Merge with /pub/scm/linux/kernel/git/torvalds/linux-2.6.git
[deliverable/linux.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
35#include <linux/config.h>
36#include <linux/errno.h>
37#include <linux/module.h>
38#include <linux/sched.h>
39#include <linux/kernel.h>
40#include <linux/param.h>
41#include <linux/string.h>
42#include <linux/mm.h>
43#include <linux/interrupt.h>
44#include <linux/timex.h>
45#include <linux/kernel_stat.h>
1da177e4
LT
46#include <linux/time.h>
47#include <linux/init.h>
48#include <linux/profile.h>
49#include <linux/cpu.h>
50#include <linux/security.h>
f2783c15
PM
51#include <linux/percpu.h>
52#include <linux/rtc.h>
092b8f34 53#include <linux/jiffies.h>
c6622f63 54#include <linux/posix-timers.h>
1da177e4 55
1da177e4
LT
56#include <asm/io.h>
57#include <asm/processor.h>
58#include <asm/nvram.h>
59#include <asm/cache.h>
60#include <asm/machdep.h>
1da177e4
LT
61#include <asm/uaccess.h>
62#include <asm/time.h>
1da177e4 63#include <asm/prom.h>
f2783c15
PM
64#include <asm/irq.h>
65#include <asm/div64.h>
2249ca9d 66#include <asm/smp.h>
a7f290da 67#include <asm/vdso_datapage.h>
f2783c15 68#ifdef CONFIG_PPC64
1ababe11 69#include <asm/firmware.h>
f2783c15
PM
70#endif
71#ifdef CONFIG_PPC_ISERIES
8875ccfb 72#include <asm/iseries/it_lp_queue.h>
8021b8a7 73#include <asm/iseries/hv_call_xm.h>
f2783c15 74#endif
732ee21f 75#include <asm/smp.h>
1da177e4 76
1da177e4
LT
77/* keep track of when we need to update the rtc */
78time_t last_rtc_update;
79extern int piranha_simulator;
80#ifdef CONFIG_PPC_ISERIES
81unsigned long iSeries_recal_titan = 0;
82unsigned long iSeries_recal_tb = 0;
83static unsigned long first_settimeofday = 1;
84#endif
85
f2783c15
PM
86/* The decrementer counts down by 128 every 128ns on a 601. */
87#define DECREMENTER_COUNT_601 (1000000000 / HZ)
88
1da177e4
LT
89#define XSEC_PER_SEC (1024*1024)
90
f2783c15
PM
91#ifdef CONFIG_PPC64
92#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
93#else
94/* compute ((xsec << 12) * max) >> 32 */
95#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
96#endif
97
1da177e4
LT
98unsigned long tb_ticks_per_jiffy;
99unsigned long tb_ticks_per_usec = 100; /* sane default */
100EXPORT_SYMBOL(tb_ticks_per_usec);
101unsigned long tb_ticks_per_sec;
2cf82c02 102EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
f2783c15
PM
103u64 tb_to_xs;
104unsigned tb_to_us;
092b8f34
PM
105
106#define TICKLEN_SCALE (SHIFT_SCALE - 10)
107u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
108u64 ticklen_to_xs; /* 0.64 fraction */
109
110/* If last_tick_len corresponds to about 1/HZ seconds, then
111 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
112#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
113
1da177e4 114DEFINE_SPINLOCK(rtc_lock);
6ae3db11 115EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 116
f2783c15
PM
117u64 tb_to_ns_scale;
118unsigned tb_to_ns_shift;
1da177e4
LT
119
120struct gettimeofday_struct do_gtod;
121
122extern unsigned long wall_jiffies;
1da177e4
LT
123
124extern struct timezone sys_tz;
f2783c15 125static long timezone_offset;
1da177e4 126
10f7e7c1
AB
127unsigned long ppc_proc_freq;
128unsigned long ppc_tb_freq;
129
96c44507
PM
130u64 tb_last_jiffy __cacheline_aligned_in_smp;
131unsigned long tb_last_stamp;
132
133/*
134 * Note that on ppc32 this only stores the bottom 32 bits of
135 * the timebase value, but that's enough to tell when a jiffy
136 * has passed.
137 */
138DEFINE_PER_CPU(unsigned long, last_jiffy);
139
c6622f63
PM
140#ifdef CONFIG_VIRT_CPU_ACCOUNTING
141/*
142 * Factors for converting from cputime_t (timebase ticks) to
143 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
144 * These are all stored as 0.64 fixed-point binary fractions.
145 */
146u64 __cputime_jiffies_factor;
2cf82c02 147EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 148u64 __cputime_msec_factor;
2cf82c02 149EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 150u64 __cputime_sec_factor;
2cf82c02 151EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 152u64 __cputime_clockt_factor;
2cf82c02 153EXPORT_SYMBOL(__cputime_clockt_factor);
c6622f63
PM
154
155static void calc_cputime_factors(void)
156{
157 struct div_result res;
158
159 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
160 __cputime_jiffies_factor = res.result_low;
161 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
162 __cputime_msec_factor = res.result_low;
163 div128_by_32(1, 0, tb_ticks_per_sec, &res);
164 __cputime_sec_factor = res.result_low;
165 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
166 __cputime_clockt_factor = res.result_low;
167}
168
169/*
170 * Read the PURR on systems that have it, otherwise the timebase.
