KVM: PPC: Factor out guest epapr initialization
[deliverable/linux.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
CommitLineData
de56a948
PM
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16 */
17
18#include <linux/types.h>
19#include <linux/string.h>
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/highmem.h>
23#include <linux/gfp.h>
24#include <linux/slab.h>
25#include <linux/hugetlb.h>
8936dda4 26#include <linux/vmalloc.h>
de56a948
PM
27
28#include <asm/tlbflush.h>
29#include <asm/kvm_ppc.h>
30#include <asm/kvm_book3s.h>
31#include <asm/mmu-hash64.h>
32#include <asm/hvcall.h>
33#include <asm/synch.h>
34#include <asm/ppc-opcode.h>
35#include <asm/cputable.h>
36
9e368f29
PM
37/* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
38#define MAX_LPID_970 63
de56a948
PM
39
40long kvmppc_alloc_hpt(struct kvm *kvm)
41{
42 unsigned long hpt;
043cc4d7 43 long lpid;
8936dda4 44 struct revmap_entry *rev;
d2a1b483 45 struct kvmppc_linear_info *li;
de56a948 46
8936dda4 47 /* Allocate guest's hashed page table */
d2a1b483
AG
48 li = kvm_alloc_hpt();
49 if (li) {
50 /* using preallocated memory */
51 hpt = (ulong)li->base_virt;
52 kvm->arch.hpt_li = li;
53 } else {
54 /* using dynamic memory */
55 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
56 __GFP_NOWARN, HPT_ORDER - PAGE_SHIFT);
57 }
58
de56a948
PM
59 if (!hpt) {
60 pr_err("kvm_alloc_hpt: Couldn't alloc HPT\n");
61 return -ENOMEM;
62 }
63 kvm->arch.hpt_virt = hpt;
64
8936dda4
PM
65 /* Allocate reverse map array */
66 rev = vmalloc(sizeof(struct revmap_entry) * HPT_NPTE);
67 if (!rev) {
68 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
69 goto out_freehpt;
70 }
71 kvm->arch.revmap = rev;
72
043cc4d7
SW
73 lpid = kvmppc_alloc_lpid();
74 if (lpid < 0)
75 goto out_freeboth;
de56a948
PM
76
77 kvm->arch.sdr1 = __pa(hpt) | (HPT_ORDER - 18);
78 kvm->arch.lpid = lpid;
de56a948
PM
79
80 pr_info("KVM guest htab at %lx, LPID %lx\n", hpt, lpid);
81 return 0;
8936dda4
PM
82
83 out_freeboth:
84 vfree(rev);
85 out_freehpt:
86 free_pages(hpt, HPT_ORDER - PAGE_SHIFT);
87 return -ENOMEM;
de56a948
PM
88}
89
90void kvmppc_free_hpt(struct kvm *kvm)
91{
043cc4d7 92 kvmppc_free_lpid(kvm->arch.lpid);
8936dda4 93 vfree(kvm->arch.revmap);
d2a1b483
AG
94 if (kvm->arch.hpt_li)
95 kvm_release_hpt(kvm->arch.hpt_li);
96 else
97 free_pages(kvm->arch.hpt_virt, HPT_ORDER - PAGE_SHIFT);
de56a948
PM
98}
99
da9d1d7f
PM
100/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
101static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
102{
103 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
104}
105
106/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
107static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
108{
109 return (pgsize == 0x10000) ? 0x1000 : 0;
110}
111
112void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
113 unsigned long porder)
de56a948
PM
114{
115 unsigned long i;
b2b2f165 116 unsigned long npages;
c77162de
PM
117 unsigned long hp_v, hp_r;
118 unsigned long addr, hash;
da9d1d7f
PM
119 unsigned long psize;
120 unsigned long hp0, hp1;
c77162de 121 long ret;
de56a948 122
da9d1d7f
PM
123 psize = 1ul << porder;
124 npages = memslot->npages >> (porder - PAGE_SHIFT);
de56a948
PM
125
126 /* VRMA can't be > 1TB */
8936dda4
PM
127 if (npages > 1ul << (40 - porder))
128 npages = 1ul << (40 - porder);
de56a948
PM
129 /* Can't use more than 1 HPTE per HPTEG */
130 if (npages > HPT_NPTEG)
131 npages = HPT_NPTEG;
132
da9d1d7f
PM
133 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
134 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
135 hp1 = hpte1_pgsize_encoding(psize) |
136 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
137
de56a948 138 for (i = 0; i < npages; ++i) {
c77162de 139 addr = i << porder;
de56a948
PM
140 /* can't use hpt_hash since va > 64 bits */
141 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & HPT_HASH_MASK;
142 /*
143 * We assume that the hash table is empty and no
144 * vcpus are using it at this stage. Since we create
145 * at most one HPTE per HPTEG, we just assume entry 7
146 * is available and use it.
