Merge branch 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelv...
[deliverable/linux.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
1da177e4
LT
35#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
1da177e4
LT
45#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
7d12e780 54#include <linux/irq.h>
1da177e4 55
1da177e4
LT
56#include <asm/io.h>
57#include <asm/processor.h>
58#include <asm/nvram.h>
59#include <asm/cache.h>
60#include <asm/machdep.h>
1da177e4
LT
61#include <asm/uaccess.h>
62#include <asm/time.h>
1da177e4 63#include <asm/prom.h>
f2783c15
PM
64#include <asm/irq.h>
65#include <asm/div64.h>
2249ca9d 66#include <asm/smp.h>
a7f290da 67#include <asm/vdso_datapage.h>
1ababe11 68#include <asm/firmware.h>
06b8e878 69#include <asm/cputime.h>
f2783c15 70#ifdef CONFIG_PPC_ISERIES
8875ccfb 71#include <asm/iseries/it_lp_queue.h>
8021b8a7 72#include <asm/iseries/hv_call_xm.h>
f2783c15 73#endif
1da177e4 74
4a4cfe38
TB
75/* powerpc clocksource/clockevent code */
76
d831d0b8 77#include <linux/clockchips.h>
4a4cfe38
TB
78#include <linux/clocksource.h>
79
8e19608e 80static cycle_t rtc_read(struct clocksource *);
4a4cfe38
TB
81static struct clocksource clocksource_rtc = {
82 .name = "rtc",
83 .rating = 400,
84 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
85 .mask = CLOCKSOURCE_MASK(64),
86 .shift = 22,
87 .mult = 0, /* To be filled in */
88 .read = rtc_read,
89};
90
8e19608e 91static cycle_t timebase_read(struct clocksource *);
4a4cfe38
TB
92static struct clocksource clocksource_timebase = {
93 .name = "timebase",
94 .rating = 400,
95 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
96 .mask = CLOCKSOURCE_MASK(64),
97 .shift = 22,
98 .mult = 0, /* To be filled in */
99 .read = timebase_read,
100};
101
d831d0b8
TB
102#define DECREMENTER_MAX 0x7fffffff
103
104static int decrementer_set_next_event(unsigned long evt,
105 struct clock_event_device *dev);
106static void decrementer_set_mode(enum clock_event_mode mode,
107 struct clock_event_device *dev);
108
109static struct clock_event_device decrementer_clockevent = {
110 .name = "decrementer",
111 .rating = 200,
8d165db1 112 .shift = 0, /* To be filled in */
d831d0b8
TB
113 .mult = 0, /* To be filled in */
114 .irq = 0,
115 .set_next_event = decrementer_set_next_event,
116 .set_mode = decrementer_set_mode,
117 .features = CLOCK_EVT_FEAT_ONESHOT,
118};
119
6e6b44e8
MM
120struct decrementer_clock {
121 struct clock_event_device event;
122 u64 next_tb;
123};
124
125static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
d831d0b8 126
1da177e4 127#ifdef CONFIG_PPC_ISERIES
71712b45
TB
128static unsigned long __initdata iSeries_recal_titan;
129static signed long __initdata iSeries_recal_tb;
4a4cfe38
TB
130
131/* Forward declaration is only needed for iSereis compiles */
1c21a293 132static void __init clocksource_init(void);
1da177e4
LT
133#endif
134
135#define XSEC_PER_SEC (1024*1024)
136
f2783c15
PM
137#ifdef CONFIG_PPC64
138#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
139#else
140/* compute ((xsec << 12) * max) >> 32 */
141#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
142#endif
143
1da177e4
LT
144unsigned long tb_ticks_per_jiffy;
145unsigned long tb_ticks_per_usec = 100; /* sane default */
146EXPORT_SYMBOL(tb_ticks_per_usec);
147unsigned long tb_ticks_per_sec;
2cf82c02 148EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
f2783c15
PM
149u64 tb_to_xs;
150unsigned tb_to_us;
092b8f34 151
7fc5c784 152#define TICKLEN_SCALE NTP_SCALE_SHIFT
1c21a293
ME
153static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
154static u64 ticklen_to_xs; /* 0.64 fraction */
092b8f34
PM
155
156/* If last_tick_len corresponds to about 1/HZ seconds, then
157 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
158#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
159
1da177e4 160DEFINE_SPINLOCK(rtc_lock);
6ae3db11 161EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 162
fc9069fe
TB
163static u64 tb_to_ns_scale __read_mostly;
164static unsigned tb_to_ns_shift __read_mostly;
165static unsigned long boot_tb __read_mostly;
1da177e4 166
1da177e4 167extern struct timezone sys_tz;
f2783c15 168static long timezone_offset;
1da177e4 169
10f7e7c1 170unsigned long ppc_proc_freq;
1474855d 171EXPORT_SYMBOL(ppc_proc_freq);
10f7e7c1
AB
172unsigned long ppc_tb_freq;
173
eb36c288
PM
174static u64 tb_last_jiffy __cacheline_aligned_in_smp;
175static DEFINE_PER_CPU(u64, last_jiffy);
96c44507 176
c6622f63
PM
177#ifdef CONFIG_VIRT_CPU_ACCOUNTING
178/*
179 * Factors for converting from cputime_t (timebase ticks) to
180 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
181 * These are all stored as 0.64 fixed-point binary fractions.