171 */
172static u64 read_purr(void)
173{
174 if (cpu_has_feature(CPU_FTR_PURR))
175 return mfspr(SPRN_PURR);
176 return mftb();
177}
178
179/*
180 * Account time for a transition between system, hard irq
181 * or soft irq state.
182 */
183void account_system_vtime(struct task_struct *tsk)
184{
185 u64 now, delta;
186 unsigned long flags;
187
188 local_irq_save(flags);
189 now = read_purr();
190 delta = now - get_paca()->startpurr;
191 get_paca()->startpurr = now;
192 if (!in_interrupt()) {
193 delta += get_paca()->system_time;
194 get_paca()->system_time = 0;
195 }
196 account_system_time(tsk, 0, delta);
197 local_irq_restore(flags);
198}
199
200/*
201 * Transfer the user and system times accumulated in the paca
202 * by the exception entry and exit code to the generic process
203 * user and system time records.
204 * Must be called with interrupts disabled.
205 */
206void account_process_vtime(struct task_struct *tsk)
207{
208 cputime_t utime;
209
210 utime = get_paca()->user_time;
211 get_paca()->user_time = 0;
212 account_user_time(tsk, utime);
213}
214
215static void account_process_time(struct pt_regs *regs)
216{
217 int cpu = smp_processor_id();
218
219 account_process_vtime(current);
220 run_local_timers();
221 if (rcu_pending(cpu))
222 rcu_check_callbacks(cpu, user_mode(regs));
223 scheduler_tick();
224 run_posix_cpu_timers(current);
225}
226
227#ifdef CONFIG_PPC_SPLPAR
228/*
229 * Stuff for accounting stolen time.
230 */
231struct cpu_purr_data {
232 int initialized; /* thread is running */
233 u64 tb0; /* timebase at origin time */
234 u64 purr0; /* PURR at origin time */
235 u64 tb; /* last TB value read */
236 u64 purr; /* last PURR value read */
237 u64 stolen; /* stolen time so far */
238 spinlock_t lock;
239};
240
241static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
242
243static void snapshot_tb_and_purr(void *data)
244{
245 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
246
247 p->tb0 = mftb();
248 p->purr0 = mfspr(SPRN_PURR);
249 p->tb = p->tb0;
250 p->purr = 0;
251 wmb();
252 p->initialized = 1;
253}
254
255/*
256 * Called during boot when all cpus have come up.
257 */
258void snapshot_timebases(void)
259{
260 int cpu;
261
262 if (!cpu_has_feature(CPU_FTR_PURR))
263 return;
0e551954 264 for_each_possible_cpu(cpu)
c6622f63
PM
265 spin_lock_init(&per_cpu(cpu_purr_data, cpu).lock);
266 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
267}
268
269void calculate_steal_time(void)
270{
271 u64 tb, purr, t0;
272 s64 stolen;
273 struct cpu_purr_data *p0, *pme, *phim;
274 int cpu;
275
276 if (!cpu_has_feature(CPU_FTR_PURR))
277 return;
278 cpu = smp_processor_id();
279 pme = &per_cpu(cpu_purr_data, cpu);
280 if (!pme->initialized)
281 return; /* this can happen in early boot */
282 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
283 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
284 spin_lock(&p0->lock);
285 tb = mftb();
286 purr = mfspr(SPRN_PURR) - pme->purr0;
287 if (!phim->initialized || !cpu_online(cpu ^ 1)) {
288 stolen = (tb - pme->tb) - (purr - pme->purr);
289 } else {
290 t0 = pme->tb0;
291 if (phim->tb0 < t0)
292 t0 = phim->tb0;
293 stolen = phim->tb - t0 - phim->purr - purr - p0->stolen;
294 }
295 if (stolen > 0) {
296 account_steal_time(current, stolen);
297 p0->stolen += stolen;
298 }
299 pme->tb = tb;
300 pme->purr = purr;
301 spin_unlock(&p0->lock);
302}
303
304/*
305 * Must be called before the cpu is added to the online map when
306 * a cpu is being brought up at runtime.
307 */
308static void snapshot_purr(void)
309{
310 int cpu;
311 u64 purr;
312 struct cpu_purr_data *p0, *pme, *phim;
313 unsigned long flags;
314
315 if (!cpu_has_feature(CPU_FTR_PURR))
316 return;
317 cpu = smp_processor_id();
318 pme = &per_cpu(cpu_purr_data, cpu);
319 p0 = &per_cpu(cpu_purr_data, cpu & ~1);
320 phim = &per_cpu(cpu_purr_data, cpu ^ 1);
321 spin_lock_irqsave(&p0->lock, flags);
322 pme->tb = pme->tb0 = mftb();
323 purr = mfspr(SPRN_PURR);
324 if (!phim->initialized) {
325 pme->purr = 0;
326 pme->purr0 = purr;
327 } else {
328 /* set p->purr and p->purr0 for no change in p0->stolen */
329 pme->purr = phim->tb - phim->tb0 - phim->purr - p0->stolen;
330 pme->purr0 = purr - pme->purr;
331 }
332 pme->initialized = 1;
333 spin_unlock_irqrestore(&p0->lock, flags);
334}
335
336#endif /* CONFIG_PPC_SPLPAR */
337
338#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
339#define calc_cputime_factors()
340#define account_process_time(regs) update_process_times(user_mode(regs))
341#define calculate_steal_time() do { } while (0)
342#endif
343
344#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
345#define snapshot_purr() do { } while (0)
346#endif
347
348/*
349 * Called when a cpu comes up after the system has finished booting,
350 * i.e. as a result of a hotplug cpu action.