147 */
8936dda4 148 hash = (hash << 3) + 7;
da9d1d7f
PM
149 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
150 hp_r = hp1 | addr;
c77162de
PM
151 ret = kvmppc_virtmode_h_enter(vcpu, H_EXACT, hash, hp_v, hp_r);
152 if (ret != H_SUCCESS) {
153 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
154 addr, ret);
155 break;
156 }
de56a948
PM
157 }
158}
159
160int kvmppc_mmu_hv_init(void)
161{
9e368f29
PM
162 unsigned long host_lpid, rsvd_lpid;
163
164 if (!cpu_has_feature(CPU_FTR_HVMODE))
de56a948 165 return -EINVAL;
9e368f29 166
043cc4d7 167 /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
9e368f29
PM
168 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
169 host_lpid = mfspr(SPRN_LPID); /* POWER7 */
170 rsvd_lpid = LPID_RSVD;
171 } else {
172 host_lpid = 0; /* PPC970 */
173 rsvd_lpid = MAX_LPID_970;
174 }
175
043cc4d7
SW
176 kvmppc_init_lpid(rsvd_lpid + 1);
177
178 kvmppc_claim_lpid(host_lpid);
9e368f29 179 /* rsvd_lpid is reserved for use in partition switching */
043cc4d7 180 kvmppc_claim_lpid(rsvd_lpid);
de56a948
PM
181
182 return 0;
183}
184
185void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
186{
187}
188
189static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
190{
191 kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
192}
193
c77162de
PM
194/*
195 * This is called to get a reference to a guest page if there isn't
196 * one already in the kvm->arch.slot_phys[][] arrays.
197 */
198static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
da9d1d7f
PM
199 struct kvm_memory_slot *memslot,
200 unsigned long psize)
c77162de
PM
201{
202 unsigned long start;
da9d1d7f
PM
203 long np, err;
204 struct page *page, *hpage, *pages[1];
205 unsigned long s, pgsize;
c77162de 206 unsigned long *physp;
9d0ef5ea
PM
207 unsigned int is_io, got, pgorder;
208 struct vm_area_struct *vma;
da9d1d7f 209 unsigned long pfn, i, npages;
c77162de
PM
210
211 physp = kvm->arch.slot_phys[memslot->id];
212 if (!physp)
213 return -EINVAL;
da9d1d7f 214 if (physp[gfn - memslot->base_gfn])
c77162de
PM
215 return 0;
216
9d0ef5ea
PM
217 is_io = 0;
218 got = 0;
c77162de 219 page = NULL;
da9d1d7f 220 pgsize = psize;
9d0ef5ea 221 err = -EINVAL;
c77162de
PM
222 start = gfn_to_hva_memslot(memslot, gfn);
223
224 /* Instantiate and get the page we want access to */
225 np = get_user_pages_fast(start, 1, 1, pages);
9d0ef5ea
PM
226 if (np != 1) {
227 /* Look up the vma for the page */
228 down_read(&current->mm->mmap_sem);
229 vma = find_vma(current->mm, start);
230 if (!vma || vma->vm_start > start ||
231 start + psize > vma->vm_end ||
232 !(vma->vm_flags & VM_PFNMAP))
233 goto up_err;
234 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
235 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
236 /* check alignment of pfn vs. requested page size */
237 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
238 goto up_err;
239 up_read(&current->mm->mmap_sem);
240
241 } else {
242 page = pages[0];
243 got = KVMPPC_GOT_PAGE;
244
245 /* See if this is a large page */
246 s = PAGE_SIZE;
247 if (PageHuge(page)) {
248 hpage = compound_head(page);
249 s <<= compound_order(hpage);
250 /* Get the whole large page if slot alignment is ok */
251 if (s > psize && slot_is_aligned(memslot, s) &&
252 !(memslot->userspace_addr & (s - 1))) {
253 start &= ~(s - 1);
254 pgsize = s;
de6c0b02
DG
255 get_page(hpage);
256 put_page(page);
9d0ef5ea
PM
257 page = hpage;
258 }
da9d1d7f 259 }
9d0ef5ea
PM
260 if (s < psize)
261 goto out;
262 pfn = page_to_pfn(page);
c77162de 263 }
c77162de 264
da9d1d7f
PM
265 npages = pgsize >> PAGE_SHIFT;
266 pgorder = __ilog2(npages);
267 physp += (gfn - memslot->base_gfn) & ~(npages - 1);