182 */
183u64 __cputime_jiffies_factor;
2cf82c02 184EXPORT_SYMBOL(__cputime_jiffies_factor);
c6622f63 185u64 __cputime_msec_factor;
2cf82c02 186EXPORT_SYMBOL(__cputime_msec_factor);
c6622f63 187u64 __cputime_sec_factor;
2cf82c02 188EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 189u64 __cputime_clockt_factor;
2cf82c02 190EXPORT_SYMBOL(__cputime_clockt_factor);
06b8e878
MN
191DEFINE_PER_CPU(unsigned long, cputime_last_delta);
192DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
c6622f63
PM
193
194static void calc_cputime_factors(void)
195{
196 struct div_result res;
197
198 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
199 __cputime_jiffies_factor = res.result_low;
200 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
201 __cputime_msec_factor = res.result_low;
202 div128_by_32(1, 0, tb_ticks_per_sec, &res);
203 __cputime_sec_factor = res.result_low;
204 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
205 __cputime_clockt_factor = res.result_low;
206}
207
208/*
209 * Read the PURR on systems that have it, otherwise the timebase.
210 */
211static u64 read_purr(void)
212{
213 if (cpu_has_feature(CPU_FTR_PURR))
214 return mfspr(SPRN_PURR);
215 return mftb();
216}
217
4603ac18
MN
218/*
219 * Read the SPURR on systems that have it, otherwise the purr
220 */
221static u64 read_spurr(u64 purr)
222{
53024fe2
MM
223 /*
224 * cpus without PURR won't have a SPURR
225 * We already know the former when we use this, so tell gcc
226 */
227 if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
4603ac18
MN
228 return mfspr(SPRN_SPURR);
229 return purr;
230}
231
c6622f63
PM
232/*
233 * Account time for a transition between system, hard irq
234 * or soft irq state.
235 */
236void account_system_vtime(struct task_struct *tsk)
237{
53024fe2 238 u64 now, nowscaled, delta, deltascaled, sys_time;
c6622f63
PM
239 unsigned long flags;
240
241 local_irq_save(flags);
242 now = read_purr();
4603ac18 243 nowscaled = read_spurr(now);
53024fe2 244 delta = now - get_paca()->startpurr;
4603ac18 245 deltascaled = nowscaled - get_paca()->startspurr;
53024fe2 246 get_paca()->startpurr = now;
4603ac18 247 get_paca()->startspurr = nowscaled;
c6622f63 248 if (!in_interrupt()) {
4603ac18
MN
249 /* deltascaled includes both user and system time.
250 * Hence scale it based on the purr ratio to estimate
251 * the system time */
53024fe2 252 sys_time = get_paca()->system_time;
2b46b567 253 if (get_paca()->user_time)
53024fe2
MM
254 deltascaled = deltascaled * sys_time /
255 (sys_time + get_paca()->user_time);
256 delta += sys_time;
c6622f63
PM
257 get_paca()->system_time = 0;
258 }
79741dd3
MS
259 if (in_irq() || idle_task(smp_processor_id()) != tsk)
260 account_system_time(tsk, 0, delta, deltascaled);
261 else
262 account_idle_time(delta);
06b8e878
MN
263 per_cpu(cputime_last_delta, smp_processor_id()) = delta;
264 per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
c6622f63
PM
265 local_irq_restore(flags);
266}
267
268/*
269 * Transfer the user and system times accumulated in the paca
270 * by the exception entry and exit code to the generic process
271 * user and system time records.
272 * Must be called with interrupts disabled.
273 */
fa13a5a1 274void account_process_tick(struct task_struct *tsk, int user_tick)
c6622f63 275{
4603ac18 276 cputime_t utime, utimescaled;
c6622f63
PM
277
278 utime = get_paca()->user_time;
279 get_paca()->user_time = 0;
06b8e878 280 utimescaled = cputime_to_scaled(utime);
457533a7 281 account_user_time(tsk, utime, utimescaled);
c6622f63
PM
282}
283
c6622f63
PM
284/*
285 * Stuff for accounting stolen time.
286 */
287struct cpu_purr_data {
288 int initialized; /* thread is running */
c6622f63
PM
289 u64 tb; /* last TB value read */
290 u64 purr; /* last PURR value read */
4603ac18 291 u64 spurr; /* last SPURR value read */
c6622f63
PM
292};
293
df211c8a
NL
294/*
295 * Each entry in the cpu_purr_data array is manipulated only by its
296 * "owner" cpu -- usually in the timer interrupt but also occasionally
297 * in process context for cpu online. As long as cpus do not touch
298 * each others' cpu_purr_data, disabling local interrupts is
299 * sufficient to serialize accesses.
