powerpc: fix typo 'CONFIG_PPC_CPU'
[deliverable/linux.git] / arch / powerpc / kernel / time.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
f5339277 20 * measurement at boot time.
1da177e4
LT
21 * - for astronomical applications: add a new function to get
22 * non ambiguous timestamps even around leap seconds. This needs
23 * a new timestamp format and a good name.
24 *
25 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
26 * "A Kernel Model for Precision Timekeeping" by Dave Mills
27 *
28 * This program is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU General Public License
30 * as published by the Free Software Foundation; either version
31 * 2 of the License, or (at your option) any later version.
32 */
33
1da177e4 34#include <linux/errno.h>
4b16f8e2 35#include <linux/export.h>
1da177e4
LT
36#include <linux/sched.h>
37#include <linux/kernel.h>
38#include <linux/param.h>
39#include <linux/string.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/timex.h>
43#include <linux/kernel_stat.h>
1da177e4 44#include <linux/time.h>
0d948730 45#include <linux/clockchips.h>
1da177e4
LT
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
f2783c15
PM
50#include <linux/percpu.h>
51#include <linux/rtc.h>
092b8f34 52#include <linux/jiffies.h>
c6622f63 53#include <linux/posix-timers.h>
7d12e780 54#include <linux/irq.h>
177996e6 55#include <linux/delay.h>
e360adbe 56#include <linux/irq_work.h>
6795b85c 57#include <asm/trace.h>
1da177e4 58
1da177e4
LT
59#include <asm/io.h>
60#include <asm/processor.h>
61#include <asm/nvram.h>
62#include <asm/cache.h>
63#include <asm/machdep.h>
1da177e4
LT
64#include <asm/uaccess.h>
65#include <asm/time.h>
1da177e4 66#include <asm/prom.h>
f2783c15
PM
67#include <asm/irq.h>
68#include <asm/div64.h>
2249ca9d 69#include <asm/smp.h>
a7f290da 70#include <asm/vdso_datapage.h>
1ababe11 71#include <asm/firmware.h>
06b8e878 72#include <asm/cputime.h>
1da177e4 73
4a4cfe38
TB
74/* powerpc clocksource/clockevent code */
75
d831d0b8 76#include <linux/clockchips.h>
189374ae 77#include <linux/timekeeper_internal.h>
4a4cfe38 78
8e19608e 79static cycle_t rtc_read(struct clocksource *);
4a4cfe38
TB
80static struct clocksource clocksource_rtc = {
81 .name = "rtc",
82 .rating = 400,
83 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
84 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
85 .read = rtc_read,
86};
87
8e19608e 88static cycle_t timebase_read(struct clocksource *);
4a4cfe38
TB
89static struct clocksource clocksource_timebase = {
90 .name = "timebase",
91 .rating = 400,
92 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
93 .mask = CLOCKSOURCE_MASK(64),
4a4cfe38
TB
94 .read = timebase_read,
95};
96
d831d0b8
TB
97#define DECREMENTER_MAX 0x7fffffff
98
99static int decrementer_set_next_event(unsigned long evt,
100 struct clock_event_device *dev);
101static void decrementer_set_mode(enum clock_event_mode mode,
102 struct clock_event_device *dev);
103
6e35994d 104struct clock_event_device decrementer_clockevent = {
621692cb
AB
105 .name = "decrementer",
106 .rating = 200,
107 .irq = 0,
108 .set_next_event = decrementer_set_next_event,
109 .set_mode = decrementer_set_mode,
0d948730 110 .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP,
d831d0b8 111};
6e35994d 112EXPORT_SYMBOL(decrementer_clockevent);
d831d0b8 113
7df10275
AB
114DEFINE_PER_CPU(u64, decrementers_next_tb);
115static DEFINE_PER_CPU(struct clock_event_device, decrementers);
d831d0b8 116
1da177e4
LT
117#define XSEC_PER_SEC (1024*1024)
118
f2783c15
PM
119#ifdef CONFIG_PPC64
120#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
121#else
122/* compute ((xsec << 12) * max) >> 32 */
123#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
124#endif
125
1da177e4
LT
126unsigned long tb_ticks_per_jiffy;
127unsigned long tb_ticks_per_usec = 100; /* sane default */
128EXPORT_SYMBOL(tb_ticks_per_usec);
129unsigned long tb_ticks_per_sec;
2cf82c02 130EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
092b8f34 131
1da177e4 132DEFINE_SPINLOCK(rtc_lock);
6ae3db11 133EXPORT_SYMBOL_GPL(rtc_lock);
1da177e4 134
fc9069fe
TB
135static u64 tb_to_ns_scale __read_mostly;
136static unsigned tb_to_ns_shift __read_mostly;
364a1246 137static u64 boot_tb __read_mostly;
1da177e4 138
1da177e4 139extern struct timezone sys_tz;
f2783c15 140static long timezone_offset;
1da177e4 141
10f7e7c1 142unsigned long ppc_proc_freq;
55ec2fca 143EXPORT_SYMBOL_GPL(ppc_proc_freq);
10f7e7c1 144unsigned long ppc_tb_freq;
55ec2fca 145EXPORT_SYMBOL_GPL(ppc_tb_freq);
96c44507 146
abf917cd 147#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
c6622f63
PM
148/*
149 * Factors for converting from cputime_t (timebase ticks) to
9f5072d4 150 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
c6622f63
PM
151 * These are all stored as 0.64 fixed-point binary fractions.