351 */
352void snapshot_timebase(void)
353{
354 __get_cpu_var(last_jiffy) = get_tb();
355 snapshot_purr();
356}
357
6defa38b
PM
358void __delay(unsigned long loops)
359{
360 unsigned long start;
361 int diff;
362
363 if (__USE_RTC()) {
364 start = get_rtcl();
365 do {
366 /* the RTCL register wraps at 1000000000 */
367 diff = get_rtcl() - start;
368 if (diff < 0)
369 diff += 1000000000;
370 } while (diff < loops);
371 } else {
372 start = get_tbl();
373 while (get_tbl() - start < loops)
374 HMT_low();
375 HMT_medium();
376 }
377}
378EXPORT_SYMBOL(__delay);
379
380void udelay(unsigned long usecs)
381{
382 __delay(tb_ticks_per_usec * usecs);
383}
384EXPORT_SYMBOL(udelay);
385
1da177e4
LT
386static __inline__ void timer_check_rtc(void)
387{
388 /*
389 * update the rtc when needed, this should be performed on the
390 * right fraction of a second. Half or full second ?
391 * Full second works on mk48t59 clocks, others need testing.
392 * Note that this update is basically only used through
393 * the adjtimex system calls. Setting the HW clock in
394 * any other way is a /dev/rtc and userland business.
395 * This is still wrong by -0.5/+1.5 jiffies because of the
396 * timer interrupt resolution and possible delay, but here we
397 * hit a quantization limit which can only be solved by higher
398 * resolution timers and decoupling time management from timer
399 * interrupts. This is also wrong on the clocks
400 * which require being written at the half second boundary.
401 * We should have an rtc call that only sets the minutes and
402 * seconds like on Intel to avoid problems with non UTC clocks.
403 */
d2e61512 404 if (ppc_md.set_rtc_time && ntp_synced() &&
f2783c15 405 xtime.tv_sec - last_rtc_update >= 659 &&
092b8f34 406 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
f2783c15
PM
407 struct rtc_time tm;
408 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
409 tm.tm_year -= 1900;
410 tm.tm_mon -= 1;
411 if (ppc_md.set_rtc_time(&tm) == 0)
412 last_rtc_update = xtime.tv_sec + 1;
413 else
414 /* Try again one minute later */
415 last_rtc_update += 60;
1da177e4
LT
416 }
417}
418
419/*
420 * This version of gettimeofday has microsecond resolution.
421 */
f2783c15 422static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val)
1da177e4 423{
f2783c15
PM
424 unsigned long sec, usec;
425 u64 tb_ticks, xsec;
426 struct gettimeofday_vars *temp_varp;
427 u64 temp_tb_to_xs, temp_stamp_xsec;
1da177e4
LT
428
429 /*
430 * These calculations are faster (gets rid of divides)
431 * if done in units of 1/2^20 rather than microseconds.
432 * The conversion to microseconds at the end is done
433 * without a divide (and in fact, without a multiply)
434 */
435 temp_varp = do_gtod.varp;
436 tb_ticks = tb_val - temp_varp->tb_orig_stamp;
437 temp_tb_to_xs = temp_varp->tb_to_xs;
438 temp_stamp_xsec = temp_varp->stamp_xsec;
f2783c15 439 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
1da177e4 440 sec = xsec / XSEC_PER_SEC;
f2783c15
PM
441 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
442 usec = SCALE_XSEC(usec, 1000000);
1da177e4
LT
443
444 tv->tv_sec = sec;
445 tv->tv_usec = usec;
446}
447
448void do_gettimeofday(struct timeval *tv)
449{
96c44507
PM
450 if (__USE_RTC()) {
451 /* do this the old way */
452 unsigned long flags, seq;
092b8f34 453 unsigned int sec, nsec, usec;
96c44507
PM
454
455 do {
456 seq = read_seqbegin_irqsave(&xtime_lock, flags);
457 sec = xtime.tv_sec;
458 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp);
96c44507 459 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
092b8f34 460 usec = nsec / 1000;
96c44507
PM
461 while (usec >= 1000000) {
462 usec -= 1000000;
463 ++sec;
464 }
465 tv->tv_sec = sec;
466 tv->tv_usec = usec;
467 return;
468 }
1da177e4
LT
469 __do_gettimeofday(tv, get_tb());
470}
471
472EXPORT_SYMBOL(do_gettimeofday);
473
1da177e4 474/*
f2783c15
PM
475 * There are two copies of tb_to_xs and stamp_xsec so that no
476 * lock is needed to access and use these values in
477 * do_gettimeofday. We alternate the copies and as long as a
478 * reasonable time elapses between changes, there will never
479 * be inconsistent values. ntpd has a minimum of one minute
480 * between updates.