300 */
c6622f63
PM
301static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
302
303static void snapshot_tb_and_purr(void *data)
304{
df211c8a 305 unsigned long flags;
c6622f63
PM
306 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
307
df211c8a 308 local_irq_save(flags);
c27da339 309 p->tb = get_tb_or_rtc();
cbcdb93d 310 p->purr = mfspr(SPRN_PURR);
c6622f63
PM
311 wmb();
312 p->initialized = 1;
df211c8a 313 local_irq_restore(flags);
c6622f63
PM
314}
315
316/*
317 * Called during boot when all cpus have come up.
318 */
319void snapshot_timebases(void)
320{
c6622f63
PM
321 if (!cpu_has_feature(CPU_FTR_PURR))
322 return;
15c8b6c1 323 on_each_cpu(snapshot_tb_and_purr, NULL, 1);
c6622f63
PM
324}
325
df211c8a
NL
326/*
327 * Must be called with interrupts disabled.
328 */
c6622f63
PM
329void calculate_steal_time(void)
330{
cbcdb93d 331 u64 tb, purr;
c6622f63 332 s64 stolen;
cbcdb93d 333 struct cpu_purr_data *pme;
c6622f63 334
8b5621f1 335 pme = &__get_cpu_var(cpu_purr_data);
c6622f63 336 if (!pme->initialized)
db3801a8 337 return; /* !CPU_FTR_PURR or early in early boot */
c6622f63 338 tb = mftb();
cbcdb93d
SR
339 purr = mfspr(SPRN_PURR);
340 stolen = (tb - pme->tb) - (purr - pme->purr);
79741dd3
MS
341 if (stolen > 0) {
342 if (idle_task(smp_processor_id()) != current)
343 account_steal_time(stolen);
344 else
345 account_idle_time(stolen);
346 }
c6622f63
PM
347 pme->tb = tb;
348 pme->purr = purr;
c6622f63
PM
349}
350
4cefebb1 351#ifdef CONFIG_PPC_SPLPAR
c6622f63
PM
352/*
353 * Must be called before the cpu is added to the online map when
354 * a cpu is being brought up at runtime.
355 */
356static void snapshot_purr(void)
357{
cbcdb93d 358 struct cpu_purr_data *pme;
c6622f63
PM
359 unsigned long flags;
360
361 if (!cpu_has_feature(CPU_FTR_PURR))
362 return;
df211c8a 363 local_irq_save(flags);
8b5621f1 364 pme = &__get_cpu_var(cpu_purr_data);
cbcdb93d
SR
365 pme->tb = mftb();
366 pme->purr = mfspr(SPRN_PURR);
c6622f63 367 pme->initialized = 1;
df211c8a 368 local_irq_restore(flags);
c6622f63
PM
369}
370
371#endif /* CONFIG_PPC_SPLPAR */
372
373#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
374#define calc_cputime_factors()
c6622f63
PM
375#define calculate_steal_time() do { } while (0)
376#endif
377
378#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
379#define snapshot_purr() do { } while (0)
380#endif
381
382/*
383 * Called when a cpu comes up after the system has finished booting,
384 * i.e. as a result of a hotplug cpu action.
385 */
386void snapshot_timebase(void)
387{
c27da339 388 __get_cpu_var(last_jiffy) = get_tb_or_rtc();
c6622f63
PM
389 snapshot_purr();
390}
391
6defa38b
PM
392void __delay(unsigned long loops)
393{
394 unsigned long start;
395 int diff;
396
397 if (__USE_RTC()) {
398 start = get_rtcl();
399 do {
400 /* the RTCL register wraps at 1000000000 */
401 diff = get_rtcl() - start;
402 if (diff < 0)
403 diff += 1000000000;
404 } while (diff < loops);
405 } else {
406 start = get_tbl();
407 while (get_tbl() - start < loops)
408 HMT_low();
409 HMT_medium();
410 }
411}
412EXPORT_SYMBOL(__delay);
413
414void udelay(unsigned long usecs)
415{
416 __delay(tb_ticks_per_usec * usecs);
417}
418EXPORT_SYMBOL(udelay);
419
f2783c15 420static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
5d14a18d 421 u64 new_tb_to_xs)
1da177e4 422{
f2783c15
PM
423 /*
424 * tb_update_count is used to allow the userspace gettimeofday code
425 * to assure itself that it sees a consistent view of the tb_to_xs and
426 * stamp_xsec variables. It reads the tb_update_count, then reads
427 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
428 * the two values of tb_update_count match and are even then the
429 * tb_to_xs and stamp_xsec values are consistent. If not, then it
430 * loops back and reads them again until this criteria is met.