152 */
153u64 __cputime_jiffies_factor;
2cf82c02 154EXPORT_SYMBOL(__cputime_jiffies_factor);
9f5072d4
AS
155u64 __cputime_usec_factor;
156EXPORT_SYMBOL(__cputime_usec_factor);
c6622f63 157u64 __cputime_sec_factor;
2cf82c02 158EXPORT_SYMBOL(__cputime_sec_factor);
c6622f63 159u64 __cputime_clockt_factor;
2cf82c02 160EXPORT_SYMBOL(__cputime_clockt_factor);
06b8e878
MN
161DEFINE_PER_CPU(unsigned long, cputime_last_delta);
162DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
c6622f63 163
a42548a1
SG
164cputime_t cputime_one_jiffy;
165
872e439a
PM
166void (*dtl_consumer)(struct dtl_entry *, u64);
167
c6622f63
PM
168static void calc_cputime_factors(void)
169{
170 struct div_result res;
171
172 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
173 __cputime_jiffies_factor = res.result_low;
9f5072d4
AS
174 div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
175 __cputime_usec_factor = res.result_low;
c6622f63
PM
176 div128_by_32(1, 0, tb_ticks_per_sec, &res);
177 __cputime_sec_factor = res.result_low;
178 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
179 __cputime_clockt_factor = res.result_low;
180}
181
182/*
cf9efce0
PM
183 * Read the SPURR on systems that have it, otherwise the PURR,
184 * or if that doesn't exist return the timebase value passed in.
c6622f63 185 */
cf9efce0 186static u64 read_spurr(u64 tb)
c6622f63 187{
cf9efce0
PM
188 if (cpu_has_feature(CPU_FTR_SPURR))
189 return mfspr(SPRN_SPURR);
c6622f63
PM
190 if (cpu_has_feature(CPU_FTR_PURR))
191 return mfspr(SPRN_PURR);
cf9efce0 192 return tb;
c6622f63
PM
193}
194
cf9efce0
PM
195#ifdef CONFIG_PPC_SPLPAR
196
4603ac18 197/*
cf9efce0
PM
198 * Scan the dispatch trace log and count up the stolen time.
199 * Should be called with interrupts disabled.
4603ac18 200 */
cf9efce0 201static u64 scan_dispatch_log(u64 stop_tb)
4603ac18 202{
872e439a 203 u64 i = local_paca->dtl_ridx;
cf9efce0
PM
204 struct dtl_entry *dtl = local_paca->dtl_curr;
205 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
206 struct lppaca *vpa = local_paca->lppaca_ptr;
207 u64 tb_delta;
208 u64 stolen = 0;
209 u64 dtb;
210
84ffae55
AB
211 if (!dtl)
212 return 0;
213
7ffcf8ec 214 if (i == be64_to_cpu(vpa->dtl_idx))
cf9efce0 215 return 0;
7ffcf8ec 216 while (i < be64_to_cpu(vpa->dtl_idx)) {
7ffcf8ec
AB
217 dtb = be64_to_cpu(dtl->timebase);
218 tb_delta = be32_to_cpu(dtl->enqueue_to_dispatch_time) +
219 be32_to_cpu(dtl->ready_to_enqueue_time);
cf9efce0 220 barrier();
7ffcf8ec 221 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
cf9efce0 222 /* buffer has overflowed */
7ffcf8ec 223 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
cf9efce0
PM
224 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
225 continue;
226 }
227 if (dtb > stop_tb)
228 break;
84b07386
AB
229 if (dtl_consumer)
230 dtl_consumer(dtl, i);
cf9efce0
PM
231 stolen += tb_delta;
232 ++i;
233 ++dtl;
234 if (dtl == dtl_end)
235 dtl = local_paca->dispatch_log;
236 }
237 local_paca->dtl_ridx = i;
238 local_paca->dtl_curr = dtl;
239 return stolen;
4603ac18
MN
240}
241
cf9efce0
PM
242/*
243 * Accumulate stolen time by scanning the dispatch trace log.
244 * Called on entry from user mode.
