ppc: kvm: use anon_inode_getfd() with O_CLOEXEC flag
[deliverable/linux.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
CommitLineData
de56a948
PM
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16 */
17
18#include <linux/types.h>
19#include <linux/string.h>
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/highmem.h>
23#include <linux/gfp.h>
24#include <linux/slab.h>
25#include <linux/hugetlb.h>
8936dda4 26#include <linux/vmalloc.h>
2c9097e4 27#include <linux/srcu.h>
a2932923
PM
28#include <linux/anon_inodes.h>
29#include <linux/file.h>
de56a948
PM
30
31#include <asm/tlbflush.h>
32#include <asm/kvm_ppc.h>
33#include <asm/kvm_book3s.h>
34#include <asm/mmu-hash64.h>
35#include <asm/hvcall.h>
36#include <asm/synch.h>
37#include <asm/ppc-opcode.h>
38#include <asm/cputable.h>
39
9e368f29
PM
40/* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
41#define MAX_LPID_970 63
de56a948 42
32fad281
PM
43/* Power architecture requires HPT is at least 256kB */
44#define PPC_MIN_HPT_ORDER 18
45
7ed661bf
PM
46static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47 long pte_index, unsigned long pteh,
48 unsigned long ptel, unsigned long *pte_idx_ret);
a64fd707 49static void kvmppc_rmap_reset(struct kvm *kvm);
7ed661bf 50
32fad281 51long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
de56a948
PM
52{
53 unsigned long hpt;
8936dda4 54 struct revmap_entry *rev;
d2a1b483 55 struct kvmppc_linear_info *li;
32fad281 56 long order = kvm_hpt_order;
de56a948 57
32fad281
PM
58 if (htab_orderp) {
59 order = *htab_orderp;
60 if (order < PPC_MIN_HPT_ORDER)
61 order = PPC_MIN_HPT_ORDER;
62 }
63
64 /*
65 * If the user wants a different size from default,
66 * try first to allocate it from the kernel page allocator.
67 */
68 hpt = 0;
69 if (order != kvm_hpt_order) {
d2a1b483 70 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
32fad281
PM
71 __GFP_NOWARN, order - PAGE_SHIFT);
72 if (!hpt)
73 --order;
d2a1b483
AG
74 }
75
32fad281 76 /* Next try to allocate from the preallocated pool */
de56a948 77 if (!hpt) {
32fad281
PM
78 li = kvm_alloc_hpt();
79 if (li) {
80 hpt = (ulong)li->base_virt;
81 kvm->arch.hpt_li = li;
82 order = kvm_hpt_order;
83 }
de56a948 84 }
32fad281
PM
85
86 /* Lastly try successively smaller sizes from the page allocator */
87 while (!hpt && order > PPC_MIN_HPT_ORDER) {
88 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
89 __GFP_NOWARN, order - PAGE_SHIFT);
90 if (!hpt)
91 --order;
92 }
93
94 if (!hpt)
95 return -ENOMEM;
96
de56a948 97 kvm->arch.hpt_virt = hpt;
32fad281
PM
98 kvm->arch.hpt_order = order;
99 /* HPTEs are 2**4 bytes long */
100 kvm->arch.hpt_npte = 1ul << (order - 4);
101 /* 128 (2**7) bytes in each HPTEG */
102 kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
de56a948 103
8936dda4 104 /* Allocate reverse map array */
32fad281 105 rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
8936dda4
PM
106 if (!rev) {
107 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
108 goto out_freehpt;
109 }
110 kvm->arch.revmap = rev;
32fad281 111 kvm->arch.sdr1 = __pa(hpt) | (order - 18);
8936dda4 112
32fad281
PM
113 pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
114 hpt, order, kvm->arch.lpid);
de56a948 115
32fad281
PM
116 if (htab_orderp)
117 *htab_orderp = order;
de56a948 118 return 0;
8936dda4 119
8936dda4 120 out_freehpt:
32fad281
PM
121 if (kvm->arch.hpt_li)
122 kvm_release_hpt(kvm->arch.hpt_li);
123 else
124 free_pages(hpt, order - PAGE_SHIFT);
8936dda4 125 return -ENOMEM;
de56a948
PM
126}
127
32fad281
PM
128long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
129{
130 long err = -EBUSY;
131 long order;
132
133 mutex_lock(&kvm->lock);
134 if (kvm->arch.rma_setup_done) {
135 kvm->arch.rma_setup_done = 0;
136 /* order rma_setup_done vs. vcpus_running */
137 smp_mb();
138 if (atomic_read(&kvm->arch.vcpus_running)) {
139 kvm->arch.rma_setup_done = 1;
140 goto out;
141 }
142 }
143 if (kvm->arch.hpt_virt) {
144 order = kvm->arch.hpt_order;
145 /* Set the entire HPT to 0, i.e. invalid HPTEs */
146 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