0a45d449
PM
431 * We expect the caller to have done the first increment of
432 * vdso_data->tb_update_count already.
f2783c15 433 */
a7f290da
BH
434 vdso_data->tb_orig_stamp = new_tb_stamp;
435 vdso_data->stamp_xsec = new_stamp_xsec;
436 vdso_data->tb_to_xs = new_tb_to_xs;
437 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
438 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
597bc5c0 439 vdso_data->stamp_xtime = xtime;
0d8d4d42 440 smp_wmb();
a7f290da 441 ++(vdso_data->tb_update_count);
f2783c15
PM
442}
443
1da177e4
LT
444#ifdef CONFIG_SMP
445unsigned long profile_pc(struct pt_regs *regs)
446{
447 unsigned long pc = instruction_pointer(regs);
448
449 if (in_lock_functions(pc))
450 return regs->link;
451
452 return pc;
453}
454EXPORT_SYMBOL(profile_pc);
455#endif
456
457#ifdef CONFIG_PPC_ISERIES
458
459/*
460 * This function recalibrates the timebase based on the 49-bit time-of-day
461 * value in the Titan chip. The Titan is much more accurate than the value
462 * returned by the service processor for the timebase frequency.
463 */
464
71712b45 465static int __init iSeries_tb_recal(void)
1da177e4
LT
466{
467 struct div_result divres;
468 unsigned long titan, tb;
71712b45
TB
469
470 /* Make sure we only run on iSeries */
471 if (!firmware_has_feature(FW_FEATURE_ISERIES))
472 return -ENODEV;
473
1da177e4
LT
474 tb = get_tb();
475 titan = HvCallXm_loadTod();
476 if ( iSeries_recal_titan ) {
477 unsigned long tb_ticks = tb - iSeries_recal_tb;
478 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
479 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
480 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
481 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
482 char sign = '+';
483 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
484 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
485
486 if ( tick_diff < 0 ) {
487 tick_diff = -tick_diff;
488 sign = '-';
489 }
490 if ( tick_diff ) {
491 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
492 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
493 new_tb_ticks_per_jiffy, sign, tick_diff );
494 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
495 tb_ticks_per_sec = new_tb_ticks_per_sec;
c6622f63 496 calc_cputime_factors();
1da177e4 497 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
1da177e4 498 tb_to_xs = divres.result_low;
a7f290da
BH
499 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
500 vdso_data->tb_to_xs = tb_to_xs;
1da177e4
LT
501 }
502 else {
503 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
504 " new tb_ticks_per_jiffy = %lu\n"
505 " old tb_ticks_per_jiffy = %lu\n",
506 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
507 }
508 }
509 }
510 iSeries_recal_titan = titan;
511 iSeries_recal_tb = tb;
71712b45 512
4a4cfe38
TB
513 /* Called here as now we know accurate values for the timebase */
514 clocksource_init();
71712b45 515 return 0;
1da177e4 516}
71712b45
TB
517late_initcall(iSeries_tb_recal);
518
519/* Called from platform early init */
520void __init iSeries_time_init_early(void)
521{
522 iSeries_recal_tb = get_tb();
523 iSeries_recal_titan = HvCallXm_loadTod();
524}
525#endif /* CONFIG_PPC_ISERIES */
1da177e4
LT
526
527/*
528 * For iSeries shared processors, we have to let the hypervisor
529 * set the hardware decrementer. We set a virtual decrementer
530 * in the lppaca and call the hypervisor if the virtual
531 * decrementer is less than the current value in the hardware
532 * decrementer. (almost always the new decrementer value will
533 * be greater than the current hardware decementer so the hypervisor
534 * call will not be needed)
535 */
536
1da177e4
LT
537/*
538 * timer_interrupt - gets called when the decrementer overflows,
539 * with interrupts disabled.
