504 }
1505 return rc;
1506}
1507EXPORT_SYMBOL(machine_is_compatible);
1508
1509/**
1510 * Construct and return a list of the device_nodes with a given type
1511 * and compatible property.
1512 */
1513struct device_node *find_compatible_devices(const char *type,
1514 const char *compat)
1515{
1516 struct device_node *head, **prevp, *np;
1517
1518 prevp = &head;
1519 for (np = allnodes; np != 0; np = np->allnext) {
1520 if (type != NULL
1521 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1522 continue;
1523 if (device_is_compatible(np, compat)) {
1524 *prevp = np;
1525 prevp = &np->next;
1526 }
1527 }
1528 *prevp = NULL;
1529 return head;
1530}
1531EXPORT_SYMBOL(find_compatible_devices);
1532
1533/**
1534 * Find the device_node with a given full_name.
1535 */
1536struct device_node *find_path_device(const char *path)
1537{
1538 struct device_node *np;
1539
1540 for (np = allnodes; np != 0; np = np->allnext)
1541 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1542 return np;
1543 return NULL;
1544}
1545EXPORT_SYMBOL(find_path_device);
1546
1547/*******
1548 *
1549 * New implementation of the OF "find" APIs, return a refcounted
1550 * object, call of_node_put() when done. The device tree and list
1551 * are protected by a rw_lock.
1552 *
1553 * Note that property management will need some locking as well,
1554 * this isn't dealt with yet.
1555 *
1556 *******/
1557
1558/**
1559 * of_find_node_by_name - Find a node by its "name" property
1560 * @from: The node to start searching from or NULL, the node
1561 * you pass will not be searched, only the next one
1562 * will; typically, you pass what the previous call
1563 * returned. of_node_put() will be called on it
1564 * @name: The name string to match against
1565 *
1566 * Returns a node pointer with refcount incremented, use
1567 * of_node_put() on it when done.
1568 */
1569struct device_node *of_find_node_by_name(struct device_node *from,
1570 const char *name)
1571{
1572 struct device_node *np;
1573
1574 read_lock(&devtree_lock);
1575 np = from ? from->allnext : allnodes;
1576 for (; np != 0; np = np->allnext)
1577 if (np->name != 0 && strcasecmp(np->name, name) == 0
1578 && of_node_get(np))
1579 break;
1580 if (from)
1581 of_node_put(from);
1582 read_unlock(&devtree_lock);
1583 return np;
1584}
1585EXPORT_SYMBOL(of_find_node_by_name);
1586
1587/**
1588 * of_find_node_by_type - Find a node by its "device_type" property
1589 * @from: The node to start searching from or NULL, the node
1590 * you pass will not be searched, only the next one
1591 * will; typically, you pass what the previous call
1592 * returned. of_node_put() will be called on it
1593 * @name: The type string to match against
1594 *
1595 * Returns a node pointer with refcount incremented, use
1596 * of_node_put() on it when done.
1597 */
1598struct device_node *of_find_node_by_type(struct device_node *from,
1599 const char *type)
1600{
1601 struct device_node *np;
1602
1603 read_lock(&devtree_lock);
1604 np = from ? from->allnext : allnodes;
1605 for (; np != 0; np = np->allnext)
1606 if (np->type != 0 && strcasecmp(np->type, type) == 0
1607 && of_node_get(np))
1608 break;
1609 if (from)
1610 of_node_put(from);
1611 read_unlock(&devtree_lock);
1612 return np;
1613}
1614EXPORT_SYMBOL(of_find_node_by_type);
1615
1616/**
1617 * of_find_compatible_node - Find a node based on type and one of the
1618 * tokens in its "compatible" property
1619 * @from: The node to start searching from or NULL, the node
1620 * you pass will not be searched, only the next one
1621 * will; typically, you pass what the previous call
1622 * returned. of_node_put() will be called on it
1623 * @type: The type string to match "device_type" or NULL to ignore
1624 * @compatible: The string to match to one of the tokens in the device
1625 * "compatible" list.
1626 *
1627 * Returns a node pointer with refcount incremented, use
1628 * of_node_put() on it when done.