a64fd707
PM
147 /*
148 * Reset all the reverse-mapping chains for all memslots
149 */
150 kvmppc_rmap_reset(kvm);
1b400ba0
PM
151 /* Ensure that each vcpu will flush its TLB on next entry. */
152 cpumask_setall(&kvm->arch.need_tlb_flush);
32fad281
PM
153 *htab_orderp = order;
154 err = 0;
155 } else {
156 err = kvmppc_alloc_hpt(kvm, htab_orderp);
157 order = *htab_orderp;
158 }
159 out:
160 mutex_unlock(&kvm->lock);
161 return err;
162}
163
de56a948
PM
164void kvmppc_free_hpt(struct kvm *kvm)
165{
043cc4d7 166 kvmppc_free_lpid(kvm->arch.lpid);
8936dda4 167 vfree(kvm->arch.revmap);
d2a1b483
AG
168 if (kvm->arch.hpt_li)
169 kvm_release_hpt(kvm->arch.hpt_li);
170 else
32fad281
PM
171 free_pages(kvm->arch.hpt_virt,
172 kvm->arch.hpt_order - PAGE_SHIFT);
de56a948
PM
173}
174
da9d1d7f
PM
175/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
176static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
177{
178 return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
179}
180
181/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
182static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
183{
184 return (pgsize == 0x10000) ? 0x1000 : 0;
185}
186
187void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
188 unsigned long porder)
de56a948
PM
189{
190 unsigned long i;
b2b2f165 191 unsigned long npages;
c77162de
PM
192 unsigned long hp_v, hp_r;
193 unsigned long addr, hash;
da9d1d7f
PM
194 unsigned long psize;
195 unsigned long hp0, hp1;
7ed661bf 196 unsigned long idx_ret;
c77162de 197 long ret;
32fad281 198 struct kvm *kvm = vcpu->kvm;
de56a948 199
da9d1d7f
PM
200 psize = 1ul << porder;
201 npages = memslot->npages >> (porder - PAGE_SHIFT);
de56a948
PM
202
203 /* VRMA can't be > 1TB */
8936dda4
PM
204 if (npages > 1ul << (40 - porder))
205 npages = 1ul << (40 - porder);
de56a948 206 /* Can't use more than 1 HPTE per HPTEG */
32fad281
PM
207 if (npages > kvm->arch.hpt_mask + 1)
208 npages = kvm->arch.hpt_mask + 1;
de56a948 209
da9d1d7f
PM
210 hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
211 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
212 hp1 = hpte1_pgsize_encoding(psize) |
213 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
214
de56a948 215 for (i = 0; i < npages; ++i) {
c77162de 216 addr = i << porder;
de56a948 217 /* can't use hpt_hash since va > 64 bits */
32fad281 218 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
de56a948
PM
219 /*
220 * We assume that the hash table is empty and no
221 * vcpus are using it at this stage. Since we create
222 * at most one HPTE per HPTEG, we just assume entry 7
223 * is available and use it.
224 */
8936dda4 225 hash = (hash << 3) + 7;
da9d1d7f
PM
226 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
227 hp_r = hp1 | addr;
7ed661bf
PM
228 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
229 &idx_ret);
c77162de
PM
230 if (ret != H_SUCCESS) {
231 pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
232 addr, ret);
233 break;
234 }
de56a948
PM
235 }
236}
237
238int kvmppc_mmu_hv_init(void)
239{
9e368f29
PM
240 unsigned long host_lpid, rsvd_lpid;
241
242 if (!cpu_has_feature(CPU_FTR_HVMODE))
de56a948 243 return -EINVAL;
9e368f29 244
043cc4d7 245 /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
9e368f29
PM
246 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
247 host_lpid = mfspr(SPRN_LPID); /* POWER7 */
248 rsvd_lpid = LPID_RSVD;
249 } else {
250 host_lpid = 0; /* PPC970 */
251 rsvd_lpid = MAX_LPID_970;
252 }
253
043cc4d7
SW
254 kvmppc_init_lpid(rsvd_lpid + 1);
255
256 kvmppc_claim_lpid(host_lpid);
9e368f29 257 /* rsvd_lpid is reserved for use in partition switching */
043cc4d7 258 kvmppc_claim_lpid(rsvd_lpid);
de56a948
PM
259
260 return 0;
261}
262
263void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
264{
265}
266
267static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
268{
269 kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
270}
271
c77162de
PM
272/*
273 * This is called to get a reference to a guest page if there isn't
a66b48c3 274 * one already in the memslot->arch.slot_phys[] array.