245 */
246void accumulate_stolen_time(void)
247{
248 u64 sst, ust;
249
b18ae08d 250 u8 save_soft_enabled = local_paca->soft_enabled;
b18ae08d
TH
251
252 /* We are called early in the exception entry, before
253 * soft/hard_enabled are sync'ed to the expected state
254 * for the exception. We are hard disabled but the PACA
255 * needs to reflect that so various debug stuff doesn't
256 * complain
257 */
258 local_paca->soft_enabled = 0;
b18ae08d
TH
259
260 sst = scan_dispatch_log(local_paca->starttime_user);
261 ust = scan_dispatch_log(local_paca->starttime);
262 local_paca->system_time -= sst;
263 local_paca->user_time -= ust;
264 local_paca->stolen_time += ust + sst;
265
266 local_paca->soft_enabled = save_soft_enabled;
cf9efce0
PM
267}
268
269static inline u64 calculate_stolen_time(u64 stop_tb)
270{
271 u64 stolen = 0;
272
7ffcf8ec 273 if (get_paca()->dtl_ridx != be64_to_cpu(get_lppaca()->dtl_idx)) {
cf9efce0
PM
274 stolen = scan_dispatch_log(stop_tb);
275 get_paca()->system_time -= stolen;
276 }
277
278 stolen += get_paca()->stolen_time;
279 get_paca()->stolen_time = 0;
280 return stolen;
4603ac18
MN
281}
282
cf9efce0
PM
283#else /* CONFIG_PPC_SPLPAR */
284static inline u64 calculate_stolen_time(u64 stop_tb)
285{
286 return 0;
287}
288
289#endif /* CONFIG_PPC_SPLPAR */
290
c6622f63
PM
291/*
292 * Account time for a transition between system, hard irq
293 * or soft irq state.
294 */
a7e1a9e3
FW
295static u64 vtime_delta(struct task_struct *tsk,
296 u64 *sys_scaled, u64 *stolen)
c6622f63 297{
a7e1a9e3
FW
298 u64 now, nowscaled, deltascaled;
299 u64 udelta, delta, user_scaled;
c6622f63 300
1b2852b1
FW
301 WARN_ON_ONCE(!irqs_disabled());
302
cf9efce0 303 now = mftb();
4603ac18 304 nowscaled = read_spurr(now);
cf9efce0
PM
305 get_paca()->system_time += now - get_paca()->starttime;
306 get_paca()->starttime = now;
4603ac18
MN
307 deltascaled = nowscaled - get_paca()->startspurr;
308 get_paca()->startspurr = nowscaled;
cf9efce0 309
a7e1a9e3 310 *stolen = calculate_stolen_time(now);
cf9efce0
PM
311
312 delta = get_paca()->system_time;
313 get_paca()->system_time = 0;
314 udelta = get_paca()->user_time - get_paca()->utime_sspurr;
315 get_paca()->utime_sspurr = get_paca()->user_time;
316
317 /*
318 * Because we don't read the SPURR on every kernel entry/exit,
319 * deltascaled includes both user and system SPURR ticks.
320 * Apportion these ticks to system SPURR ticks and user
321 * SPURR ticks in the same ratio as the system time (delta)
322 * and user time (udelta) values obtained from the timebase
323 * over the same interval. The system ticks get accounted here;
324 * the user ticks get saved up in paca->user_time_scaled to be
325 * used by account_process_tick.
326 */
a7e1a9e3 327 *sys_scaled = delta;
cf9efce0
PM
328 user_scaled = udelta;
329 if (deltascaled != delta + udelta) {
330 if (udelta) {
a7e1a9e3
FW
331 *sys_scaled = deltascaled * delta / (delta + udelta);
332 user_scaled = deltascaled - *sys_scaled;
cf9efce0 333 } else {
a7e1a9e3 334 *sys_scaled = deltascaled;
cf9efce0
PM
335 }
336 }
337 get_paca()->user_time_scaled += user_scaled;
338
a7e1a9e3
FW
339 return delta;
340}
341
fd25b4c2 342void vtime_account_system(struct task_struct *tsk)
a7e1a9e3
FW
343{
344 u64 delta, sys_scaled, stolen;
345
346 delta = vtime_delta(tsk, &sys_scaled, &stolen);
347 account_system_time(tsk, 0, delta, sys_scaled);
348 if (stolen)
349 account_steal_time(stolen);
350}
c11f11fc 351EXPORT_SYMBOL_GPL(vtime_account_system);
a7e1a9e3 352
fd25b4c2 353void vtime_account_idle(struct task_struct *tsk)
a7e1a9e3
FW
354{
355 u64 delta, sys_scaled, stolen;
356
357 delta = vtime_delta(tsk, &sys_scaled, &stolen);
358 account_idle_time(delta + stolen);
c6622f63
PM
359}
360
361/*
bcebdf84
FW
362 * Transfer the user time accumulated in the paca
363 * by the exception entry and exit code to the generic
364 * process user time records.
c6622f63 365 * Must be called with interrupts disabled.
bcebdf84
FW
366 * Assumes that vtime_account_system/idle() has been called
367 * recently (i.e. since the last entry from usermode) so that
cf9efce0 368 * get_paca()->user_time_scaled is up to date.