1629 */
1630struct device_node *of_find_compatible_node(struct device_node *from,
1631 const char *type, const char *compatible)
1632{
1633 struct device_node *np;
1634
1635 read_lock(&devtree_lock);
1636 np = from ? from->allnext : allnodes;
1637 for (; np != 0; np = np->allnext) {
1638 if (type != NULL
1639 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1640 continue;
1641 if (device_is_compatible(np, compatible) && of_node_get(np))
1642 break;
1643 }
1644 if (from)
1645 of_node_put(from);
1646 read_unlock(&devtree_lock);
1647 return np;
1648}
1649EXPORT_SYMBOL(of_find_compatible_node);
1650
1651/**
1652 * of_find_node_by_path - Find a node matching a full OF path
1653 * @path: The full path to match
1654 *
1655 * Returns a node pointer with refcount incremented, use
1656 * of_node_put() on it when done.
1657 */
1658struct device_node *of_find_node_by_path(const char *path)
1659{
1660 struct device_node *np = allnodes;
1661
1662 read_lock(&devtree_lock);
1663 for (; np != 0; np = np->allnext) {
1664 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1665 && of_node_get(np))
1666 break;
1667 }
1668 read_unlock(&devtree_lock);
1669 return np;
1670}
1671EXPORT_SYMBOL(of_find_node_by_path);
1672
1673/**
1674 * of_find_node_by_phandle - Find a node given a phandle
1675 * @handle: phandle of the node to find
1676 *
1677 * Returns a node pointer with refcount incremented, use
1678 * of_node_put() on it when done.
1679 */
1680struct device_node *of_find_node_by_phandle(phandle handle)
1681{
1682 struct device_node *np;
1683
1684 read_lock(&devtree_lock);
1685 for (np = allnodes; np != 0; np = np->allnext)
1686 if (np->linux_phandle == handle)
1687 break;
1688 if (np)
1689 of_node_get(np);
1690 read_unlock(&devtree_lock);
1691 return np;
1692}
1693EXPORT_SYMBOL(of_find_node_by_phandle);
1694
1695/**
1696 * of_find_all_nodes - Get next node in global list
1697 * @prev: Previous node or NULL to start iteration
1698 * of_node_put() will be called on it
1699 *
1700 * Returns a node pointer with refcount incremented, use
1701 * of_node_put() on it when done.
1702 */
1703struct device_node *of_find_all_nodes(struct device_node *prev)
1704{
1705 struct device_node *np;
1706
1707 read_lock(&devtree_lock);
1708 np = prev ? prev->allnext : allnodes;
1709 for (; np != 0; np = np->allnext)
1710 if (of_node_get(np))
1711 break;
1712 if (prev)
1713 of_node_put(prev);
1714 read_unlock(&devtree_lock);
1715 return np;
1716}
1717EXPORT_SYMBOL(of_find_all_nodes);
1718
1719/**
1720 * of_get_parent - Get a node's parent if any
1721 * @node: Node to get parent
1722 *
1723 * Returns a node pointer with refcount incremented, use
1724 * of_node_put() on it when done.
1725 */
1726struct device_node *of_get_parent(const struct device_node *node)
1727{
1728 struct device_node *np;
1729
1730 if (!node)
1731 return NULL;
1732
1733 read_lock(&devtree_lock);
1734 np = of_node_get(node->parent);
1735 read_unlock(&devtree_lock);
1736 return np;
1737}
1738EXPORT_SYMBOL(of_get_parent);
1739
1740/**
1741 * of_get_next_child - Iterate a node childs
1742 * @node: parent node
1743 * @prev: previous child of the parent node, or NULL to get first
1744 *
1745 * Returns a node pointer with refcount incremented, use
1746 * of_node_put() on it when done.
1747 */
1748struct device_node *of_get_next_child(const struct device_node *node,
1749 struct device_node *prev)
1750{
1751 struct device_node *next;
1752
1753 read_lock(&devtree_lock);
1754 next = prev ? prev->sibling : node->child;
1755 for (; next != 0; next = next->sibling)
1756 if (of_node_get(next))
1757 break;
1758 if (prev)
1759 of_node_put(prev);
1760 read_unlock(&devtree_lock);
1761 return next;
1762}
1763EXPORT_SYMBOL(of_get_next_child);
1764
1765/**
1766 * of_node_get - Increment refcount of a node
1767 * @node: Node to inc refcount, NULL is supported to
1768 * simplify writing of callers
1769 *
1770 * Returns node.