c77162de
PM
275 */
276static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
da9d1d7f
PM
277 struct kvm_memory_slot *memslot,
278 unsigned long psize)
c77162de
PM
279{
280 unsigned long start;
da9d1d7f
PM
281 long np, err;
282 struct page *page, *hpage, *pages[1];
283 unsigned long s, pgsize;
c77162de 284 unsigned long *physp;
9d0ef5ea
PM
285 unsigned int is_io, got, pgorder;
286 struct vm_area_struct *vma;
da9d1d7f 287 unsigned long pfn, i, npages;
c77162de 288
a66b48c3 289 physp = memslot->arch.slot_phys;
c77162de
PM
290 if (!physp)
291 return -EINVAL;
da9d1d7f 292 if (physp[gfn - memslot->base_gfn])
c77162de
PM
293 return 0;
294
9d0ef5ea
PM
295 is_io = 0;
296 got = 0;
c77162de 297 page = NULL;
da9d1d7f 298 pgsize = psize;
9d0ef5ea 299 err = -EINVAL;
c77162de
PM
300 start = gfn_to_hva_memslot(memslot, gfn);
301
302 /* Instantiate and get the page we want access to */
303 np = get_user_pages_fast(start, 1, 1, pages);
9d0ef5ea
PM
304 if (np != 1) {
305 /* Look up the vma for the page */
306 down_read(&current->mm->mmap_sem);
307 vma = find_vma(current->mm, start);
308 if (!vma || vma->vm_start > start ||
309 start + psize > vma->vm_end ||
310 !(vma->vm_flags & VM_PFNMAP))
311 goto up_err;
312 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
313 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
314 /* check alignment of pfn vs. requested page size */
315 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
316 goto up_err;
317 up_read(&current->mm->mmap_sem);
318
319 } else {
320 page = pages[0];
321 got = KVMPPC_GOT_PAGE;
322
323 /* See if this is a large page */
324 s = PAGE_SIZE;
325 if (PageHuge(page)) {
326 hpage = compound_head(page);
327 s <<= compound_order(hpage);
328 /* Get the whole large page if slot alignment is ok */
329 if (s > psize && slot_is_aligned(memslot, s) &&
330 !(memslot->userspace_addr & (s - 1))) {
331 start &= ~(s - 1);
332 pgsize = s;
de6c0b02
DG
333 get_page(hpage);
334 put_page(page);
9d0ef5ea
PM
335 page = hpage;
336 }
da9d1d7f 337 }
9d0ef5ea
PM
338 if (s < psize)
339 goto out;
340 pfn = page_to_pfn(page);
c77162de 341 }
c77162de 342
da9d1d7f
PM
343 npages = pgsize >> PAGE_SHIFT;
344 pgorder = __ilog2(npages);
345 physp += (gfn - memslot->base_gfn) & ~(npages - 1);
c77162de 346 spin_lock(&kvm->arch.slot_phys_lock);
da9d1d7f
PM
347 for (i = 0; i < npages; ++i) {
348 if (!physp[i]) {
9d0ef5ea
PM
349 physp[i] = ((pfn + i) << PAGE_SHIFT) +
350 got + is_io + pgorder;
da9d1d7f
PM
351 got = 0;
352 }
353 }
c77162de 354 spin_unlock(&kvm->arch.slot_phys_lock);
da9d1d7f 355 err = 0;
c77162de 356
da9d1d7f 357 out:
de6c0b02 358 if (got)
da9d1d7f 359 put_page(page);
da9d1d7f 360 return err;
9d0ef5ea
PM
361
362 up_err:
363 up_read(&current->mm->mmap_sem);
364 return err;
c77162de
PM
365}
366
7ed661bf
PM
367long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
368 long pte_index, unsigned long pteh,
369 unsigned long ptel, unsigned long *pte_idx_ret)
c77162de 370{
c77162de
PM
371 unsigned long psize, gpa, gfn;
372 struct kvm_memory_slot *memslot;
373 long ret;
374
342d3db7
PM
375 if (kvm->arch.using_mmu_notifiers)
376 goto do_insert;
377
c77162de
PM
378 psize = hpte_page_size(pteh, ptel);
379 if (!psize)
380 return H_PARAMETER;
381
697d3899
PM
382 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
383
c77162de
PM
384 /* Find the memslot (if any) for this address */
385 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
386 gfn = gpa >> PAGE_SHIFT;
387 memslot = gfn_to_memslot(kvm, gfn);
697d3899
PM
388 if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
389 if (!slot_is_aligned(memslot, psize))
390 return H_PARAMETER;
391 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
392 return H_PARAMETER;
393 }
c77162de 394
342d3db7
PM
395 do_insert:
396 /* Protect linux PTE lookup from page table destruction */
397 rcu_read_lock_sched(); /* this disables preemption too */
7ed661bf
PM
398 ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
399 current->mm->pgd, false, pte_idx_ret);
342d3db7 400 rcu_read_unlock_sched();
c77162de
PM
401 if (ret == H_TOO_HARD) {
402 /* this can't happen */
403 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
404 ret = H_RESOURCE; /* or something */
405 }
406 return ret;
407
408}
409
7ed661bf
PM
410/*
411 * We come here on a H_ENTER call from the guest when we are not
412 * using mmu notifiers and we don't have the requested page pinned
413 * already.