c77162de 268 spin_lock(&kvm->arch.slot_phys_lock);
da9d1d7f
PM
269 for (i = 0; i < npages; ++i) {
270 if (!physp[i]) {
9d0ef5ea
PM
271 physp[i] = ((pfn + i) << PAGE_SHIFT) +
272 got + is_io + pgorder;
da9d1d7f
PM
273 got = 0;
274 }
275 }
c77162de 276 spin_unlock(&kvm->arch.slot_phys_lock);
da9d1d7f 277 err = 0;
c77162de 278
da9d1d7f 279 out:
de6c0b02 280 if (got)
da9d1d7f 281 put_page(page);
da9d1d7f 282 return err;
9d0ef5ea
PM
283
284 up_err:
285 up_read(&current->mm->mmap_sem);
286 return err;
c77162de
PM
287}
288
289/*
342d3db7
PM
290 * We come here on a H_ENTER call from the guest when we are not
291 * using mmu notifiers and we don't have the requested page pinned
292 * already.
c77162de
PM
293 */
294long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
295 long pte_index, unsigned long pteh, unsigned long ptel)
296{
297 struct kvm *kvm = vcpu->kvm;
298 unsigned long psize, gpa, gfn;
299 struct kvm_memory_slot *memslot;
300 long ret;
301
342d3db7
PM
302 if (kvm->arch.using_mmu_notifiers)
303 goto do_insert;
304
c77162de
PM
305 psize = hpte_page_size(pteh, ptel);
306 if (!psize)
307 return H_PARAMETER;
308
697d3899
PM
309 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
310
c77162de
PM
311 /* Find the memslot (if any) for this address */
312 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
313 gfn = gpa >> PAGE_SHIFT;
314 memslot = gfn_to_memslot(kvm, gfn);
697d3899
PM
315 if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
316 if (!slot_is_aligned(memslot, psize))
317 return H_PARAMETER;
318 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
319 return H_PARAMETER;
320 }
c77162de 321
342d3db7
PM
322 do_insert:
323 /* Protect linux PTE lookup from page table destruction */
324 rcu_read_lock_sched(); /* this disables preemption too */
325 vcpu->arch.pgdir = current->mm->pgd;
c77162de 326 ret = kvmppc_h_enter(vcpu, flags, pte_index, pteh, ptel);
342d3db7 327 rcu_read_unlock_sched();
c77162de
PM
328 if (ret == H_TOO_HARD) {
329 /* this can't happen */
330 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
331 ret = H_RESOURCE; /* or something */
332 }
333 return ret;
334
335}
336
697d3899
PM
337static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
338 gva_t eaddr)
339{
340 u64 mask;
341 int i;
342
343 for (i = 0; i < vcpu->arch.slb_nr; i++) {
344 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
345 continue;
346
347 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
348 mask = ESID_MASK_1T;
349 else
350 mask = ESID_MASK;
351
352 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
353 return &vcpu->arch.slb[i];
354 }
355 return NULL;
356}
357
358static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
359 unsigned long ea)
360{
361 unsigned long ra_mask;
362
363 ra_mask = hpte_page_size(v, r) - 1;
364 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
365}
366
de56a948 367static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
697d3899 368 struct kvmppc_pte *gpte, bool data)
de56a948 369{
697d3899
PM
370 struct kvm *kvm = vcpu->kvm;
371 struct kvmppc_slb *slbe;
372 unsigned long slb_v;
373 unsigned long pp, key;
374 unsigned long v, gr;
375 unsigned long *hptep;
376 int index;
377 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
378
379 /* Get SLB entry */
380 if (virtmode) {
381 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
382 if (!slbe)
383 return -EINVAL;
384 slb_v = slbe->origv;
385 } else {
386 /* real mode access */
387 slb_v = vcpu->kvm->arch.vrma_slb_v;
388 }
389
390 /* Find the HPTE in the hash table */
391 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
392 HPTE_V_VALID | HPTE_V_ABSENT);
393 if (index < 0)
394 return -ENOENT;