1771 */
1772struct device_node *of_node_get(struct device_node *node)
1773{
1774 if (node)
1775 kref_get(&node->kref);
1776 return node;
1777}
1778EXPORT_SYMBOL(of_node_get);
1779
1780static inline struct device_node * kref_to_device_node(struct kref *kref)
1781{
1782 return container_of(kref, struct device_node, kref);
1783}
1784
1785/**
1786 * of_node_release - release a dynamically allocated node
1787 * @kref: kref element of the node to be released
1788 *
1789 * In of_node_put() this function is passed to kref_put()
1790 * as the destructor.
1791 */
1792static void of_node_release(struct kref *kref)
1793{
1794 struct device_node *node = kref_to_device_node(kref);
1795 struct property *prop = node->properties;
1796
1797 if (!OF_IS_DYNAMIC(node))
1798 return;
1799 while (prop) {
1800 struct property *next = prop->next;
1801 kfree(prop->name);
1802 kfree(prop->value);
1803 kfree(prop);
1804 prop = next;
1805 }
1806 kfree(node->intrs);
1807 kfree(node->addrs);
1808 kfree(node->full_name);
1809 kfree(node->data);
1810 kfree(node);
1811}
1812
1813/**
1814 * of_node_put - Decrement refcount of a node
1815 * @node: Node to dec refcount, NULL is supported to
1816 * simplify writing of callers
1817 *
1818 */
1819void of_node_put(struct device_node *node)
1820{
1821 if (node)
1822 kref_put(&node->kref, of_node_release);
1823}
1824EXPORT_SYMBOL(of_node_put);
1825
1826/*
1827 * Plug a device node into the tree and global list.
1828 */
1829void of_attach_node(struct device_node *np)
1830{
1831 write_lock(&devtree_lock);
1832 np->sibling = np->parent->child;
1833 np->allnext = allnodes;
1834 np->parent->child = np;
1835 allnodes = np;
1836 write_unlock(&devtree_lock);
1837}
1838
1839/*
1840 * "Unplug" a node from the device tree. The caller must hold
1841 * a reference to the node. The memory associated with the node
1842 * is not freed until its refcount goes to zero.
1843 */
1844void of_detach_node(const struct device_node *np)
1845{
1846 struct device_node *parent;
1847
1848 write_lock(&devtree_lock);
1849
1850 parent = np->parent;
1851
1852 if (allnodes == np)
1853 allnodes = np->allnext;
1854 else {
1855 struct device_node *prev;
1856 for (prev = allnodes;
1857 prev->allnext != np;
1858 prev = prev->allnext)
1859 ;
1860 prev->allnext = np->allnext;
1861 }
1862
1863 if (parent->child == np)
1864 parent->child = np->sibling;
1865 else {
1866 struct device_node *prevsib;
1867 for (prevsib = np->parent->child;
1868 prevsib->sibling != np;
1869 prevsib = prevsib->sibling)
1870 ;
1871 prevsib->sibling = np->sibling;
1872 }
1873
1874 write_unlock(&devtree_lock);
1875}
1876
1877#ifdef CONFIG_PPC_PSERIES
1878/*
1879 * Fix up the uninitialized fields in a new device node:
1880 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1881 *
1882 * A lot of boot-time code is duplicated here, because functions such
1883 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1884 * slab allocator.
1885 *
1886 * This should probably be split up into smaller chunks.