414 */
415long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
416 long pte_index, unsigned long pteh,
417 unsigned long ptel)
418{
419 return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
420 pteh, ptel, &vcpu->arch.gpr[4]);
421}
422
697d3899
PM
423static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
424 gva_t eaddr)
425{
426 u64 mask;
427 int i;
428
429 for (i = 0; i < vcpu->arch.slb_nr; i++) {
430 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
431 continue;
432
433 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
434 mask = ESID_MASK_1T;
435 else
436 mask = ESID_MASK;
437
438 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
439 return &vcpu->arch.slb[i];
440 }
441 return NULL;
442}
443
444static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
445 unsigned long ea)
446{
447 unsigned long ra_mask;
448
449 ra_mask = hpte_page_size(v, r) - 1;
450 return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
451}
452
de56a948 453static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
697d3899 454 struct kvmppc_pte *gpte, bool data)
de56a948 455{
697d3899
PM
456 struct kvm *kvm = vcpu->kvm;
457 struct kvmppc_slb *slbe;
458 unsigned long slb_v;
459 unsigned long pp, key;
460 unsigned long v, gr;
461 unsigned long *hptep;
462 int index;
463 int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
464
465 /* Get SLB entry */
466 if (virtmode) {
467 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
468 if (!slbe)
469 return -EINVAL;
470 slb_v = slbe->origv;
471 } else {
472 /* real mode access */
473 slb_v = vcpu->kvm->arch.vrma_slb_v;
474 }
475
476 /* Find the HPTE in the hash table */
477 index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
478 HPTE_V_VALID | HPTE_V_ABSENT);
479 if (index < 0)
480 return -ENOENT;
481 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
482 v = hptep[0] & ~HPTE_V_HVLOCK;
483 gr = kvm->arch.revmap[index].guest_rpte;
484
485 /* Unlock the HPTE */
486 asm volatile("lwsync" : : : "memory");
487 hptep[0] = v;
488
489 gpte->eaddr = eaddr;
490 gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
491
492 /* Get PP bits and key for permission check */
493 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
494 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
495 key &= slb_v;
496
497 /* Calculate permissions */
498 gpte->may_read = hpte_read_permission(pp, key);
499 gpte->may_write = hpte_write_permission(pp, key);
500 gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
501
502 /* Storage key permission check for POWER7 */
503 if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
504 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
505 if (amrfield & 1)
506 gpte->may_read = 0;
507 if (amrfield & 2)
508 gpte->may_write = 0;
509 }
510
511 /* Get the guest physical address */
512 gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
513 return 0;
514}
515
516/*
517 * Quick test for whether an instruction is a load or a store.
518 * If the instruction is a load or a store, then this will indicate
519 * which it is, at least on server processors. (Embedded processors
520 * have some external PID instructions that don't follow the rule
521 * embodied here.) If the instruction isn't a load or store, then
522 * this doesn't return anything useful.
523 */
524static int instruction_is_store(unsigned int instr)
525{
526 unsigned int mask;
527
528 mask = 0x10000000;
529 if ((instr & 0xfc000000) == 0x7c000000)
530 mask = 0x100; /* major opcode 31 */
531 return (instr & mask) != 0;
532}
533
534static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
6020c0f6 535 unsigned long gpa, gva_t ea, int is_store)
697d3899
PM
536{
537 int ret;
538 u32 last_inst;
539 unsigned long srr0 = kvmppc_get_pc(vcpu);
540
541 /* We try to load the last instruction. We don't let
542 * emulate_instruction do it as it doesn't check what
543 * kvmppc_ld returns.
544 * If we fail, we just return to the guest and try executing it again.
545 */
546 if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
547 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
548 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
549 return RESUME_GUEST;
550 vcpu->arch.last_inst = last_inst;
551 }
552
553 /*
554 * WARNING: We do not know for sure whether the instruction we just
555 * read from memory is the same that caused the fault in the first
556 * place. If the instruction we read is neither an load or a store,
557 * then it can't access memory, so we don't need to worry about
558 * enforcing access permissions. So, assuming it is a load or
559 * store, we just check that its direction (load or store) is
560 * consistent with the original fault, since that's what we
561 * checked the access permissions against. If there is a mismatch
562 * we just return and retry the instruction.
563 */
564
565 if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
566 return RESUME_GUEST;
567
568 /*
569 * Emulated accesses are emulated by looking at the hash for
570 * translation once, then performing the access later. The
571 * translation could be invalidated in the meantime in which
572 * point performing the subsequent memory access on the old
573 * physical address could possibly be a security hole for the
574 * guest (but not the host).
575 *
576 * This is less of an issue for MMIO stores since they aren't
577 * globally visible. It could be an issue for MMIO loads to
578 * a certain extent but we'll ignore it for now.
579 */
580
581 vcpu->arch.paddr_accessed = gpa;
6020c0f6 582 vcpu->arch.vaddr_accessed = ea;
697d3899
PM
583 return kvmppc_emulate_mmio(run, vcpu);
584}
585
586int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
587 unsigned long ea, unsigned long dsisr)
588{
589 struct kvm *kvm = vcpu->kvm;
342d3db7
PM
590 unsigned long *hptep, hpte[3], r;
591 unsigned long mmu_seq, psize, pte_size;
70bddfef 592 unsigned long gpa, gfn, hva, pfn;
697d3899 593 struct kvm_memory_slot *memslot;
342d3db7 594 unsigned long *rmap;
697d3899 595 struct revmap_entry *rev;
342d3db7
PM
596 struct page *page, *pages[1];
597 long index, ret, npages;
598 unsigned long is_io;
4cf302bc 599 unsigned int writing, write_ok;
342d3db7 600 struct vm_area_struct *vma;
bad3b507 601 unsigned long rcbits;
697d3899
PM
602
603 /*
604 * Real-mode code has already searched the HPT and found the
605 * entry we're interested in. Lock the entry and check that
606 * it hasn't changed. If it has, just return and re-execute the
607 * instruction.