395 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
396 v = hptep[0] & ~HPTE_V_HVLOCK;
397 gr = kvm->arch.revmap[index].guest_rpte;
398
399 /* Unlock the HPTE */
400 asm volatile("lwsync" : : : "memory");
401 hptep[0] = v;
402
403 gpte->eaddr = eaddr;
404 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
405
406 /* Get PP bits and key for permission check */
407 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
408 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
409 key &= slb_v;
410
411 /* Calculate permissions */
412 gpte->may_read = hpte_read_permission(pp, key);
413 gpte->may_write = hpte_write_permission(pp, key);
414 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
415
416 /* Storage key permission check for POWER7 */
417 if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
418 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
419 if (amrfield & 1)
420 gpte->may_read = 0;
421 if (amrfield & 2)
422 gpte->may_write = 0;
423 }
424
425 /* Get the guest physical address */
426 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
427 return 0;
428}
429
430/*
431 * Quick test for whether an instruction is a load or a store.
432 * If the instruction is a load or a store, then this will indicate
433 * which it is, at least on server processors. (Embedded processors
434 * have some external PID instructions that don't follow the rule
435 * embodied here.) If the instruction isn't a load or store, then
436 * this doesn't return anything useful.
437 */
438static int instruction_is_store(unsigned int instr)
439{
440 unsigned int mask;
441
442 mask = 0x10000000;
443 if ((instr & 0xfc000000) == 0x7c000000)
444 mask = 0x100; /* major opcode 31 */
445 return (instr & mask) != 0;
446}
447
448static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
6020c0f6 449 unsigned long gpa, gva_t ea, int is_store)
697d3899
PM
450{
451 int ret;
452 u32 last_inst;
453 unsigned long srr0 = kvmppc_get_pc(vcpu);
454
455 /* We try to load the last instruction. We don't let
456 * emulate_instruction do it as it doesn't check what
457 * kvmppc_ld returns.
458 * If we fail, we just return to the guest and try executing it again.
459 */
460 if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
461 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
462 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
463 return RESUME_GUEST;
464 vcpu->arch.last_inst = last_inst;
465 }
466
467 /*
468 * WARNING: We do not know for sure whether the instruction we just
469 * read from memory is the same that caused the fault in the first
470 * place. If the instruction we read is neither an load or a store,
471 * then it can't access memory, so we don't need to worry about
472 * enforcing access permissions. So, assuming it is a load or
473 * store, we just check that its direction (load or store) is
474 * consistent with the original fault, since that's what we
475 * checked the access permissions against. If there is a mismatch
476 * we just return and retry the instruction.
477 */
478
479 if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
480 return RESUME_GUEST;
481
482 /*
483 * Emulated accesses are emulated by looking at the hash for
484 * translation once, then performing the access later. The
485 * translation could be invalidated in the meantime in which
486 * point performing the subsequent memory access on the old
487 * physical address could possibly be a security hole for the
488 * guest (but not the host).
489 *
490 * This is less of an issue for MMIO stores since they aren't
491 * globally visible. It could be an issue for MMIO loads to
492 * a certain extent but we'll ignore it for now.