1887 */
1888
1889static int of_finish_dynamic_node(struct device_node *node,
1890 unsigned long *unused1, int unused2,
1891 int unused3, int unused4)
1892{
1893 struct device_node *parent = of_get_parent(node);
1894 int err = 0;
1895 phandle *ibm_phandle;
1896
1897 node->name = get_property(node, "name", NULL);
1898 node->type = get_property(node, "device_type", NULL);
1899
1900 if (!parent) {
1901 err = -ENODEV;
1902 goto out;
1903 }
1904
1905 /* We don't support that function on PowerMac, at least
1906 * not yet
1907 */
799d6046 1908 if (_machine == PLATFORM_POWERMAC)
9b6b563c
PM
1909 return -ENODEV;
1910
1911 /* fix up new node's linux_phandle field */
1912 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1913 node->linux_phandle = *ibm_phandle;
1914
1915out:
1916 of_node_put(parent);
1917 return err;
1918}
1919
1920static int prom_reconfig_notifier(struct notifier_block *nb,
1921 unsigned long action, void *node)
1922{
1923 int err;
1924
1925 switch (action) {
1926 case PSERIES_RECONFIG_ADD:
1927 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1928 if (err < 0) {
1929 printk(KERN_ERR "finish_node returned %d\n", err);
1930 err = NOTIFY_BAD;
1931 }
1932 break;
1933 default:
1934 err = NOTIFY_DONE;
1935 break;
1936 }
1937 return err;
1938}
1939
1940static struct notifier_block prom_reconfig_nb = {
1941 .notifier_call = prom_reconfig_notifier,
1942 .priority = 10, /* This one needs to run first */
1943};
1944
1945static int __init prom_reconfig_setup(void)
1946{
1947 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1948}
1949__initcall(prom_reconfig_setup);
1950#endif
1951
1952/*
1953 * Find a property with a given name for a given node
1954 * and return the value.
1955 */
1956unsigned char *get_property(struct device_node *np, const char *name,
1957 int *lenp)
1958{
1959 struct property *pp;
1960
1961 for (pp = np->properties; pp != 0; pp = pp->next)
1962 if (strcmp(pp->name, name) == 0) {
1963 if (lenp != 0)
1964 *lenp = pp->length;
1965 return pp->value;
1966 }
1967 return NULL;
1968}
1969EXPORT_SYMBOL(get_property);
1970
1971/*
1972 * Add a property to a node
1973 */
183d0202 1974int prom_add_property(struct device_node* np, struct property* prop)
9b6b563c 1975{
183d0202 1976 struct property **next;
9b6b563c
PM
1977
1978 prop->next = NULL;
183d0202
BH
1979 write_lock(&devtree_lock);
1980 next = &np->properties;
1981 while (*next) {
1982 if (strcmp(prop->name, (*next)->name) == 0) {
1983 /* duplicate ! don't insert it */
1984 write_unlock(&devtree_lock);
1985 return -1;
1986 }
9b6b563c 1987 next = &(*next)->next;
183d0202 1988 }
9b6b563c 1989 *next = prop;
183d0202
BH
1990 write_unlock(&devtree_lock);
1991
799d6046 1992#ifdef CONFIG_PROC_DEVICETREE
183d0202
BH
1993 /* try to add to proc as well if it was initialized */
1994 if (np->pde)
1995 proc_device_tree_add_prop(np->pde, prop);
799d6046 1996#endif /* CONFIG_PROC_DEVICETREE */
183d0202
BH
1997
1998 return 0;
9b6b563c
PM
1999}
2000
2001/* I quickly hacked that one, check against spec ! */
2002static inline unsigned long
2003bus_space_to_resource_flags(unsigned int bus_space)
2004{
2005 u8 space = (bus_space >> 24) & 0xf;
2006 if (space == 0)
2007 space = 0x02;
2008 if (space == 0x02)
2009 return IORESOURCE_MEM;
2010 else if (space == 0x01)
2011 return IORESOURCE_IO;
2012 else {
2013 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2014 bus_space);
2015 return 0;
2016 }
2017}
2018
60dda256 2019#ifdef CONFIG_PCI
9b6b563c
PM
2020static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2021 struct address_range *range)
2022{
2023 unsigned long mask;
2024 int i;
2025
2026 /* Check this one */
2027 mask = bus_space_to_resource_flags(range->space);
2028 for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2029 if ((pdev->resource[i].flags & mask) == mask &&
2030 pdev->resource[i].start <= range->address &&
2031 pdev->resource[i].end > range->address) {
2032 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2033 /* Add better message */
2034 printk(KERN_WARNING "PCI/OF resource overlap !\n");
2035 return NULL;
2036 }
2037 break;
2038 }
2039 }
2040 if (i == DEVICE_COUNT_RESOURCE)
2041 return NULL;
2042 return &pdev->resource[i];
2043}
2044
2045/*
2046 * Request an OF device resource. Currently handles child of PCI devices,
2047 * or other nodes attached to the root node. Ultimately, put some
2048 * link to resources in the OF node.