c6622f63 369 */
bcebdf84 370void vtime_account_user(struct task_struct *tsk)
c6622f63 371{
4603ac18 372 cputime_t utime, utimescaled;
c6622f63
PM
373
374 utime = get_paca()->user_time;
cf9efce0 375 utimescaled = get_paca()->user_time_scaled;
c6622f63 376 get_paca()->user_time = 0;
cf9efce0
PM
377 get_paca()->user_time_scaled = 0;
378 get_paca()->utime_sspurr = 0;
457533a7 379 account_user_time(tsk, utime, utimescaled);
c6622f63
PM
380}
381
abf917cd 382#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
c6622f63 383#define calc_cputime_factors()
c6622f63
PM
384#endif
385
6defa38b
PM
386void __delay(unsigned long loops)
387{
388 unsigned long start;
389 int diff;
390
391 if (__USE_RTC()) {
392 start = get_rtcl();
393 do {
394 /* the RTCL register wraps at 1000000000 */
395 diff = get_rtcl() - start;
396 if (diff < 0)
397 diff += 1000000000;
398 } while (diff < loops);
399 } else {
400 start = get_tbl();
401 while (get_tbl() - start < loops)
402 HMT_low();
403 HMT_medium();
404 }
405}
406EXPORT_SYMBOL(__delay);
407
408void udelay(unsigned long usecs)
409{
410 __delay(tb_ticks_per_usec * usecs);
411}
412EXPORT_SYMBOL(udelay);
413
1da177e4
LT
414#ifdef CONFIG_SMP
415unsigned long profile_pc(struct pt_regs *regs)
416{
417 unsigned long pc = instruction_pointer(regs);
418
419 if (in_lock_functions(pc))
420 return regs->link;
421
422 return pc;
423}
424EXPORT_SYMBOL(profile_pc);
425#endif
426
e360adbe 427#ifdef CONFIG_IRQ_WORK
105988c0 428
0fe1ac48
PM
429/*
430 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
431 */
432#ifdef CONFIG_PPC64
e360adbe 433static inline unsigned long test_irq_work_pending(void)
105988c0 434{
0fe1ac48
PM
435 unsigned long x;
436
437 asm volatile("lbz %0,%1(13)"
438 : "=r" (x)
e360adbe 439 : "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
440 return x;
441}
442
e360adbe 443static inline void set_irq_work_pending_flag(void)
0fe1ac48
PM
444{
445 asm volatile("stb %0,%1(13)" : :
446 "r" (1),
e360adbe 447 "i" (offsetof(struct paca_struct, irq_work_pending)));
0fe1ac48
PM
448}
449
e360adbe 450static inline void clear_irq_work_pending(void)
0fe1ac48
PM
451{
452 asm volatile("stb %0,%1(13)" : :
453 "r" (0),
e360adbe 454 "i" (offsetof(struct paca_struct, irq_work_pending)));
105988c0
PM
455}
456
0fe1ac48
PM
457#else /* 32-bit */
458
e360adbe 459DEFINE_PER_CPU(u8, irq_work_pending);
0fe1ac48 460
e360adbe
PZ
461#define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
462#define test_irq_work_pending() __get_cpu_var(irq_work_pending)
463#define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
105988c0 464
0fe1ac48
PM
465#endif /* 32 vs 64 bit */
466
4f8b50bb 467void arch_irq_work_raise(void)
0fe1ac48
PM
468{
469 preempt_disable();
e360adbe 470 set_irq_work_pending_flag();
0fe1ac48
PM
471 set_dec(1);
472 preempt_enable();
473}
474
e360adbe 475#else /* CONFIG_IRQ_WORK */
105988c0 476
e360adbe
PZ
477#define test_irq_work_pending() 0
478#define clear_irq_work_pending()
105988c0 479
e360adbe 480#endif /* CONFIG_IRQ_WORK */
105988c0 481
1b783955
PM
482void __timer_interrupt(void)
483{
484 struct pt_regs *regs = get_irq_regs();
485 u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
486 struct clock_event_device *evt = &__get_cpu_var(decrementers);
487 u64 now;
488
489 trace_timer_interrupt_entry(regs);
490
491 if (test_irq_work_pending()) {
492 clear_irq_work_pending();
493 irq_work_run();
494 }
495
496 now = get_tb_or_rtc();
497 if (now >= *next_tb) {
498 *next_tb = ~(u64)0;
499 if (evt->event_handler)
500 evt->event_handler(evt);
501 __get_cpu_var(irq_stat).timer_irqs_event++;
502 } else {
503 now = *next_tb - now;
504 if (now <= DECREMENTER_MAX)
505 set_dec((int)now);
506 /* We may have raced with new irq work */
507 if (test_irq_work_pending())
508 set_dec(1);
509 __get_cpu_var(irq_stat).timer_irqs_others++;
510 }
511
512#ifdef CONFIG_PPC64
513 /* collect purr register values often, for accurate calculations */
514 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
515 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
516 cu->current_tb = mfspr(SPRN_PURR);
517 }
518#endif
519
520 trace_timer_interrupt_exit(regs);
521}
522
1da177e4
LT
523/*
524 * timer_interrupt - gets called when the decrementer overflows,
525 * with interrupts disabled.