493 */
494
495 vcpu->arch.paddr_accessed = gpa;
6020c0f6 496 vcpu->arch.vaddr_accessed = ea;
697d3899
PM
497 return kvmppc_emulate_mmio(run, vcpu);
498}
499
500int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
501 unsigned long ea, unsigned long dsisr)
502{
503 struct kvm *kvm = vcpu->kvm;
342d3db7
PM
504 unsigned long *hptep, hpte[3], r;
505 unsigned long mmu_seq, psize, pte_size;
506 unsigned long gfn, hva, pfn;
697d3899 507 struct kvm_memory_slot *memslot;
342d3db7 508 unsigned long *rmap;
697d3899 509 struct revmap_entry *rev;
342d3db7
PM
510 struct page *page, *pages[1];
511 long index, ret, npages;
512 unsigned long is_io;
4cf302bc 513 unsigned int writing, write_ok;
342d3db7 514 struct vm_area_struct *vma;
bad3b507 515 unsigned long rcbits;
697d3899
PM
516
517 /*
518 * Real-mode code has already searched the HPT and found the
519 * entry we're interested in. Lock the entry and check that
520 * it hasn't changed. If it has, just return and re-execute the
521 * instruction.
522 */
523 if (ea != vcpu->arch.pgfault_addr)
524 return RESUME_GUEST;
525 index = vcpu->arch.pgfault_index;
526 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
527 rev = &kvm->arch.revmap[index];
528 preempt_disable();
529 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
530 cpu_relax();
531 hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
532 hpte[1] = hptep[1];
342d3db7 533 hpte[2] = r = rev->guest_rpte;
697d3899
PM
534 asm volatile("lwsync" : : : "memory");
535 hptep[0] = hpte[0];
536 preempt_enable();
537
538 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
539 hpte[1] != vcpu->arch.pgfault_hpte[1])
540 return RESUME_GUEST;
541
542 /* Translate the logical address and get the page */
342d3db7
PM
543 psize = hpte_page_size(hpte[0], r);
544 gfn = hpte_rpn(r, psize);
697d3899
PM
545 memslot = gfn_to_memslot(kvm, gfn);
546
547 /* No memslot means it's an emulated MMIO region */
548 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
549 unsigned long gpa = (gfn << PAGE_SHIFT) | (ea & (psize - 1));
6020c0f6 550 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
697d3899
PM
551 dsisr & DSISR_ISSTORE);
552 }
553
342d3db7
PM
554 if (!kvm->arch.using_mmu_notifiers)
555 return -EFAULT; /* should never get here */
556
557 /* used to check for invalidations in progress */
558 mmu_seq = kvm->mmu_notifier_seq;
559 smp_rmb();
560
561 is_io = 0;
562 pfn = 0;
563 page = NULL;
564 pte_size = PAGE_SIZE;
4cf302bc
PM
565 writing = (dsisr & DSISR_ISSTORE) != 0;
566 /* If writing != 0, then the HPTE must allow writing, if we get here */
567 write_ok = writing;
342d3db7 568 hva = gfn_to_hva_memslot(memslot, gfn);
4cf302bc 569 npages = get_user_pages_fast(hva, 1, writing, pages);
342d3db7
PM
570 if (npages < 1) {
571 /* Check if it's an I/O mapping */
572 down_read(&current->mm->mmap_sem);
573 vma = find_vma(current->mm, hva);
574 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
575 (vma->vm_flags & VM_PFNMAP)) {
576 pfn = vma->vm_pgoff +
577 ((hva - vma->vm_start) >> PAGE_SHIFT);
578 pte_size = psize;
579 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
4cf302bc 580 write_ok = vma->vm_flags & VM_WRITE;
342d3db7
PM
581 }
582 up_read(&current->mm->mmap_sem);
583 if (!pfn)
584 return -EFAULT;
585 } else {
586 page = pages[0];
587 if (PageHuge(page)) {
588 page = compound_head(page);
589 pte_size <<= compound_order(page);
590 }
4cf302bc
PM
591 /* if the guest wants write access, see if that is OK */
592 if (!writing && hpte_is_writable(r)) {
593 pte_t *ptep, pte;
594
595 /*
596 * We need to protect against page table destruction
597 * while looking up and updating the pte.
598 */
599 rcu_read_lock_sched();
600 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
601 hva, NULL);
602 if (ptep && pte_present(*ptep)) {
603 pte = kvmppc_read_update_linux_pte(ptep, 1);
604 if (pte_write(pte))
605 write_ok = 1;
606 }
607 rcu_read_unlock_sched();
608 }
342d3db7
PM
609 pfn = page_to_pfn(page);
610 }
611
612 ret = -EFAULT;
613 if (psize > pte_size)
614 goto out_put;
615
616 /* Check WIMG vs. the actual page we're accessing */
617 if (!hpte_cache_flags_ok(r, is_io)) {
618 if (is_io)
619 return -EFAULT;
620 /*
621 * Allow guest to map emulated device memory as
622 * uncacheable, but actually make it cacheable.