608 */
609 if (ea != vcpu->arch.pgfault_addr)
610 return RESUME_GUEST;
611 index = vcpu->arch.pgfault_index;
612 hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
613 rev = &kvm->arch.revmap[index];
614 preempt_disable();
615 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
616 cpu_relax();
617 hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
618 hpte[1] = hptep[1];
342d3db7 619 hpte[2] = r = rev->guest_rpte;
697d3899
PM
620 asm volatile("lwsync" : : : "memory");
621 hptep[0] = hpte[0];
622 preempt_enable();
623
624 if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
625 hpte[1] != vcpu->arch.pgfault_hpte[1])
626 return RESUME_GUEST;
627
628 /* Translate the logical address and get the page */
342d3db7 629 psize = hpte_page_size(hpte[0], r);
70bddfef
PM
630 gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
631 gfn = gpa >> PAGE_SHIFT;
697d3899
PM
632 memslot = gfn_to_memslot(kvm, gfn);
633
634 /* No memslot means it's an emulated MMIO region */
70bddfef 635 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
6020c0f6 636 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
697d3899 637 dsisr & DSISR_ISSTORE);
697d3899 638
342d3db7
PM
639 if (!kvm->arch.using_mmu_notifiers)
640 return -EFAULT; /* should never get here */
641
642 /* used to check for invalidations in progress */
643 mmu_seq = kvm->mmu_notifier_seq;
644 smp_rmb();
645
646 is_io = 0;
647 pfn = 0;
648 page = NULL;
649 pte_size = PAGE_SIZE;
4cf302bc
PM
650 writing = (dsisr & DSISR_ISSTORE) != 0;
651 /* If writing != 0, then the HPTE must allow writing, if we get here */
652 write_ok = writing;
342d3db7 653 hva = gfn_to_hva_memslot(memslot, gfn);
4cf302bc 654 npages = get_user_pages_fast(hva, 1, writing, pages);
342d3db7
PM
655 if (npages < 1) {
656 /* Check if it's an I/O mapping */
657 down_read(&current->mm->mmap_sem);
658 vma = find_vma(current->mm, hva);
659 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
660 (vma->vm_flags & VM_PFNMAP)) {
661 pfn = vma->vm_pgoff +
662 ((hva - vma->vm_start) >> PAGE_SHIFT);
663 pte_size = psize;
664 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
4cf302bc 665 write_ok = vma->vm_flags & VM_WRITE;
342d3db7
PM
666 }
667 up_read(&current->mm->mmap_sem);
668 if (!pfn)
669 return -EFAULT;
670 } else {
671 page = pages[0];
672 if (PageHuge(page)) {
673 page = compound_head(page);
674 pte_size <<= compound_order(page);
675 }
4cf302bc
PM
676 /* if the guest wants write access, see if that is OK */
677 if (!writing && hpte_is_writable(r)) {
db7cb5b9 678 unsigned int hugepage_shift;
4cf302bc
PM
679 pte_t *ptep, pte;
680
681 /*
682 * We need to protect against page table destruction
683 * while looking up and updating the pte.
684 */
685 rcu_read_lock_sched();
686 ptep = find_linux_pte_or_hugepte(current->mm->pgd,
db7cb5b9
AK
687 hva, &hugepage_shift);
688 if (ptep) {
689 pte = kvmppc_read_update_linux_pte(ptep, 1,
690 hugepage_shift);
4cf302bc
PM
691 if (pte_write(pte))
692 write_ok = 1;
693 }
694 rcu_read_unlock_sched();
695 }
342d3db7
PM
696 pfn = page_to_pfn(page);
697 }
698
699 ret = -EFAULT;
700 if (psize > pte_size)
701 goto out_put;
702
703 /* Check WIMG vs. the actual page we're accessing */
704 if (!hpte_cache_flags_ok(r, is_io)) {
705 if (is_io)
706 return -EFAULT;
707 /*
708 * Allow guest to map emulated device memory as
709 * uncacheable, but actually make it cacheable.
710 */
711 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
712 }
713
714 /* Set the HPTE to point to pfn */
715 r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
4cf302bc
PM
716 if (hpte_is_writable(r) && !write_ok)
717 r = hpte_make_readonly(r);
342d3db7
PM
718 ret = RESUME_GUEST;
719 preempt_disable();
720 while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
721 cpu_relax();
722 if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
723 rev->guest_rpte != hpte[2])
724 /* HPTE has been changed under us; let the guest retry */
725 goto out_unlock;
726 hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
727
d89cc617 728 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
342d3db7
PM
729 lock_rmap(rmap);
730
731 /* Check if we might have been invalidated; let the guest retry if so */
732 ret = RESUME_GUEST;
8ca40a70 733 if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
342d3db7
PM
734 unlock_rmap(rmap);
735 goto out_unlock;
736 }
4cf302bc 737
bad3b507
PM
738 /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
739 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
740 r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
741
4cf302bc
PM
742 if (hptep[0] & HPTE_V_VALID) {
743 /* HPTE was previously valid, so we need to invalidate it */
744 unlock_rmap(rmap);
745 hptep[0] |= HPTE_V_ABSENT;
746 kvmppc_invalidate_hpte(kvm, hptep, index);
bad3b507
PM
747 /* don't lose previous R and C bits */
748 r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
4cf302bc
PM
749 } else {
750 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
751 }
342d3db7
PM
752
753 hptep[1] = r;
754 eieio();
755 hptep[0] = hpte[0];
756 asm volatile("ptesync" : : : "memory");
757 preempt_enable();
4cf302bc 758 if (page && hpte_is_writable(r))
342d3db7
PM
759 SetPageDirty(page);
760
761 out_put:
de6c0b02
DG
762 if (page) {
763 /*
764 * We drop pages[0] here, not page because page might
765 * have been set to the head page of a compound, but
766 * we have to drop the reference on the correct tail
767 * page to match the get inside gup()
768 */
769 put_page(pages[0]);
770 }
342d3db7
PM
771 return ret;
772
773 out_unlock:
774 hptep[0] &= ~HPTE_V_HVLOCK;
775 preempt_enable();
776 goto out_put;
777}
778
a64fd707
PM
779static void kvmppc_rmap_reset(struct kvm *kvm)
780{
781 struct kvm_memslots *slots;
782 struct kvm_memory_slot *memslot;
783 int srcu_idx;
784
785 srcu_idx = srcu_read_lock(&kvm->srcu);
786 slots = kvm->memslots;
787 kvm_for_each_memslot(memslot, slots) {
788 /*
789 * This assumes it is acceptable to lose reference and
790 * change bits across a reset.