526 */
c7aeffc4 527void timer_interrupt(struct pt_regs * regs)
1da177e4 528{
7d12e780 529 struct pt_regs *old_regs;
7df10275 530 u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
d831d0b8 531
963e5d3b
BH
532 /* Ensure a positive value is written to the decrementer, or else
533 * some CPUs will continue to take decrementer exceptions.
534 */
535 set_dec(DECREMENTER_MAX);
536
537 /* Some implementations of hotplug will get timer interrupts while
689dfa89
TC
538 * offline, just ignore these and we also need to set
539 * decrementers_next_tb as MAX to make sure __check_irq_replay
540 * don't replay timer interrupt when return, otherwise we'll trap
541 * here infinitely :(
963e5d3b 542 */
689dfa89
TC
543 if (!cpu_online(smp_processor_id())) {
544 *next_tb = ~(u64)0;
963e5d3b 545 return;
689dfa89 546 }
963e5d3b 547
7230c564
BH
548 /* Conditionally hard-enable interrupts now that the DEC has been
549 * bumped to its maximum value
550 */
551 may_hard_irq_enable();
552
89713ed1 553
b0d278b7 554#if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
f2783c15
PM
555 if (atomic_read(&ppc_n_lost_interrupts) != 0)
556 do_IRQ(regs);
557#endif
1da177e4 558
7d12e780 559 old_regs = set_irq_regs(regs);
1da177e4
LT
560 irq_enter();
561
1b783955 562 __timer_interrupt();
1da177e4 563 irq_exit();
7d12e780 564 set_irq_regs(old_regs);
1da177e4
LT
565}
566
dabe859e
PM
567/*
568 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
569 * left pending on exit from a KVM guest. We don't need to do anything
570 * to clear them, as they are edge-triggered.
571 */
572void hdec_interrupt(struct pt_regs *regs)
573{
574}
575
7ac5dde9 576#ifdef CONFIG_SUSPEND
d75d68cf 577static void generic_suspend_disable_irqs(void)
7ac5dde9 578{
7ac5dde9
SW
579 /* Disable the decrementer, so that it doesn't interfere
580 * with suspending.
581 */
582
621692cb 583 set_dec(DECREMENTER_MAX);
7ac5dde9 584 local_irq_disable();
621692cb 585 set_dec(DECREMENTER_MAX);
7ac5dde9
SW
586}
587
d75d68cf 588static void generic_suspend_enable_irqs(void)
7ac5dde9 589{
7ac5dde9 590 local_irq_enable();
7ac5dde9
SW
591}
592
593/* Overrides the weak version in kernel/power/main.c */
594void arch_suspend_disable_irqs(void)
595{
596 if (ppc_md.suspend_disable_irqs)
597 ppc_md.suspend_disable_irqs();
598 generic_suspend_disable_irqs();
599}
600
601/* Overrides the weak version in kernel/power/main.c */
602void arch_suspend_enable_irqs(void)
603{
604 generic_suspend_enable_irqs();
605 if (ppc_md.suspend_enable_irqs)
606 ppc_md.suspend_enable_irqs();
607}
608#endif
609
1da177e4
LT
610/*
611 * Scheduler clock - returns current time in nanosec units.
612 *
613 * Note: mulhdu(a, b) (multiply high double unsigned) returns
614 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
615 * are 64-bit unsigned numbers.
616 */
617unsigned long long sched_clock(void)
618{
96c44507
PM
619 if (__USE_RTC())
620 return get_rtc();
fc9069fe 621 return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
1da177e4
LT
622}
623
0bb474a4 624static int __init get_freq(char *name, int cells, unsigned long *val)
10f7e7c1
AB
625{
626 struct device_node *cpu;
6f7aba7b 627 const __be32 *fp;
0bb474a4 628 int found = 0;
10f7e7c1 629
0bb474a4 630 /* The cpu node should have timebase and clock frequency properties */
10f7e7c1
AB
631 cpu = of_find_node_by_type(NULL, "cpu");
632
d8a8188d 633 if (cpu) {
e2eb6392 634 fp = of_get_property(cpu, name, NULL);
d8a8188d 635 if (fp) {
0bb474a4 636 found = 1;
a4dc7ff0 637 *val = of_read_ulong(fp, cells);
10f7e7c1 638 }
0bb474a4
AB
639
640 of_node_put(cpu);
10f7e7c1 641 }
0bb474a4
AB
642
643 return found;
644}
645
77c0a700
BH
646void start_cpu_decrementer(void)
647{
648#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
649 /* Clear any pending timer interrupts */
650 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
651
652 /* Enable decrementer interrupt */
653 mtspr(SPRN_TCR, TCR_DIE);