623 */
624 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
625 }
626
627 /* Set the HPTE to point to pfn */
628 r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
4cf302bc
PM
629 if (hpte_is_writable(r) && !write_ok)
630 r = hpte_make_readonly(r);
342d3db7
PM
631 ret = RESUME_GUEST;
632 preempt_disable();
633 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
634 cpu_relax();
635 if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
636 rev->guest_rpte != hpte[2])
637 /* HPTE has been changed under us; let the guest retry */
638 goto out_unlock;
639 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
640
641 rmap = &memslot->rmap[gfn - memslot->base_gfn];
642 lock_rmap(rmap);
643
644 /* Check if we might have been invalidated; let the guest retry if so */
645 ret = RESUME_GUEST;
646 if (mmu_notifier_retry(vcpu, mmu_seq)) {
647 unlock_rmap(rmap);
648 goto out_unlock;
649 }
4cf302bc 650
bad3b507
PM
651 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
652 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
653 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
654
4cf302bc
PM
655 if (hptep[0] & HPTE_V_VALID) {
656 /* HPTE was previously valid, so we need to invalidate it */
657 unlock_rmap(rmap);
658 hptep[0] |= HPTE_V_ABSENT;
659 kvmppc_invalidate_hpte(kvm, hptep, index);
bad3b507
PM
660 /* don't lose previous R and C bits */
661 r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
4cf302bc
PM
662 } else {
663 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
664 }
342d3db7
PM
665
666 hptep[1] = r;
667 eieio();
668 hptep[0] = hpte[0];
669 asm volatile("ptesync" : : : "memory");
670 preempt_enable();
4cf302bc 671 if (page && hpte_is_writable(r))
342d3db7
PM
672 SetPageDirty(page);
673
674 out_put:
de6c0b02
DG
675 if (page) {
676 /*
677 * We drop pages[0] here, not page because page might
678 * have been set to the head page of a compound, but
679 * we have to drop the reference on the correct tail
680 * page to match the get inside gup()
681 */
682 put_page(pages[0]);
683 }
342d3db7
PM
684 return ret;
685
686 out_unlock:
687 hptep[0] &= ~HPTE_V_HVLOCK;
688 preempt_enable();
689 goto out_put;
690}
691
692static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
693 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
694 unsigned long gfn))
695{
696 int ret;
697 int retval = 0;
698 struct kvm_memslots *slots;
699 struct kvm_memory_slot *memslot;
700
701 slots = kvm_memslots(kvm);
702 kvm_for_each_memslot(memslot, slots) {
703 unsigned long start = memslot->userspace_addr;
704 unsigned long end;
705
706 end = start + (memslot->npages << PAGE_SHIFT);
707 if (hva >= start && hva < end) {
708 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
709
710 ret = handler(kvm, &memslot->rmap[gfn_offset],
711 memslot->base_gfn + gfn_offset);
712 retval |= ret;
713 }
714 }
715
716 return retval;
717}
718
719static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
720 unsigned long gfn)
721{
722 struct revmap_entry *rev = kvm->arch.revmap;
723 unsigned long h, i, j;
724 unsigned long *hptep;
bad3b507 725 unsigned long ptel, psize, rcbits;
342d3db7
PM
726
727 for (;;) {
bad3b507 728 lock_rmap(rmapp);
342d3db7 729 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
bad3b507 730 unlock_rmap(rmapp);
342d3db7
PM
731 break;
732 }
733
734 /*
735 * To avoid an ABBA deadlock with the HPTE lock bit,
bad3b507
PM
736 * we can't spin on the HPTE lock while holding the
737 * rmap chain lock.