1da177e4 481 */
f2783c15 482static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
5d14a18d 483 u64 new_tb_to_xs)
1da177e4 484{
1da177e4 485 unsigned temp_idx;
f2783c15 486 struct gettimeofday_vars *temp_varp;
1da177e4
LT
487
488 temp_idx = (do_gtod.var_idx == 0);
489 temp_varp = &do_gtod.vars[temp_idx];
490
f2783c15
PM
491 temp_varp->tb_to_xs = new_tb_to_xs;
492 temp_varp->tb_orig_stamp = new_tb_stamp;
1da177e4 493 temp_varp->stamp_xsec = new_stamp_xsec;
0d8d4d42 494 smp_mb();
1da177e4
LT
495 do_gtod.varp = temp_varp;
496 do_gtod.var_idx = temp_idx;
497
f2783c15
PM
498 /*
499 * tb_update_count is used to allow the userspace gettimeofday code
500 * to assure itself that it sees a consistent view of the tb_to_xs and
501 * stamp_xsec variables. It reads the tb_update_count, then reads
502 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
503 * the two values of tb_update_count match and are even then the
504 * tb_to_xs and stamp_xsec values are consistent. If not, then it
505 * loops back and reads them again until this criteria is met.
0a45d449
PM
506 * We expect the caller to have done the first increment of
507 * vdso_data->tb_update_count already.
f2783c15 508 */
a7f290da
BH
509 vdso_data->tb_orig_stamp = new_tb_stamp;
510 vdso_data->stamp_xsec = new_stamp_xsec;
511 vdso_data->tb_to_xs = new_tb_to_xs;
512 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
513 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
0d8d4d42 514 smp_wmb();
a7f290da 515 ++(vdso_data->tb_update_count);
f2783c15
PM
516}
517
518/*
519 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
520 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
521 * difference tb - tb_orig_stamp small enough to always fit inside a
522 * 32 bits number. This is a requirement of our fast 32 bits userland
523 * implementation in the vdso. If we "miss" a call to this function
524 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
525 * with a too big difference, then the vdso will fallback to calling
526 * the syscall
527 */
528static __inline__ void timer_recalc_offset(u64 cur_tb)
529{
530 unsigned long offset;
531 u64 new_stamp_xsec;
092b8f34 532 u64 tlen, t2x;
0a45d449
PM
533 u64 tb, xsec_old, xsec_new;
534 struct gettimeofday_vars *varp;
f2783c15 535
96c44507
PM
536 if (__USE_RTC())
537 return;
092b8f34 538 tlen = current_tick_length();
f2783c15 539 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
0a45d449
PM
540 if (tlen == last_tick_len && offset < 0x80000000u)
541 return;
092b8f34
PM
542 if (tlen != last_tick_len) {
543 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
544 last_tick_len = tlen;
545 } else
546 t2x = do_gtod.varp->tb_to_xs;
547 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
548 do_div(new_stamp_xsec, 1000000000);
549 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
0a45d449
PM
550
551 ++vdso_data->tb_update_count;
552 smp_mb();
553
554 /*
555 * Make sure time doesn't go backwards for userspace gettimeofday.
556 */
557 tb = get_tb();
558 varp = do_gtod.varp;
559 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
560 + varp->stamp_xsec;
561 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
562 if (xsec_new < xsec_old)
563 new_stamp_xsec += xsec_old - xsec_new;
564
092b8f34 565 update_gtod(cur_tb, new_stamp_xsec, t2x);
1da177e4
LT
566}
567
568#ifdef CONFIG_SMP
569unsigned long profile_pc(struct pt_regs *regs)
570{
571 unsigned long pc = instruction_pointer(regs);
572
573 if (in_lock_functions(pc))
574 return regs->link;
575
576 return pc;
577}
578EXPORT_SYMBOL(profile_pc);
579#endif
580
581#ifdef CONFIG_PPC_ISERIES
582
583/*
584 * This function recalibrates the timebase based on the 49-bit time-of-day
585 * value in the Titan chip. The Titan is much more accurate than the value
586 * returned by the service processor for the timebase frequency.
587 */
588
589static void iSeries_tb_recal(void)
590{
591 struct div_result divres;
592 unsigned long titan, tb;
593 tb = get_tb();
594 titan = HvCallXm_loadTod();
595 if ( iSeries_recal_titan ) {
596 unsigned long tb_ticks = tb - iSeries_recal_tb;
597 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
598 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
599 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
600 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
601 char sign = '+';
602 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
603 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
604
605 if ( tick_diff < 0 ) {
606 tick_diff = -tick_diff;
607 sign = '-';
608 }
609 if ( tick_diff ) {
610 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
611 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
612 new_tb_ticks_per_jiffy, sign, tick_diff );
613 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
614 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 615 calc_cputime_factors();
1da177e4
LT
616 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
617 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
618 tb_to_xs = divres.result_low;
619 do_gtod.varp->tb_to_xs = tb_to_xs;
a7f290da
BH
620 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
621 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
622 }
623 else {
624 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
625 " new tb_ticks_per_jiffy = %lu\n"
626 " old tb_ticks_per_jiffy = %lu\n",
627 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
628 }
629 }
630 }
631 iSeries_recal_titan = titan;
632 iSeries_recal_tb = tb;
633}
634#endif
635
636/*
637 * For iSeries shared processors, we have to let the hypervisor
638 * set the hardware decrementer. We set a virtual decrementer
639 * in the lppaca and call the hypervisor if the virtual
640 * decrementer is less than the current value in the hardware
641 * decrementer. (almost always the new decrementer value will
642 * be greater than the current hardware decementer so the hypervisor
643 * call will not be needed)
644 */
645
1da177e4
LT
646/*
647 * timer_interrupt - gets called when the decrementer overflows,
648 * with interrupts disabled.