654#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
655}
656
0bb474a4
AB
657void __init generic_calibrate_decr(void)
658{
659 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
660
661 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
662 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
663
10f7e7c1
AB
664 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
665 "(not found)\n");
0bb474a4 666 }
10f7e7c1 667
0bb474a4
AB
668 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
669
670 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
671 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
672
673 printk(KERN_ERR "WARNING: Estimating processor frequency "
674 "(not found)\n");
10f7e7c1 675 }
10f7e7c1 676}
10f7e7c1 677
aa3be5f3 678int update_persistent_clock(struct timespec now)
f2783c15
PM
679{
680 struct rtc_time tm;
681
aa3be5f3 682 if (!ppc_md.set_rtc_time)
023f333a 683 return -ENODEV;
aa3be5f3
TB
684
685 to_tm(now.tv_sec + 1 + timezone_offset, &tm);
686 tm.tm_year -= 1900;
687 tm.tm_mon -= 1;
688
689 return ppc_md.set_rtc_time(&tm);
690}
691
978d7eb3 692static void __read_persistent_clock(struct timespec *ts)
aa3be5f3
TB
693{
694 struct rtc_time tm;
695 static int first = 1;
696
d90246cd 697 ts->tv_nsec = 0;
aa3be5f3
TB
698 /* XXX this is a litle fragile but will work okay in the short term */
699 if (first) {
700 first = 0;
701 if (ppc_md.time_init)
702 timezone_offset = ppc_md.time_init();
703
704 /* get_boot_time() isn't guaranteed to be safe to call late */
d90246cd
MS
705 if (ppc_md.get_boot_time) {
706 ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
707 return;
708 }
709 }
710 if (!ppc_md.get_rtc_time) {
711 ts->tv_sec = 0;
712 return;
aa3be5f3 713 }
f2783c15 714 ppc_md.get_rtc_time(&tm);
978d7eb3 715
d4f587c6
MS
716 ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
717 tm.tm_hour, tm.tm_min, tm.tm_sec);
f2783c15
PM
718}
719
978d7eb3
BH
720void read_persistent_clock(struct timespec *ts)
721{
722 __read_persistent_clock(ts);
723
724 /* Sanitize it in case real time clock is set below EPOCH */
725 if (ts->tv_sec < 0) {
726 ts->tv_sec = 0;
727 ts->tv_nsec = 0;
728 }
729
730}
731
4a4cfe38 732/* clocksource code */
8e19608e 733static cycle_t rtc_read(struct clocksource *cs)
4a4cfe38
TB
734{
735 return (cycle_t)get_rtc();
736}
737
8e19608e 738static cycle_t timebase_read(struct clocksource *cs)
4a4cfe38
TB
739{
740 return (cycle_t)get_tb();
741}
742
70639421 743void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
7615856e 744 struct clocksource *clock, u32 mult)
4a4cfe38 745{
b0797b60 746 u64 new_tb_to_xs, new_stamp_xsec;
47916be4 747 u32 frac_sec;
4a4cfe38
TB
748
749 if (clock != &clocksource_timebase)
750 return;
751
752 /* Make userspace gettimeofday spin until we're done. */
753 ++vdso_data->tb_update_count;
754 smp_mb();
755
11b8633a
AB
756 /* 19342813113834067 ~= 2^(20+64) / 1e9 */
757 new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
06d518e3 758 new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
b0797b60 759 do_div(new_stamp_xsec, 1000000000);
06d518e3 760 new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
b0797b60 761
47916be4
TG
762 BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
763 /* this is tv_nsec / 1e9 as a 0.32 fraction */
764 frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
765
b0797b60
JS
766 /*
767 * tb_update_count is used to allow the userspace gettimeofday code
768 * to assure itself that it sees a consistent view of the tb_to_xs and
769 * stamp_xsec variables. It reads the tb_update_count, then reads
770 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
771 * the two values of tb_update_count match and are even then the
772 * tb_to_xs and stamp_xsec values are consistent. If not, then it
773 * loops back and reads them again until this criteria is met.
774 * We expect the caller to have done the first increment of
775 * vdso_data->tb_update_count already.