342d3db7
PM
738 */
739 i = *rmapp & KVMPPC_RMAP_INDEX;
bad3b507
PM
740 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
741 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
742 /* unlock rmap before spinning on the HPTE lock */
743 unlock_rmap(rmapp);
744 while (hptep[0] & HPTE_V_HVLOCK)
745 cpu_relax();
746 continue;
747 }
342d3db7
PM
748 j = rev[i].forw;
749 if (j == i) {
750 /* chain is now empty */
bad3b507 751 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
342d3db7
PM
752 } else {
753 /* remove i from chain */
754 h = rev[i].back;
755 rev[h].forw = j;
756 rev[j].back = h;
757 rev[i].forw = rev[i].back = i;
bad3b507 758 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
342d3db7 759 }
342d3db7 760
bad3b507 761 /* Now check and modify the HPTE */
342d3db7
PM
762 ptel = rev[i].guest_rpte;
763 psize = hpte_page_size(hptep[0], ptel);
764 if ((hptep[0] & HPTE_V_VALID) &&
765 hpte_rpn(ptel, psize) == gfn) {
342d3db7 766 hptep[0] |= HPTE_V_ABSENT;
bad3b507
PM
767 kvmppc_invalidate_hpte(kvm, hptep, i);
768 /* Harvest R and C */
769 rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
770 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
771 rev[i].guest_rpte = ptel | rcbits;
342d3db7 772 }
bad3b507 773 unlock_rmap(rmapp);
342d3db7
PM
774 hptep[0] &= ~HPTE_V_HVLOCK;
775 }
776 return 0;
777}
778
779int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
780{
781 if (kvm->arch.using_mmu_notifiers)
782 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
783 return 0;
784}
785
786static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
787 unsigned long gfn)
788{
55514893
PM
789 struct revmap_entry *rev = kvm->arch.revmap;
790 unsigned long head, i, j;
791 unsigned long *hptep;
792 int ret = 0;
793
794 retry:
795 lock_rmap(rmapp);
796 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
797 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
798 ret = 1;
799 }
800 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
801 unlock_rmap(rmapp);
802 return ret;
803 }
804
805 i = head = *rmapp & KVMPPC_RMAP_INDEX;
806 do {
807 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
808 j = rev[i].forw;
809
810 /* If this HPTE isn't referenced, ignore it */
811 if (!(hptep[1] & HPTE_R_R))
812 continue;
813
814 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
815 /* unlock rmap before spinning on the HPTE lock */
816 unlock_rmap(rmapp);
817 while (hptep[0] & HPTE_V_HVLOCK)
818 cpu_relax();
819 goto retry;
820 }
821
822 /* Now check and modify the HPTE */
823 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
824 kvmppc_clear_ref_hpte(kvm, hptep, i);
825 rev[i].guest_rpte |= HPTE_R_R;
826 ret = 1;
827 }
828 hptep[0] &= ~HPTE_V_HVLOCK;
829 } while ((i = j) != head);
830
831 unlock_rmap(rmapp);
832 return ret;
342d3db7
PM
833}
834
835int kvm_age_hva(struct kvm *kvm, unsigned long hva)
836{
837 if (!kvm->arch.using_mmu_notifiers)
838 return 0;
839 return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
840}
841
842static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
843 unsigned long gfn)
844{
55514893
PM
845 struct revmap_entry *rev = kvm->arch.revmap;
846 unsigned long head, i, j;
847 unsigned long *hp;
848 int ret = 1;
849
850 if (*rmapp & KVMPPC_RMAP_REFERENCED)
851 return 1;
852
853 lock_rmap(rmapp);
854 if (*rmapp & KVMPPC_RMAP_REFERENCED)
855 goto out;
856
857 if (*rmapp & KVMPPC_RMAP_PRESENT) {
858 i = head = *rmapp & KVMPPC_RMAP_INDEX;
859 do {
860 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
861 j = rev[i].forw;
862 if (hp[1] & HPTE_R_R)
863 goto out;
864 } while ((i = j) != head);
865 }
866 ret = 0;
867
868 out:
869 unlock_rmap(rmapp);
870 return ret;
342d3db7
PM
871}
872
873int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
874{
875 if (!kvm->arch.using_mmu_notifiers)
876 return 0;
877 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
878}
879
880void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
881{