540 */
c7aeffc4 541void timer_interrupt(struct pt_regs * regs)
1da177e4 542{
7d12e780 543 struct pt_regs *old_regs;
6e6b44e8
MM
544 struct decrementer_clock *decrementer = &__get_cpu_var(decrementers);
545 struct clock_event_device *evt = &decrementer->event;
d968014b 546 u64 now;
d831d0b8
TB
547
548 /* Ensure a positive value is written to the decrementer, or else
549 * some CPUs will continuue to take decrementer exceptions */
550 set_dec(DECREMENTER_MAX);
f2783c15
PM
551
552#ifdef CONFIG_PPC32
553 if (atomic_read(&ppc_n_lost_interrupts) != 0)
554 do_IRQ(regs);
555#endif
1da177e4 556
d968014b 557 now = get_tb_or_rtc();
6e6b44e8 558 if (now < decrementer->next_tb) {
d968014b 559 /* not time for this event yet */
6e6b44e8 560 now = decrementer->next_tb - now;
d968014b 561 if (now <= DECREMENTER_MAX)
43875cc0 562 set_dec((int)now);
d968014b
PM
563 return;
564 }
7d12e780 565 old_regs = set_irq_regs(regs);
1da177e4
LT
566 irq_enter();
567
c6622f63 568 calculate_steal_time();
1da177e4 569
f2783c15 570#ifdef CONFIG_PPC_ISERIES
501b6d29
SR
571 if (firmware_has_feature(FW_FEATURE_ISERIES))
572 get_lppaca()->int_dword.fields.decr_int = 0;
f2783c15
PM
573#endif
574
d831d0b8
TB
575 if (evt->event_handler)
576 evt->event_handler(evt);
1da177e4
LT
577
578#ifdef CONFIG_PPC_ISERIES
501b6d29 579 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
35a84c2f 580 process_hvlpevents();
1da177e4
LT
581#endif
582
f2783c15 583#ifdef CONFIG_PPC64
8d15a3e5 584 /* collect purr register values often, for accurate calculations */
1ababe11 585 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1da177e4
LT
586 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
587 cu->current_tb = mfspr(SPRN_PURR);
588 }
f2783c15 589#endif
1da177e4
LT
590
591 irq_exit();
7d12e780 592 set_irq_regs(old_regs);
1da177e4
LT
593}
594
f2783c15
PM
595void wakeup_decrementer(void)
596{
092b8f34 597 unsigned long ticks;
f2783c15 598
f2783c15 599 /*
092b8f34
PM
600 * The timebase gets saved on sleep and restored on wakeup,
601 * so all we need to do is to reset the decrementer.
f2783c15 602 */
092b8f34
PM
603 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
604 if (ticks < tb_ticks_per_jiffy)
605 ticks = tb_ticks_per_jiffy - ticks;
606 else
607 ticks = 1;
608 set_dec(ticks);
f2783c15
PM
609}
610
7ac5dde9
SW
611#ifdef CONFIG_SUSPEND
612void generic_suspend_disable_irqs(void)
613{
614 preempt_disable();
615
616 /* Disable the decrementer, so that it doesn't interfere
617 * with suspending.
618 */
619
620 set_dec(0x7fffffff);
621 local_irq_disable();
622 set_dec(0x7fffffff);
623}
624
625void generic_suspend_enable_irqs(void)
626{
627 wakeup_decrementer();
628
629 local_irq_enable();
630 preempt_enable();
631}
632
633/* Overrides the weak version in kernel/power/main.c */
634void arch_suspend_disable_irqs(void)
635{
636 if (ppc_md.suspend_disable_irqs)
637 ppc_md.suspend_disable_irqs();
638 generic_suspend_disable_irqs();
639}
640
641/* Overrides the weak version in kernel/power/main.c */
642void arch_suspend_enable_irqs(void)
643{
644 generic_suspend_enable_irqs();
645 if (ppc_md.suspend_enable_irqs)
646 ppc_md.suspend_enable_irqs();
647}
648#endif
649
a5b518ed 650#ifdef CONFIG_SMP
f2783c15
PM
651void __init smp_space_timers(unsigned int max_cpus)
652{
653 int i;
eb36c288 654 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
f2783c15 655
cbe62e2b
PM
656 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
657 previous_tb -= tb_ticks_per_jiffy;
e147ec8f 658
0e551954 659 for_each_possible_cpu(i) {
c6622f63
PM
660 if (i == boot_cpuid)
661 continue;
e147ec8f 662 per_cpu(last_jiffy, i) = previous_tb;
f2783c15
PM
663 }
664}
665#endif
666
1da177e4
LT
667/*
668 * Scheduler clock - returns current time in nanosec units.
669 *
670 * Note: mulhdu(a, b) (multiply high double unsigned) returns
671 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
672 * are 64-bit unsigned numbers.