649 */
c7aeffc4 650void timer_interrupt(struct pt_regs * regs)
1da177e4
LT
651{
652 int next_dec;
f2783c15
PM
653 int cpu = smp_processor_id();
654 unsigned long ticks;
655
656#ifdef CONFIG_PPC32
657 if (atomic_read(&ppc_n_lost_interrupts) != 0)
658 do_IRQ(regs);
659#endif
1da177e4
LT
660
661 irq_enter();
662
1da177e4 663 profile_tick(CPU_PROFILING, regs);
c6622f63 664 calculate_steal_time();
1da177e4 665
f2783c15 666#ifdef CONFIG_PPC_ISERIES
3356bb9f 667 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
668#endif
669
670 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
671 >= tb_ticks_per_jiffy) {
672 /* Update last_jiffy */
673 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
674 /* Handle RTCL overflow on 601 */
675 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
676 per_cpu(last_jiffy, cpu) -= 1000000000;
1da177e4 677
1da177e4
LT
678 /*
679 * We cannot disable the decrementer, so in the period
680 * between this cpu's being marked offline in cpu_online_map
681 * and calling stop-self, it is taking timer interrupts.
682 * Avoid calling into the scheduler rebalancing code if this
683 * is the case.
684 */
685 if (!cpu_is_offline(cpu))
c6622f63 686 account_process_time(regs);
f2783c15 687
1da177e4
LT
688 /*
689 * No need to check whether cpu is offline here; boot_cpuid
690 * should have been fixed up by now.
691 */
f2783c15
PM
692 if (cpu != boot_cpuid)
693 continue;
694
695 write_seqlock(&xtime_lock);
96c44507
PM
696 tb_last_jiffy += tb_ticks_per_jiffy;
697 tb_last_stamp = per_cpu(last_jiffy, cpu);
f2783c15 698 do_timer(regs);
092b8f34 699 timer_recalc_offset(tb_last_jiffy);
f2783c15
PM
700 timer_check_rtc();
701 write_sequnlock(&xtime_lock);
1da177e4
LT
702 }
703
f2783c15 704 next_dec = tb_ticks_per_jiffy - ticks;
1da177e4
LT
705 set_dec(next_dec);
706
707#ifdef CONFIG_PPC_ISERIES
937b31b1 708 if (hvlpevent_is_pending())
74889802 709 process_hvlpevents(regs);
1da177e4
LT
710#endif
711
f2783c15 712#ifdef CONFIG_PPC64
8d15a3e5 713 /* collect purr register values often, for accurate calculations */
1ababe11 714 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
715 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
716 cu->current_tb = mfspr(SPRN_PURR);
717 }
f2783c15 718#endif
1da177e4
LT
719
720 irq_exit();
1da177e4
LT
721}
722
f2783c15
PM
723void wakeup_decrementer(void)
724{
092b8f34 725 unsigned long ticks;
f2783c15 726
f2783c15 727 /*
092b8f34
PM
728 * The timebase gets saved on sleep and restored on wakeup,
729 * so all we need to do is to reset the decrementer.
f2783c15 730 */
092b8f34
PM
731 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
732 if (ticks < tb_ticks_per_jiffy)
733 ticks = tb_ticks_per_jiffy - ticks;
734 else
735 ticks = 1;
736 set_dec(ticks);
f2783c15
PM
737}
738
a5b518ed 739#ifdef CONFIG_SMP
f2783c15
PM
740void __init smp_space_timers(unsigned int max_cpus)
741{
742 int i;
c6622f63 743 unsigned long half = tb_ticks_per_jiffy / 2;
f2783c15
PM
744 unsigned long offset = tb_ticks_per_jiffy / max_cpus;
745 unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid);
746
cbe62e2b
PM
747 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
748 previous_tb -= tb_ticks_per_jiffy;
c6622f63
PM
749 /*
750 * The stolen time calculation for POWER5 shared-processor LPAR
751 * systems works better if the two threads' timebase interrupts
752 * are staggered by half a jiffy with respect to each other.
753 */
0e551954 754 for_each_possible_cpu(i) {
c6622f63
PM
755 if (i == boot_cpuid)
756 continue;
757 if (i == (boot_cpuid ^ 1))
758 per_cpu(last_jiffy, i) =
759 per_cpu(last_jiffy, boot_cpuid) - half;
760 else if (i & 1)
761 per_cpu(last_jiffy, i) =
762 per_cpu(last_jiffy, i ^ 1) + half;
763 else {
f2783c15
PM
764 previous_tb += offset;
765 per_cpu(last_jiffy, i) = previous_tb;
766 }
767 }
768}
769#endif
770
1da177e4
LT
771/*
772 * Scheduler clock - returns current time in nanosec units.