776 */
777 vdso_data->tb_orig_stamp = clock->cycle_last;
778 vdso_data->stamp_xsec = new_stamp_xsec;
779 vdso_data->tb_to_xs = new_tb_to_xs;
7615856e
JS
780 vdso_data->wtom_clock_sec = wtm->tv_sec;
781 vdso_data->wtom_clock_nsec = wtm->tv_nsec;
06d518e3 782 vdso_data->stamp_xtime = *wall_time;
0e469db8 783 vdso_data->stamp_sec_fraction = frac_sec;
b0797b60
JS
784 smp_wmb();
785 ++(vdso_data->tb_update_count);
4a4cfe38
TB
786}
787
788void update_vsyscall_tz(void)
789{
4a4cfe38
TB
790 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
791 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
4a4cfe38
TB
792}
793
1c21a293 794static void __init clocksource_init(void)
4a4cfe38
TB
795{
796 struct clocksource *clock;
797
798 if (__USE_RTC())
799 clock = &clocksource_rtc;
800 else
801 clock = &clocksource_timebase;
802
11b8633a 803 if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
4a4cfe38
TB
804 printk(KERN_ERR "clocksource: %s is already registered\n",
805 clock->name);
806 return;
807 }
808
809 printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
810 clock->name, clock->mult, clock->shift);
811}
812
d831d0b8
TB
813static int decrementer_set_next_event(unsigned long evt,
814 struct clock_event_device *dev)
815{
7df10275 816 __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
d831d0b8 817 set_dec(evt);
0215f7d8
BH
818
819 /* We may have raced with new irq work */
820 if (test_irq_work_pending())
821 set_dec(1);
822
d831d0b8
TB
823 return 0;
824}
825
826static void decrementer_set_mode(enum clock_event_mode mode,
827 struct clock_event_device *dev)
828{
829 if (mode != CLOCK_EVT_MODE_ONESHOT)
830 decrementer_set_next_event(DECREMENTER_MAX, dev);
831}
832
1b67bee1
SB
833/* Interrupt handler for the timer broadcast IPI */
834void tick_broadcast_ipi_handler(void)
835{
1b783955
PM
836 u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
837
838 *next_tb = get_tb_or_rtc();
839 __timer_interrupt();
1b67bee1
SB
840}
841
d831d0b8
TB
842static void register_decrementer_clockevent(int cpu)
843{
7df10275 844 struct clock_event_device *dec = &per_cpu(decrementers, cpu);
d831d0b8
TB
845
846 *dec = decrementer_clockevent;
320ab2b0 847 dec->cpumask = cpumask_of(cpu);
d831d0b8 848
b919ee82
AB
849 printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
850 dec->name, dec->mult, dec->shift, cpu);
d831d0b8
TB
851
852 clockevents_register_device(dec);
853}
854
c481887f 855static void __init init_decrementer_clockevent(void)
d831d0b8
TB
856{
857 int cpu = smp_processor_id();
858
d8afc6fd
AB
859 clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
860
d831d0b8
TB
861 decrementer_clockevent.max_delta_ns =
862 clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
43875cc0
PM
863 decrementer_clockevent.min_delta_ns =
864 clockevent_delta2ns(2, &decrementer_clockevent);
d831d0b8
TB
865
866 register_decrementer_clockevent(cpu);
867}
868
869void secondary_cpu_time_init(void)
870{
77c0a700
BH
871 /* Start the decrementer on CPUs that have manual control
872 * such as BookE
873 */
874 start_cpu_decrementer();
875
d831d0b8
TB
876 /* FIME: Should make unrelatred change to move snapshot_timebase
877 * call here ! */
878 register_decrementer_clockevent(smp_processor_id());
879}
880
f2783c15 881/* This function is only called on the boot processor */
1da177e4
LT
882void __init time_init(void)
883{
1da177e4 884 struct div_result res;
d75d68cf 885 u64 scale;
f2783c15
PM
886 unsigned shift;
887
96c44507
PM
888 if (__USE_RTC()) {
889 /* 601 processor: dec counts down by 128 every 128ns */
890 ppc_tb_freq = 1000000000;
96c44507
PM
891 } else {
892 /* Normal PowerPC with timebase register */
893 ppc_md.calibrate_decr();
224ad80a 894 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
96c44507 895 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
224ad80a 896 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
96c44507 897 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
96c44507 898 }
374e99d4
PM
899
900 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
092b8f34 901 tb_ticks_per_sec = ppc_tb_freq;
374e99d4 902 tb_ticks_per_usec = ppc_tb_freq / 1000000;
c6622f63 903 calc_cputime_factors();
a42548a1 904 setup_cputime_one_jiffy();
092b8f34 905
1da177e4
LT
906 /*
907 * Compute scale factor for sched_clock.
908 * The calibrate_decr() function has set tb_ticks_per_sec,
909 * which is the timebase frequency.
910 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
911 * the 128-bit result as a 64.64 fixed-point number.
912 * We then shift that number right until it is less than 1.0,
913 * giving us the scale factor and shift count to use in
914 * sched_clock().