673 */
674unsigned long long sched_clock(void)
675{
96c44507
PM
676 if (__USE_RTC())
677 return get_rtc();
fc9069fe 678 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
679}
680
0bb474a4 681static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
682{
683 struct device_node *cpu;
a7f67bdf 684 const unsigned int *fp;
0bb474a4 685 int found = 0;
10f7e7c1 686
0bb474a4 687 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
688 cpu = of_find_node_by_type(NULL, "cpu");
689
d8a8188d 690 if (cpu) {
e2eb6392 691 fp = of_get_property(cpu, name, NULL);
d8a8188d 692 if (fp) {
0bb474a4 693 found = 1;
a4dc7ff0 694 *val = of_read_ulong(fp, cells);
10f7e7c1 695 }
0bb474a4
AB
696
697 of_node_put(cpu);
10f7e7c1 698 }
0bb474a4
AB
699
700 return found;
701}
702
703void __init generic_calibrate_decr(void)
704{
705 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
706
707 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
708 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
709
10f7e7c1
AB
710 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
711 "(not found)\n");
0bb474a4 712 }
10f7e7c1 713
0bb474a4
AB
714 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
715
716 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
717 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
718
719 printk(KERN_ERR "WARNING: Estimating processor frequency "
720 "(not found)\n");
10f7e7c1 721 }
0bb474a4 722
aab69292 723#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
0fd6f717
KG
724 /* Clear any pending timer interrupts */
725 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
726
727 /* Enable decrementer interrupt */
728 mtspr(SPRN_TCR, TCR_DIE);
729#endif
10f7e7c1 730}
10f7e7c1 731
aa3be5f3 732int update_persistent_clock(struct timespec now)
f2783c15
PM
733{
734 struct rtc_time tm;
735
aa3be5f3
TB
736 if (!ppc_md.set_rtc_time)
737 return 0;
738
739 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
740 tm.tm_year -= 1900;
741 tm.tm_mon -= 1;
742
743 return ppc_md.set_rtc_time(&tm);
744}
745
746unsigned long read_persistent_clock(void)
747{
748 struct rtc_time tm;
749 static int first = 1;
750
751 /* XXX this is a litle fragile but will work okay in the short term */
752 if (first) {
753 first = 0;
754 if (ppc_md.time_init)
755 timezone_offset = ppc_md.time_init();
756
757 /* get_boot_time() isn't guaranteed to be safe to call late */
758 if (ppc_md.get_boot_time)
759 return ppc_md.get_boot_time() -timezone_offset;
760 }
f2783c15
PM
761 if (!ppc_md.get_rtc_time)
762 return 0;
763 ppc_md.get_rtc_time(&tm);
764 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
765 tm.tm_hour, tm.tm_min, tm.tm_sec);
766}
767
4a4cfe38 768/* clocksource code */
8e19608e 769static cycle_t rtc_read(struct clocksource *cs)
4a4cfe38
TB
770{
771 return (cycle_t)get_rtc();
772}
773
8e19608e 774static cycle_t timebase_read(struct clocksource *cs)
4a4cfe38
TB
775{
776 return (cycle_t)get_tb();
777}
778
779void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
780{
781 u64 t2x, stamp_xsec;
782
783 if (clock != &clocksource_timebase)
784 return;
785
786 /* Make userspace gettimeofday spin until we're done. */
787 ++vdso_data->tb_update_count;
788 smp_mb();
789
790 /* XXX this assumes clock->shift == 22 */
791 /* 4611686018 ~= 2^(20+64-22) / 1e9 */
792 t2x = (u64) clock->mult * 4611686018ULL;
793 stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
794 do_div(stamp_xsec, 1000000000);
795 stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
796 update_gtod(clock->cycle_last, stamp_xsec, t2x);
797}
798
799void update_vsyscall_tz(void)
800{
801 /* Make userspace gettimeofday spin until we're done. */
802 ++vdso_data->tb_update_count;
803 smp_mb();
804 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
805 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
806 smp_mb();
807 ++vdso_data->tb_update_count;
808}
809
1c21a293 810static void __init clocksource_init(void)
4a4cfe38
TB
811{
812 struct clocksource *clock;
813
814 if (__USE_RTC())
815 clock = &clocksource_rtc;
816 else
817 clock = &clocksource_timebase;
818
819 clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
820
821 if (clocksource_register(clock)) {
822 printk(KERN_ERR "clocksource: %s is already registered\n",
823 clock->name);
824 return;
825 }
826
827 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
828 clock->name, clock->mult, clock->shift);
829}
830
d831d0b8
TB
831static int decrementer_set_next_event(unsigned long evt,
832 struct clock_event_device *dev)
833{
6e6b44e8 834 __get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
d831d0b8
TB
835 set_dec(evt);
836 return 0;
837}
838
839static void decrementer_set_mode(enum clock_event_mode mode,
840 struct clock_event_device *dev)
841{
842 if (mode != CLOCK_EVT_MODE_ONESHOT)
843 decrementer_set_next_event(DECREMENTER_MAX, dev);
844}
845
8d165db1
AB
846static void __init setup_clockevent_multiplier(unsigned long hz)
847{
848 u64 mult, shift = 32;
849
850 while (1) {
851 mult = div_sc(hz, NSEC_PER_SEC, shift);
852 if (mult && (mult >> 32UL) == 0UL)
853 break;
854
855 shift--;
856 }