773 *
774 * Note: mulhdu(a, b) (multiply high double unsigned) returns
775 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
776 * are 64-bit unsigned numbers.
777 */
778unsigned long long sched_clock(void)
779{
96c44507
PM
780 if (__USE_RTC())
781 return get_rtc();
1da177e4
LT
782 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
783}
784
785int do_settimeofday(struct timespec *tv)
786{
787 time_t wtm_sec, new_sec = tv->tv_sec;
788 long wtm_nsec, new_nsec = tv->tv_nsec;
789 unsigned long flags;
092b8f34
PM
790 u64 new_xsec;
791 unsigned long tb_delta;
1da177e4
LT
792
793 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
794 return -EINVAL;
795
796 write_seqlock_irqsave(&xtime_lock, flags);
f2783c15
PM
797
798 /*
799 * Updating the RTC is not the job of this code. If the time is
800 * stepped under NTP, the RTC will be updated after STA_UNSYNC
801 * is cleared. Tools like clock/hwclock either copy the RTC
1da177e4
LT
802 * to the system time, in which case there is no point in writing
803 * to the RTC again, or write to the RTC but then they don't call
804 * settimeofday to perform this operation.
805 */
806#ifdef CONFIG_PPC_ISERIES
f2783c15 807 if (first_settimeofday) {
1da177e4
LT
808 iSeries_tb_recal();
809 first_settimeofday = 0;
810 }
811#endif
092b8f34 812
0a45d449
PM
813 /* Make userspace gettimeofday spin until we're done. */
814 ++vdso_data->tb_update_count;
815 smp_mb();
816
092b8f34
PM
817 /*
818 * Subtract off the number of nanoseconds since the
819 * beginning of the last tick.
820 * Note that since we don't increment jiffies_64 anywhere other
821 * than in do_timer (since we don't have a lost tick problem),
822 * wall_jiffies will always be the same as jiffies,
823 * and therefore the (jiffies - wall_jiffies) computation
824 * has been removed.
825 */
1da177e4 826 tb_delta = tb_ticks_since(tb_last_stamp);
092b8f34
PM
827 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
828 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
1da177e4
LT
829
830 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
831 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
832
833 set_normalized_timespec(&xtime, new_sec, new_nsec);
834 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
835
836 /* In case of a large backwards jump in time with NTP, we want the
837 * clock to be updated as soon as the PLL is again in lock.
838 */
839 last_rtc_update = new_sec - 658;
840
b149ee22 841 ntp_clear();
1da177e4 842
092b8f34
PM
843 new_xsec = xtime.tv_nsec;
844 if (new_xsec != 0) {
845 new_xsec *= XSEC_PER_SEC;
5f6b5b97
PM
846 do_div(new_xsec, NSEC_PER_SEC);
847 }
092b8f34 848 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
96c44507 849 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
1da177e4 850
a7f290da
BH
851 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
852 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
1da177e4
LT
853
854 write_sequnlock_irqrestore(&xtime_lock, flags);
855 clock_was_set();
856 return 0;
857}
858
859EXPORT_SYMBOL(do_settimeofday);
860
10f7e7c1
AB
861void __init generic_calibrate_decr(void)
862{
863 struct device_node *cpu;
10f7e7c1
AB
864 unsigned int *fp;
865 int node_found;
866
867 /*
868 * The cpu node should have a timebase-frequency property
869 * to tell us the rate at which the decrementer counts.