882 if (!kvm->arch.using_mmu_notifiers)
883 return;
884 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
de56a948
PM
885}
886
82ed3616
PM
887static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
888{
889 struct revmap_entry *rev = kvm->arch.revmap;
890 unsigned long head, i, j;
891 unsigned long *hptep;
892 int ret = 0;
893
894 retry:
895 lock_rmap(rmapp);
896 if (*rmapp & KVMPPC_RMAP_CHANGED) {
897 *rmapp &= ~KVMPPC_RMAP_CHANGED;
898 ret = 1;
899 }
900 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
901 unlock_rmap(rmapp);
902 return ret;
903 }
904
905 i = head = *rmapp & KVMPPC_RMAP_INDEX;
906 do {
907 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
908 j = rev[i].forw;
909
910 if (!(hptep[1] & HPTE_R_C))
911 continue;
912
913 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
914 /* unlock rmap before spinning on the HPTE lock */
915 unlock_rmap(rmapp);
916 while (hptep[0] & HPTE_V_HVLOCK)
917 cpu_relax();
918 goto retry;
919 }
920
921 /* Now check and modify the HPTE */
922 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
923 /* need to make it temporarily absent to clear C */
924 hptep[0] |= HPTE_V_ABSENT;
925 kvmppc_invalidate_hpte(kvm, hptep, i);
926 hptep[1] &= ~HPTE_R_C;
927 eieio();
928 hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
929 rev[i].guest_rpte |= HPTE_R_C;
930 ret = 1;
931 }
932 hptep[0] &= ~HPTE_V_HVLOCK;
933 } while ((i = j) != head);
934
935 unlock_rmap(rmapp);
936 return ret;
937}
938
939long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
940{
941 unsigned long i;
942 unsigned long *rmapp, *map;
943
944 preempt_disable();
945 rmapp = memslot->rmap;
946 map = memslot->dirty_bitmap;
947 for (i = 0; i < memslot->npages; ++i) {
948 if (kvm_test_clear_dirty(kvm, rmapp))
949 __set_bit_le(i, map);
950 ++rmapp;
951 }
952 preempt_enable();
953 return 0;
954}
955
93e60249
PM
956void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
957 unsigned long *nb_ret)
958{
959 struct kvm_memory_slot *memslot;
960 unsigned long gfn = gpa >> PAGE_SHIFT;
342d3db7
PM
961 struct page *page, *pages[1];
962 int npages;
963 unsigned long hva, psize, offset;
da9d1d7f 964 unsigned long pa;
93e60249
PM
965 unsigned long *physp;
966
967 memslot = gfn_to_memslot(kvm, gfn);
968 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
969 return NULL;
342d3db7
PM
970 if (!kvm->arch.using_mmu_notifiers) {
971 physp = kvm->arch.slot_phys[memslot->id];
972 if (!physp)
c77162de 973 return NULL;
342d3db7 974 physp += gfn - memslot->base_gfn;
c77162de 975 pa = *physp;
342d3db7
PM
976 if (!pa) {
977 if (kvmppc_get_guest_page(kvm, gfn, memslot,
978 PAGE_SIZE) < 0)
979 return NULL;
980 pa = *physp;
981 }
982 page = pfn_to_page(pa >> PAGE_SHIFT);
de6c0b02 983 get_page(page);
342d3db7
PM
984 } else {
985 hva = gfn_to_hva_memslot(memslot, gfn);
986 npages = get_user_pages_fast(hva, 1, 1, pages);
987 if (npages < 1)
988 return NULL;
989 page = pages[0];
c77162de 990 }
da9d1d7f
PM
991 psize = PAGE_SIZE;
992 if (PageHuge(page)) {
993 page = compound_head(page);
994 psize <<= compound_order(page);
995 }
da9d1d7f 996 offset = gpa & (psize - 1);
93e60249 997 if (nb_ret)
da9d1d7f 998 *nb_ret = psize - offset;
93e60249
PM
999 return page_address(page) + offset;
1000}
1001
1002void kvmppc_unpin_guest_page(struct kvm *kvm, void *va)
1003{
1004 struct page *page = virt_to_page(va);
1005
93e60249
PM
1006 put_page(page);
1007}
1008
de56a948
PM
1009void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1010{
1011 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1012
9e368f29
PM
1013 if (cpu_has_feature(CPU_FTR_ARCH_206))
1014 vcpu->arch.slb_nr = 32; /* POWER7 */
1015 else
1016 vcpu->arch.slb_nr = 64;
de56a948
PM
1017
1018 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1019 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1020
1021 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1022}
This page took 0.173923 seconds and 5 git commands to generate.