915 */
916 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
917 scale = res.result_low;
918 for (shift = 0; res.result_high != 0; ++shift) {
919 scale = (scale >> 1) | (res.result_high << 63);
920 res.result_high >>= 1;
921 }
922 tb_to_ns_scale = scale;
923 tb_to_ns_shift = shift;
fc9069fe 924 /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
c27da339 925 boot_tb = get_tb_or_rtc();
1da177e4 926
092b8f34 927 /* If platform provided a timezone (pmac), we correct the time */
621692cb 928 if (timezone_offset) {
092b8f34
PM
929 sys_tz.tz_minuteswest = -timezone_offset / 60;
930 sys_tz.tz_dsttime = 0;
621692cb 931 }
092b8f34 932
a7f290da
BH
933 vdso_data->tb_update_count = 0;
934 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
1da177e4 935
77c0a700
BH
936 /* Start the decrementer on CPUs that have manual control
937 * such as BookE
938 */
939 start_cpu_decrementer();
940
f5339277
SR
941 /* Register the clocksource */
942 clocksource_init();
4a4cfe38 943
d831d0b8 944 init_decrementer_clockevent();
0d948730 945 tick_setup_hrtimer_broadcast();
1da177e4
LT
946}
947
1da177e4 948
1da177e4
LT
949#define FEBRUARY 2
950#define STARTOFTIME 1970
951#define SECDAY 86400L
952#define SECYR (SECDAY * 365)
f2783c15
PM
953#define leapyear(year) ((year) % 4 == 0 && \
954 ((year) % 100 != 0 || (year) % 400 == 0))
1da177e4
LT
955#define days_in_year(a) (leapyear(a) ? 366 : 365)
956#define days_in_month(a) (month_days[(a) - 1])
957
958static int month_days[12] = {
959 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
960};
961
962/*
963 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
964 */
965void GregorianDay(struct rtc_time * tm)
966{
967 int leapsToDate;
968 int lastYear;
969 int day;
970 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
971
f2783c15 972 lastYear = tm->tm_year - 1;
1da177e4
LT
973
974 /*
975 * Number of leap corrections to apply up to end of last year
976 */
f2783c15 977 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
1da177e4
LT
978
979 /*
980 * This year is a leap year if it is divisible by 4 except when it is
981 * divisible by 100 unless it is divisible by 400
982 *
f2783c15 983 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
1da177e4 984 */
f2783c15 985 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
1da177e4
LT
986
987 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
988 tm->tm_mday;
989
f2783c15 990 tm->tm_wday = day % 7;
1da177e4
LT
991}
992
993void to_tm(int tim, struct rtc_time * tm)
994{
995 register int i;
996 register long hms, day;
997
998 day = tim / SECDAY;
999 hms = tim % SECDAY;
1000
1001 /* Hours, minutes, seconds are easy */
1002 tm->tm_hour = hms / 3600;
1003 tm->tm_min = (hms % 3600) / 60;
1004 tm->tm_sec = (hms % 3600) % 60;
1005
1006 /* Number of years in days */
1007 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1008 day -= days_in_year(i);
1009 tm->tm_year = i;
1010
1011 /* Number of months in days left */
1012 if (leapyear(tm->tm_year))
1013 days_in_month(FEBRUARY) = 29;
1014 for (i = 1; day >= days_in_month(i); i++)
1015 day -= days_in_month(i);
1016 days_in_month(FEBRUARY) = 28;
1017 tm->tm_mon = i;
1018
1019 /* Days are what is left over (+1) from all that. */
1020 tm->tm_mday = day + 1;
1021
1022 /*
1023 * Determine the day of week
1024 */
1025 GregorianDay(tm);
1026}
1027
1da177e4
LT
1028/*
1029 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1030 * result.
1031 */
f2783c15
PM
1032void div128_by_32(u64 dividend_high, u64 dividend_low,
1033 unsigned divisor, struct div_result *dr)
1da177e4 1034{
f2783c15
PM
1035 unsigned long a, b, c, d;
1036 unsigned long w, x, y, z;
1037 u64 ra, rb, rc;
1da177e4
LT
1038
1039 a = dividend_high >> 32;
1040 b = dividend_high & 0xffffffff;
1041 c = dividend_low >> 32;
1042 d = dividend_low & 0xffffffff;
1043
f2783c15
PM
1044 w = a / divisor;
1045 ra = ((u64)(a - (w * divisor)) << 32) + b;
1046
f2783c15
PM
1047 rb = ((u64) do_div(ra, divisor) << 32) + c;
1048 x = ra;
1da177e4 1049
f2783c15
PM
1050 rc = ((u64) do_div(rb, divisor) << 32) + d;
1051 y = rb;
1052
1053 do_div(rc, divisor);
1054 z = rc;
1da177e4 1055
f2783c15
PM
1056 dr->result_high = ((u64)w << 32) + x;
1057 dr->result_low = ((u64)y << 32) + z;
1da177e4
LT
1058
1059}
bcd68a70 1060
177996e6
BH
1061/* We don't need to calibrate delay, we use the CPU timebase for that */
1062void calibrate_delay(void)
1063{
1064 /* Some generic code (such as spinlock debug) use loops_per_jiffy
1065 * as the number of __delay(1) in a jiffy, so make it so
1066 */
1067 loops_per_jiffy = tb_ticks_per_jiffy;
1068}
1069
bcd68a70
GU
1070static int __init rtc_init(void)
1071{
1072 struct platform_device *pdev;
1073
1074 if (!ppc_md.get_rtc_time)
1075 return -ENODEV;
1076
1077 pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
bcd68a70 1078
8c6ffba0 1079 return PTR_ERR_OR_ZERO(pdev);
bcd68a70
GU
1080}
1081
1082module_init(rtc_init);
This page took 0.677012 seconds and 5 git commands to generate.