870 */
871 cpu = of_find_node_by_type(NULL, "cpu");
872
873 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
874 node_found = 0;
d8a8188d 875 if (cpu) {
10f7e7c1
AB
876 fp = (unsigned int *)get_property(cpu, "timebase-frequency",
877 NULL);
d8a8188d 878 if (fp) {
10f7e7c1
AB
879 node_found = 1;
880 ppc_tb_freq = *fp;
881 }
882 }
883 if (!node_found)
884 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
885 "(not found)\n");
886
887 ppc_proc_freq = DEFAULT_PROC_FREQ;
888 node_found = 0;
d8a8188d 889 if (cpu) {
10f7e7c1
AB
890 fp = (unsigned int *)get_property(cpu, "clock-frequency",
891 NULL);
d8a8188d 892 if (fp) {
10f7e7c1
AB
893 node_found = 1;
894 ppc_proc_freq = *fp;
895 }
896 }
0fd6f717
KG
897#ifdef CONFIG_BOOKE
898 /* Set the time base to zero */
899 mtspr(SPRN_TBWL, 0);
900 mtspr(SPRN_TBWU, 0);
901
902 /* Clear any pending timer interrupts */
903 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
904
905 /* Enable decrementer interrupt */
906 mtspr(SPRN_TCR, TCR_DIE);
907#endif
10f7e7c1
AB
908 if (!node_found)
909 printk(KERN_ERR "WARNING: Estimating processor frequency "
910 "(not found)\n");
911
912 of_node_put(cpu);
10f7e7c1 913}
10f7e7c1 914
f2783c15
PM
915unsigned long get_boot_time(void)
916{
917 struct rtc_time tm;
918
919 if (ppc_md.get_boot_time)
920 return ppc_md.get_boot_time();
921 if (!ppc_md.get_rtc_time)
922 return 0;
923 ppc_md.get_rtc_time(&tm);
924 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
925 tm.tm_hour, tm.tm_min, tm.tm_sec);
926}
927
928/* This function is only called on the boot processor */
1da177e4
LT
929void __init time_init(void)
930{
1da177e4 931 unsigned long flags;
f2783c15 932 unsigned long tm = 0;
1da177e4 933 struct div_result res;
092b8f34 934 u64 scale, x;
f2783c15
PM
935 unsigned shift;
936
937 if (ppc_md.time_init != NULL)
938 timezone_offset = ppc_md.time_init();
1da177e4 939
96c44507
PM
940 if (__USE_RTC()) {
941 /* 601 processor: dec counts down by 128 every 128ns */
942 ppc_tb_freq = 1000000000;
943 tb_last_stamp = get_rtcl();
944 tb_last_jiffy = tb_last_stamp;
945 } else {
946 /* Normal PowerPC with timebase register */
947 ppc_md.calibrate_decr();
948 printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n",
949 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
950 printk(KERN_INFO "time_init: processor frequency = %lu.%.6lu MHz\n",
951 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
952 tb_last_stamp = tb_last_jiffy = get_tb();
953 }
374e99d4
PM
954
955 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 956 tb_ticks_per_sec = ppc_tb_freq;
374e99d4
PM
957 tb_ticks_per_usec = ppc_tb_freq / 1000000;
958 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
c6622f63 959 calc_cputime_factors();
092b8f34
PM
960
961 /*
962 * Calculate the length of each tick in ns. It will not be
963 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
964 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
965 * rounded up.
966 */
967 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
968 do_div(x, ppc_tb_freq);
969 tick_nsec = x;
970 last_tick_len = x << TICKLEN_SCALE;
971
972 /*
973 * Compute ticklen_to_xs, which is a factor which gets multiplied
974 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
975 * It is computed as:
976 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
977 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
0a45d449
PM
978 * which turns out to be N = 51 - SHIFT_HZ.
979 * This gives the result as a 0.64 fixed-point fraction.
980 * That value is reduced by an offset amounting to 1 xsec per
981 * 2^31 timebase ticks to avoid problems with time going backwards
982 * by 1 xsec when we do timer_recalc_offset due to losing the
983 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
984 * since there are 2^20 xsec in a second.
092b8f34 985 */
0a45d449
PM
986 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
987 tb_ticks_per_jiffy << SHIFT_HZ, &res);
092b8f34
PM
988 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
989 ticklen_to_xs = res.result_low;
990
991 /* Compute tb_to_xs from tick_nsec */
992 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
374e99d4 993
1da177e4
LT
994 /*
995 * Compute scale factor for sched_clock.
996 * The calibrate_decr() function has set tb_ticks_per_sec,
997 * which is the timebase frequency.
998 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
999 * the 128-bit result as a 64.64 fixed-point number.
1000 * We then shift that number right until it is less than 1.0,
1001 * giving us the scale factor and shift count to use in
1002 * sched_clock().
1003 */
1004 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
1005 scale = res.result_low;
1006 for (shift = 0; res.result_high != 0; ++shift) {
1007 scale = (scale >> 1) | (res.result_high << 63);
1008 res.result_high >>= 1;
1009 }
1010 tb_to_ns_scale = scale;
1011 tb_to_ns_shift = shift;
1012
1013#ifdef CONFIG_PPC_ISERIES
1014 if (!piranha_simulator)
1015#endif
f2783c15 1016 tm = get_boot_time();
1da177e4
LT
1017
1018 write_seqlock_irqsave(&xtime_lock, flags);
092b8f34
PM
1019
1020 /* If platform provided a timezone (pmac), we correct the time */
1021 if (timezone_offset) {
1022 sys_tz.tz_minuteswest = -timezone_offset / 60;
1023 sys_tz.tz_dsttime = 0;
1024 tm -= timezone_offset;
1025 }
1026
f2783c15
PM
1027 xtime.tv_sec = tm;
1028 xtime.tv_nsec = 0;
1da177e4
LT
1029 do_gtod.varp = &do_gtod.vars[0];
1030 do_gtod.var_idx = 0;