791 */
792 memset(memslot->arch.rmap, 0,
793 memslot->npages * sizeof(*memslot->arch.rmap));
794 }
795 srcu_read_unlock(&kvm->srcu, srcu_idx);
796}
797
84504ef3
TY
798static int kvm_handle_hva_range(struct kvm *kvm,
799 unsigned long start,
800 unsigned long end,
801 int (*handler)(struct kvm *kvm,
802 unsigned long *rmapp,
803 unsigned long gfn))
342d3db7
PM
804{
805 int ret;
806 int retval = 0;
807 struct kvm_memslots *slots;
808 struct kvm_memory_slot *memslot;
809
810 slots = kvm_memslots(kvm);
811 kvm_for_each_memslot(memslot, slots) {
84504ef3
TY
812 unsigned long hva_start, hva_end;
813 gfn_t gfn, gfn_end;
814
815 hva_start = max(start, memslot->userspace_addr);
816 hva_end = min(end, memslot->userspace_addr +
817 (memslot->npages << PAGE_SHIFT));
818 if (hva_start >= hva_end)
819 continue;
820 /*
821 * {gfn(page) | page intersects with [hva_start, hva_end)} =
822 * {gfn, gfn+1, ..., gfn_end-1}.
823 */
824 gfn = hva_to_gfn_memslot(hva_start, memslot);
825 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
342d3db7 826
84504ef3 827 for (; gfn < gfn_end; ++gfn) {
d19a748b 828 gfn_t gfn_offset = gfn - memslot->base_gfn;
342d3db7 829
d89cc617 830 ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
342d3db7
PM
831 retval |= ret;
832 }
833 }
834
835 return retval;
836}
837
84504ef3
TY
838static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
839 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
840 unsigned long gfn))
841{
842 return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
843}
844
342d3db7
PM
845static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
846 unsigned long gfn)
847{
848 struct revmap_entry *rev = kvm->arch.revmap;
849 unsigned long h, i, j;
850 unsigned long *hptep;
bad3b507 851 unsigned long ptel, psize, rcbits;
342d3db7
PM
852
853 for (;;) {
bad3b507 854 lock_rmap(rmapp);
342d3db7 855 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
bad3b507 856 unlock_rmap(rmapp);
342d3db7
PM
857 break;
858 }
859
860 /*
861 * To avoid an ABBA deadlock with the HPTE lock bit,
bad3b507
PM
862 * we can't spin on the HPTE lock while holding the
863 * rmap chain lock.
342d3db7
PM
864 */
865 i = *rmapp & KVMPPC_RMAP_INDEX;
bad3b507
PM
866 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
867 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
868 /* unlock rmap before spinning on the HPTE lock */
869 unlock_rmap(rmapp);
870 while (hptep[0] & HPTE_V_HVLOCK)
871 cpu_relax();
872 continue;
873 }
342d3db7
PM
874 j = rev[i].forw;
875 if (j == i) {
876 /* chain is now empty */
bad3b507 877 *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
342d3db7
PM
878 } else {
879 /* remove i from chain */
880 h = rev[i].back;
881 rev[h].forw = j;
882 rev[j].back = h;
883 rev[i].forw = rev[i].back = i;
bad3b507 884 *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
342d3db7 885 }
342d3db7 886
bad3b507 887 /* Now check and modify the HPTE */
342d3db7
PM
888 ptel = rev[i].guest_rpte;
889 psize = hpte_page_size(hptep[0], ptel);
890 if ((hptep[0] & HPTE_V_VALID) &&
891 hpte_rpn(ptel, psize) == gfn) {
dfe49dbd
PM
892 if (kvm->arch.using_mmu_notifiers)
893 hptep[0] |= HPTE_V_ABSENT;
bad3b507
PM
894 kvmppc_invalidate_hpte(kvm, hptep, i);
895 /* Harvest R and C */
896 rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
897 *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
a1b4a0f6
PM
898 if (rcbits & ~rev[i].guest_rpte) {
899 rev[i].guest_rpte = ptel | rcbits;
900 note_hpte_modification(kvm, &rev[i]);
901 }
342d3db7 902 }
bad3b507 903 unlock_rmap(rmapp);
342d3db7
PM
904 hptep[0] &= ~HPTE_V_HVLOCK;
905 }
906 return 0;
907}
908
909int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
910{
911 if (kvm->arch.using_mmu_notifiers)
912 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
913 return 0;
914}
915
b3ae2096
TY
916int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
917{
918 if (kvm->arch.using_mmu_notifiers)
919 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
920 return 0;
921}
922
dfe49dbd
PM
923void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
924{
925 unsigned long *rmapp;
926 unsigned long gfn;
927 unsigned long n;
928
929 rmapp = memslot->arch.rmap;
930 gfn = memslot->base_gfn;
931 for (n = memslot->npages; n; --n) {
932 /*
933 * Testing the present bit without locking is OK because
934 * the memslot has been marked invalid already, and hence
935 * no new HPTEs referencing this page can be created,
936 * thus the present bit can't go from 0 to 1.