857
858 decrementer_clockevent.shift = shift;
859 decrementer_clockevent.mult = mult;
860}
861
d831d0b8
TB
862static void register_decrementer_clockevent(int cpu)
863{
6e6b44e8 864 struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
d831d0b8
TB
865
866 *dec = decrementer_clockevent;
320ab2b0 867 dec->cpumask = cpumask_of(cpu);
d831d0b8 868
0302f12e 869 printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
d831d0b8
TB
870 dec->name, dec->mult, dec->shift, cpu);
871
872 clockevents_register_device(dec);
873}
874
c481887f 875static void __init init_decrementer_clockevent(void)
d831d0b8
TB
876{
877 int cpu = smp_processor_id();
878
8d165db1 879 setup_clockevent_multiplier(ppc_tb_freq);
d831d0b8
TB
880 decrementer_clockevent.max_delta_ns =
881 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
43875cc0
PM
882 decrementer_clockevent.min_delta_ns =
883 clockevent_delta2ns(2, &decrementer_clockevent);
d831d0b8
TB
884
885 register_decrementer_clockevent(cpu);
886}
887
888void secondary_cpu_time_init(void)
889{
890 /* FIME: Should make unrelatred change to move snapshot_timebase
891 * call here ! */
892 register_decrementer_clockevent(smp_processor_id());
893}
894
f2783c15 895/* This function is only called on the boot processor */
1da177e4
LT
896void __init time_init(void)
897{
1da177e4 898 unsigned long flags;
1da177e4 899 struct div_result res;
092b8f34 900 u64 scale, x;
f2783c15
PM
901 unsigned shift;
902
96c44507
PM
903 if (__USE_RTC()) {
904 /* 601 processor: dec counts down by 128 every 128ns */
905 ppc_tb_freq = 1000000000;
eb36c288 906 tb_last_jiffy = get_rtcl();
96c44507
PM
907 } else {
908 /* Normal PowerPC with timebase register */
909 ppc_md.calibrate_decr();
224ad80a 910 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 911 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 912 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 913 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
eb36c288 914 tb_last_jiffy = get_tb();
96c44507 915 }
374e99d4
PM
916
917 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 918 tb_ticks_per_sec = ppc_tb_freq;
374e99d4
PM
919 tb_ticks_per_usec = ppc_tb_freq / 1000000;
920 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
c6622f63 921 calc_cputime_factors();
092b8f34
PM
922
923 /*
924 * Calculate the length of each tick in ns. It will not be
925 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
926 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
927 * rounded up.
928 */
929 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
930 do_div(x, ppc_tb_freq);
931 tick_nsec = x;
932 last_tick_len = x << TICKLEN_SCALE;
933
934 /*
935 * Compute ticklen_to_xs, which is a factor which gets multiplied
936 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
937 * It is computed as:
938 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
939 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
0a45d449
PM
940 * which turns out to be N = 51 - SHIFT_HZ.
941 * This gives the result as a 0.64 fixed-point fraction.
942 * That value is reduced by an offset amounting to 1 xsec per
943 * 2^31 timebase ticks to avoid problems with time going backwards
944 * by 1 xsec when we do timer_recalc_offset due to losing the
945 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
946 * since there are 2^20 xsec in a second.
092b8f34 947 */
0a45d449
PM
948 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
949 tb_ticks_per_jiffy << SHIFT_HZ, &res);
092b8f34
PM
950 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
951 ticklen_to_xs = res.result_low;
952
953 /* Compute tb_to_xs from tick_nsec */
954 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
374e99d4 955
1da177e4
LT
956 /*
957 * Compute scale factor for sched_clock.
958 * The calibrate_decr() function has set tb_ticks_per_sec,
959 * which is the timebase frequency.
960 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
961 * the 128-bit result as a 64.64 fixed-point number.
962 * We then shift that number right until it is less than 1.0,
963 * giving us the scale factor and shift count to use in
964 * sched_clock().
965 */
966 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
967 scale = res.result_low;
968 for (shift = 0; res.result_high != 0; ++shift) {
969 scale = (scale >> 1) | (res.result_high << 63);
970 res.result_high >>= 1;
971 }
972 tb_to_ns_scale = scale;
973 tb_to_ns_shift = shift;
fc9069fe 974 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 975 boot_tb = get_tb_or_rtc();
1da177e4 976
1da177e4 977 write_seqlock_irqsave(&xtime_lock, flags);
092b8f34
PM
978
979 /* If platform provided a timezone (pmac), we correct the time */
980 if (timezone_offset) {
981 sys_tz.tz_minuteswest = -timezone_offset / 60;
982 sys_tz.tz_dsttime = 0;
092b8f34
PM
983 }
984
a7f290da
BH
985 vdso_data->tb_orig_stamp = tb_last_jiffy;
986 vdso_data->tb_update_count = 0;
987 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
092b8f34 988 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
a7f290da 989 vdso_data->tb_to_xs = tb_to_xs;
1da177e4 990
1da177e4
LT