96c44507 1031 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
f2783c15
PM
1032 __get_cpu_var(last_jiffy) = tb_last_stamp;
1033 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
1da177e4
LT
1034 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
1035 do_gtod.varp->tb_to_xs = tb_to_xs;
1036 do_gtod.tb_to_us = tb_to_us;
a7f290da
BH
1037
1038 vdso_data->tb_orig_stamp = tb_last_jiffy;
1039 vdso_data->tb_update_count = 0;
1040 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
092b8f34 1041 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
a7f290da 1042 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
1043
1044 time_freq = 0;
1045
1da177e4
LT
1046 last_rtc_update = xtime.tv_sec;
1047 set_normalized_timespec(&wall_to_monotonic,
1048 -xtime.tv_sec, -xtime.tv_nsec);
1049 write_sequnlock_irqrestore(&xtime_lock, flags);
1050
1051 /* Not exact, but the timer interrupt takes care of this */
1052 set_dec(tb_ticks_per_jiffy);
1053}
1054
1da177e4 1055
1da177e4
LT
1056#define FEBRUARY 2
1057#define STARTOFTIME 1970
1058#define SECDAY 86400L
1059#define SECYR (SECDAY * 365)
f2783c15
PM
1060#define leapyear(year) ((year) % 4 == 0 && \
1061 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1062#define days_in_year(a) (leapyear(a) ? 366 : 365)
1063#define days_in_month(a) (month_days[(a) - 1])
1064
1065static int month_days[12] = {
1066 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1067};
1068
1069/*
1070 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1071 */
1072void GregorianDay(struct rtc_time * tm)
1073{
1074 int leapsToDate;
1075 int lastYear;
1076 int day;
1077 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1078
f2783c15 1079 lastYear = tm->tm_year - 1;
1da177e4
LT
1080
1081 /*
1082 * Number of leap corrections to apply up to end of last year
1083 */
f2783c15 1084 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1085
1086 /*
1087 * This year is a leap year if it is divisible by 4 except when it is
1088 * divisible by 100 unless it is divisible by 400
1089 *
f2783c15 1090 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1091 */
f2783c15 1092 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1093
1094 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1095 tm->tm_mday;
1096
f2783c15 1097 tm->tm_wday = day % 7;
1da177e4
LT
1098}
1099
1100void to_tm(int tim, struct rtc_time * tm)
1101{
1102 register int i;
1103 register long hms, day;
1104
1105 day = tim / SECDAY;
1106 hms = tim % SECDAY;
1107
1108 /* Hours, minutes, seconds are easy */
1109 tm->tm_hour = hms / 3600;
1110 tm->tm_min = (hms % 3600) / 60;
1111 tm->tm_sec = (hms % 3600) % 60;
1112
1113 /* Number of years in days */
1114 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1115 day -= days_in_year(i);
1116 tm->tm_year = i;
1117
1118 /* Number of months in days left */
1119 if (leapyear(tm->tm_year))
1120 days_in_month(FEBRUARY) = 29;
1121 for (i = 1; day >= days_in_month(i); i++)
1122 day -= days_in_month(i);
1123 days_in_month(FEBRUARY) = 28;
1124 tm->tm_mon = i;
1125
1126 /* Days are what is left over (+1) from all that. */
1127 tm->tm_mday = day + 1;
1128
1129 /*
1130 * Determine the day of week
1131 */
1132 GregorianDay(tm);
1133}
1134
1135/* Auxiliary function to compute scaling factors */
1136/* Actually the choice of a timebase running at 1/4 the of the bus
1137 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1138 * It makes this computation very precise (27-28 bits typically) which
1139 * is optimistic considering the stability of most processor clock
1140 * oscillators and the precision with which the timebase frequency
1141 * is measured but does not harm.
1142 */
f2783c15
PM
1143unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1144{
1da177e4
LT
1145 unsigned mlt=0, tmp, err;
1146 /* No concern for performance, it's done once: use a stupid
1147 * but safe and compact method to find the multiplier.
1148 */
1149
1150 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
1151 if (mulhwu(inscale, mlt|tmp) < outscale)
1152 mlt |= tmp;
1da177e4
LT
1153 }
1154
1155 /* We might still be off by 1 for the best approximation.
1156 * A side effect of this is that if outscale is too large
1157 * the returned value will be zero.
1158 * Many corner cases have been checked and seem to work,
1159 * some might have been forgotten in the test however.
1160 */
1161
f2783c15
PM
1162 err = inscale * (mlt+1);
1163 if (err <= inscale/2)
1164 mlt++;
1da177e4 1165 return mlt;
f2783c15 1166}
1da177e4
LT
1167
1168/*
1169 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1170 * result.
1171 */
f2783c15
PM
1172void div128_by_32(u64 dividend_high, u64 dividend_low,
1173 unsigned divisor, struct div_result *dr)
1da177e4 1174{
f2783c15
PM
1175 unsigned long a, b, c, d;
1176 unsigned long w, x, y, z;
1177 u64 ra, rb, rc;
1da177e4
LT
1178
1179 a = dividend_high >> 32;
1180 b = dividend_high & 0xffffffff;
1181 c = dividend_low >> 32;
1182 d = dividend_low & 0xffffffff;
1183
f2783c15
PM
1184 w = a / divisor;
1185 ra = ((u64)(a - (w * divisor)) << 32) + b;
1186
f2783c15
PM
1187 rb = ((u64) do_div(ra, divisor) << 32) + c;
1188 x = ra;
1da177e4 1189
f2783c15
PM
1190 rc = ((u64) do_div(rb, divisor) << 32) + d;
1191 y = rb;
1192
1193 do_div(rc, divisor);
1194 z = rc;
1da177e4 1195
f2783c15
PM
1196 dr->result_high = ((u64)w << 32) + x;
1197 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1198
1199}
This page took 0.18673 seconds and 5 git commands to generate.