937 */
938 if (*rmapp & KVMPPC_RMAP_PRESENT)
939 kvm_unmap_rmapp(kvm, rmapp, gfn);
940 ++rmapp;
941 ++gfn;
942 }
943}
944
342d3db7
PM
945static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
946 unsigned long gfn)
947{
55514893
PM
948 struct revmap_entry *rev = kvm->arch.revmap;
949 unsigned long head, i, j;
950 unsigned long *hptep;
951 int ret = 0;
952
953 retry:
954 lock_rmap(rmapp);
955 if (*rmapp & KVMPPC_RMAP_REFERENCED) {
956 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
957 ret = 1;
958 }
959 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
960 unlock_rmap(rmapp);
961 return ret;
962 }
963
964 i = head = *rmapp & KVMPPC_RMAP_INDEX;
965 do {
966 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
967 j = rev[i].forw;
968
969 /* If this HPTE isn't referenced, ignore it */
970 if (!(hptep[1] & HPTE_R_R))
971 continue;
972
973 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
974 /* unlock rmap before spinning on the HPTE lock */
975 unlock_rmap(rmapp);
976 while (hptep[0] & HPTE_V_HVLOCK)
977 cpu_relax();
978 goto retry;
979 }
980
981 /* Now check and modify the HPTE */
982 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
983 kvmppc_clear_ref_hpte(kvm, hptep, i);
a1b4a0f6
PM
984 if (!(rev[i].guest_rpte & HPTE_R_R)) {
985 rev[i].guest_rpte |= HPTE_R_R;
986 note_hpte_modification(kvm, &rev[i]);
987 }
55514893
PM
988 ret = 1;
989 }
990 hptep[0] &= ~HPTE_V_HVLOCK;
991 } while ((i = j) != head);
992
993 unlock_rmap(rmapp);
994 return ret;
342d3db7
PM
995}
996
997int kvm_age_hva(struct kvm *kvm, unsigned long hva)
998{
999 if (!kvm->arch.using_mmu_notifiers)
1000 return 0;
1001 return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
1002}
1003
1004static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1005 unsigned long gfn)
1006{
55514893
PM
1007 struct revmap_entry *rev = kvm->arch.revmap;
1008 unsigned long head, i, j;
1009 unsigned long *hp;
1010 int ret = 1;
1011
1012 if (*rmapp & KVMPPC_RMAP_REFERENCED)
1013 return 1;
1014
1015 lock_rmap(rmapp);
1016 if (*rmapp & KVMPPC_RMAP_REFERENCED)
1017 goto out;
1018
1019 if (*rmapp & KVMPPC_RMAP_PRESENT) {
1020 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1021 do {
1022 hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
1023 j = rev[i].forw;
1024 if (hp[1] & HPTE_R_R)
1025 goto out;
1026 } while ((i = j) != head);
1027 }
1028 ret = 0;
1029
1030 out:
1031 unlock_rmap(rmapp);
1032 return ret;
342d3db7
PM
1033}
1034
1035int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1036{
1037 if (!kvm->arch.using_mmu_notifiers)
1038 return 0;
1039 return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1040}
1041
1042void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1043{
1044 if (!kvm->arch.using_mmu_notifiers)
1045 return;
1046 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
de56a948
PM
1047}
1048
82ed3616
PM
1049static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1050{
1051 struct revmap_entry *rev = kvm->arch.revmap;
1052 unsigned long head, i, j;
1053 unsigned long *hptep;
1054 int ret = 0;
1055
1056 retry:
1057 lock_rmap(rmapp);
1058 if (*rmapp & KVMPPC_RMAP_CHANGED) {
1059 *rmapp &= ~KVMPPC_RMAP_CHANGED;
1060 ret = 1;
1061 }
1062 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1063 unlock_rmap(rmapp);
1064 return ret;
1065 }
1066
1067 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1068 do {
1069 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
1070 j = rev[i].forw;
1071
1072 if (!(hptep[1] & HPTE_R_C))
1073 continue;
1074
1075 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1076 /* unlock rmap before spinning on the HPTE lock */
1077 unlock_rmap(rmapp);
1078 while (hptep[0] & HPTE_V_HVLOCK)
1079 cpu_relax();
1080 goto retry;
1081 }
1082