2049 */
2050struct resource *request_OF_resource(struct device_node* node, int index,
2051 const char* name_postfix)
2052{
2053 struct pci_dev* pcidev;
2054 u8 pci_bus, pci_devfn;
2055 unsigned long iomask;
2056 struct device_node* nd;
2057 struct resource* parent;
2058 struct resource *res = NULL;
2059 int nlen, plen;
2060
2061 if (index >= node->n_addrs)
2062 goto fail;
2063
2064 /* Sanity check on bus space */
2065 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2066 if (iomask & IORESOURCE_MEM)
2067 parent = &iomem_resource;
2068 else if (iomask & IORESOURCE_IO)
2069 parent = &ioport_resource;
2070 else
2071 goto fail;
2072
2073 /* Find a PCI parent if any */
2074 nd = node;
2075 pcidev = NULL;
2076 while (nd) {
2077 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2078 pcidev = pci_find_slot(pci_bus, pci_devfn);
2079 if (pcidev) break;
2080 nd = nd->parent;
2081 }
2082 if (pcidev)
2083 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2084 if (!parent) {
2085 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2086 node->name);
2087 goto fail;
2088 }
2089
2090 res = __request_region(parent, node->addrs[index].address,
2091 node->addrs[index].size, NULL);
2092 if (!res)
2093 goto fail;
2094 nlen = strlen(node->name);
2095 plen = name_postfix ? strlen(name_postfix) : 0;
2096 res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2097 if (res->name) {
2098 strcpy((char *)res->name, node->name);
2099 if (plen)
2100 strcpy((char *)res->name+nlen, name_postfix);
2101 }
2102 return res;
2103fail:
2104 return NULL;
2105}
2106EXPORT_SYMBOL(request_OF_resource);
2107
2108int release_OF_resource(struct device_node *node, int index)
2109{
2110 struct pci_dev* pcidev;
2111 u8 pci_bus, pci_devfn;
2112 unsigned long iomask, start, end;
2113 struct device_node* nd;
2114 struct resource* parent;
2115 struct resource *res = NULL;
2116
2117 if (index >= node->n_addrs)
2118 return -EINVAL;
2119
2120 /* Sanity check on bus space */
2121 iomask = bus_space_to_resource_flags(node->addrs[index].space);
2122 if (iomask & IORESOURCE_MEM)
2123 parent = &iomem_resource;
2124 else if (iomask & IORESOURCE_IO)
2125 parent = &ioport_resource;
2126 else
2127 return -EINVAL;
2128
2129 /* Find a PCI parent if any */
2130 nd = node;
2131 pcidev = NULL;
2132 while(nd) {
2133 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2134 pcidev = pci_find_slot(pci_bus, pci_devfn);
2135 if (pcidev) break;
2136 nd = nd->parent;
2137 }
2138 if (pcidev)
2139 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2140 if (!parent) {
2141 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2142 node->name);
2143 return -ENODEV;
2144 }
2145
2146 /* Find us in the parent and its childs */
2147 res = parent->child;
2148 start = node->addrs[index].address;
2149 end = start + node->addrs[index].size - 1;
2150 while (res) {
2151 if (res->start == start && res->end == end &&
2152 (res->flags & IORESOURCE_BUSY))
2153 break;
2154 if (res->start <= start && res->end >= end)
2155 res = res->child;
2156 else
2157 res = res->sibling;
2158 }
2159 if (!res)
2160 return -ENODEV;
2161
2162 if (res->name) {
2163 kfree(res->name);
2164 res->name = NULL;
2165 }
2166 release_resource(res);
2167 kfree(res);
2168
2169 return 0;
2170}
2171EXPORT_SYMBOL(release_OF_resource);
60dda256 2172#endif /* CONFIG_PCI */
This page took 0.115993 seconds and 5 git commands to generate.