991 write_sequnlock_irqrestore(&xtime_lock, flags);
992
4a4cfe38
TB
993 /* Register the clocksource, if we're not running on iSeries */
994 if (!firmware_has_feature(FW_FEATURE_ISERIES))
995 clocksource_init();
996
d831d0b8 997 init_decrementer_clockevent();
1da177e4
LT
998}
999
1da177e4 1000
1da177e4
LT
1001#define FEBRUARY 2
1002#define STARTOFTIME 1970
1003#define SECDAY 86400L
1004#define SECYR (SECDAY * 365)
f2783c15
PM
1005#define leapyear(year) ((year) % 4 == 0 && \
1006 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
1007#define days_in_year(a) (leapyear(a) ? 366 : 365)
1008#define days_in_month(a) (month_days[(a) - 1])
1009
1010static int month_days[12] = {
1011 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1012};
1013
1014/*
1015 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1016 */
1017void GregorianDay(struct rtc_time * tm)
1018{
1019 int leapsToDate;
1020 int lastYear;
1021 int day;
1022 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1023
f2783c15 1024 lastYear = tm->tm_year - 1;
1da177e4
LT
1025
1026 /*
1027 * Number of leap corrections to apply up to end of last year
1028 */
f2783c15 1029 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
1030
1031 /*
1032 * This year is a leap year if it is divisible by 4 except when it is
1033 * divisible by 100 unless it is divisible by 400
1034 *
f2783c15 1035 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 1036 */
f2783c15 1037 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
1038
1039 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1040 tm->tm_mday;
1041
f2783c15 1042 tm->tm_wday = day % 7;
1da177e4
LT
1043}
1044
1045void to_tm(int tim, struct rtc_time * tm)
1046{
1047 register int i;
1048 register long hms, day;
1049
1050 day = tim / SECDAY;
1051 hms = tim % SECDAY;
1052
1053 /* Hours, minutes, seconds are easy */
1054 tm->tm_hour = hms / 3600;
1055 tm->tm_min = (hms % 3600) / 60;
1056 tm->tm_sec = (hms % 3600) % 60;
1057
1058 /* Number of years in days */
1059 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1060 day -= days_in_year(i);
1061 tm->tm_year = i;
1062
1063 /* Number of months in days left */
1064 if (leapyear(tm->tm_year))
1065 days_in_month(FEBRUARY) = 29;
1066 for (i = 1; day >= days_in_month(i); i++)
1067 day -= days_in_month(i);
1068 days_in_month(FEBRUARY) = 28;
1069 tm->tm_mon = i;
1070
1071 /* Days are what is left over (+1) from all that. */
1072 tm->tm_mday = day + 1;
1073
1074 /*
1075 * Determine the day of week
1076 */
1077 GregorianDay(tm);
1078}
1079
1080/* Auxiliary function to compute scaling factors */
1081/* Actually the choice of a timebase running at 1/4 the of the bus
1082 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1083 * It makes this computation very precise (27-28 bits typically) which
1084 * is optimistic considering the stability of most processor clock
1085 * oscillators and the precision with which the timebase frequency
1086 * is measured but does not harm.
1087 */
f2783c15
PM
1088unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1089{
1da177e4
LT
1090 unsigned mlt=0, tmp, err;
1091 /* No concern for performance, it's done once: use a stupid
1092 * but safe and compact method to find the multiplier.
1093 */
1094
1095 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
f2783c15
PM
1096 if (mulhwu(inscale, mlt|tmp) < outscale)
1097 mlt |= tmp;
1da177e4
LT
1098 }
1099
1100 /* We might still be off by 1 for the best approximation.
1101 * A side effect of this is that if outscale is too large
1102 * the returned value will be zero.
1103 * Many corner cases have been checked and seem to work,
1104 * some might have been forgotten in the test however.
1105 */
1106
f2783c15
PM
1107 err = inscale * (mlt+1);
1108 if (err <= inscale/2)
1109 mlt++;
1da177e4 1110 return mlt;
f2783c15 1111}
1da177e4
LT
1112
1113/*
1114 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1115 * result.
1116 */
f2783c15
PM
1117void div128_by_32(u64 dividend_high, u64 dividend_low,
1118 unsigned divisor, struct div_result *dr)
1da177e4 1119{
f2783c15
PM
1120 unsigned long a, b, c, d;
1121 unsigned long w, x, y, z;
1122 u64 ra, rb, rc;
1da177e4
LT
1123
1124 a = dividend_high >> 32;
1125 b = dividend_high & 0xffffffff;
1126 c = dividend_low >> 32;
1127 d = dividend_low & 0xffffffff;
1128
f2783c15
PM
1129 w = a / divisor;
1130 ra = ((u64)(a - (w * divisor)) << 32) + b;
1131
f2783c15
PM
1132 rb = ((u64) do_div(ra, divisor) << 32) + c;
1133 x = ra;
1da177e4 1134
f2783c15
PM
1135 rc = ((u64) do_div(rb, divisor) << 32) + d;
1136 y = rb;
1137
1138 do_div(rc, divisor);
1139 z = rc;
1da177e4 1140
f2783c15
PM
1141 dr->result_high = ((u64)w << 32) + x;
1142 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1143
1144}
bcd68a70
GU
1145
1146static int __init rtc_init(void)
1147{
1148 struct platform_device *pdev;
1149
1150 if (!ppc_md.get_rtc_time)
1151 return -ENODEV;
1152
1153 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1154 if (IS_ERR(pdev))
1155 return PTR_ERR(pdev);
1156
1157 return 0;
1158}
1159
1160module_init(rtc_init);
This page took 0.447293 seconds and 5 git commands to generate.