1083 /* Now check and modify the HPTE */
1084 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
1085 /* need to make it temporarily absent to clear C */
1086 hptep[0] |= HPTE_V_ABSENT;
1087 kvmppc_invalidate_hpte(kvm, hptep, i);
1088 hptep[1] &= ~HPTE_R_C;
1089 eieio();
1090 hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
a1b4a0f6
PM
1091 if (!(rev[i].guest_rpte & HPTE_R_C)) {
1092 rev[i].guest_rpte |= HPTE_R_C;
1093 note_hpte_modification(kvm, &rev[i]);
1094 }
82ed3616
PM
1095 ret = 1;
1096 }
1097 hptep[0] &= ~HPTE_V_HVLOCK;
1098 } while ((i = j) != head);
1099
1100 unlock_rmap(rmapp);
1101 return ret;
1102}
1103
c35635ef
PM
1104static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1105 struct kvm_memory_slot *memslot,
1106 unsigned long *map)
1107{
1108 unsigned long gfn;
1109
1110 if (!vpa->dirty || !vpa->pinned_addr)
1111 return;
1112 gfn = vpa->gpa >> PAGE_SHIFT;
1113 if (gfn < memslot->base_gfn ||
1114 gfn >= memslot->base_gfn + memslot->npages)
1115 return;
1116
1117 vpa->dirty = false;
1118 if (map)
1119 __set_bit_le(gfn - memslot->base_gfn, map);
1120}
1121
dfe49dbd
PM
1122long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1123 unsigned long *map)
82ed3616
PM
1124{
1125 unsigned long i;
dfe49dbd 1126 unsigned long *rmapp;
c35635ef 1127 struct kvm_vcpu *vcpu;
82ed3616
PM
1128
1129 preempt_disable();
d89cc617 1130 rmapp = memslot->arch.rmap;
82ed3616 1131 for (i = 0; i < memslot->npages; ++i) {
dfe49dbd 1132 if (kvm_test_clear_dirty(kvm, rmapp) && map)
82ed3616
PM
1133 __set_bit_le(i, map);
1134 ++rmapp;
1135 }
c35635ef
PM
1136
1137 /* Harvest dirty bits from VPA and DTL updates */
1138 /* Note: we never modify the SLB shadow buffer areas */
1139 kvm_for_each_vcpu(i, vcpu, kvm) {
1140 spin_lock(&vcpu->arch.vpa_update_lock);
1141 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1142 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1143 spin_unlock(&vcpu->arch.vpa_update_lock);
1144 }
82ed3616
PM
1145 preempt_enable();
1146 return 0;
1147}
1148
93e60249
PM
1149void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1150 unsigned long *nb_ret)
1151{
1152 struct kvm_memory_slot *memslot;
1153 unsigned long gfn = gpa >> PAGE_SHIFT;
342d3db7
PM
1154 struct page *page, *pages[1];
1155 int npages;
c35635ef 1156 unsigned long hva, offset;
da9d1d7f 1157 unsigned long pa;
93e60249 1158 unsigned long *physp;
2c9097e4 1159 int srcu_idx;
93e60249 1160
2c9097e4 1161 srcu_idx = srcu_read_lock(&kvm->srcu);
93e60249
PM
1162 memslot = gfn_to_memslot(kvm, gfn);
1163 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2c9097e4 1164 goto err;
342d3db7 1165 if (!kvm->arch.using_mmu_notifiers) {
a66b48c3 1166 physp = memslot->arch.slot_phys;
342d3db7 1167 if (!physp)
2c9097e4 1168 goto err;
342d3db7 1169 physp += gfn - memslot->base_gfn;
c77162de 1170 pa = *physp;
342d3db7
PM
1171 if (!pa) {
1172 if (kvmppc_get_guest_page(kvm, gfn, memslot,
1173 PAGE_SIZE) < 0)
2c9097e4 1174 goto err;
342d3db7
PM
1175 pa = *physp;
1176 }
1177 page = pfn_to_page(pa >> PAGE_SHIFT);
de6c0b02 1178 get_page(page);
342d3db7
PM
1179 } else {
1180 hva = gfn_to_hva_memslot(memslot, gfn);
1181 npages = get_user_pages_fast(hva, 1, 1, pages);
1182 if (npages < 1)
2c9097e4 1183 goto err;
342d3db7 1184 page = pages[0];
c77162de 1185 }
2c9097e4
PM
1186 srcu_read_unlock(&kvm->srcu, srcu_idx);
1187
c35635ef 1188 offset = gpa & (PAGE_SIZE - 1);
93e60249 1189 if (nb_ret)
c35635ef 1190 *nb_ret = PAGE_SIZE - offset;
93e60249 1191 return page_address(page) + offset;
2c9097e4
PM
1192
1193 err:
1194 srcu_read_unlock(&kvm->srcu, srcu_idx);
1195 return NULL;
93e60249
PM
1196}
1197
c35635ef
PM
1198void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1199 bool dirty)
93e60249
PM
1200{
1201 struct page *page = virt_to_page(va);
c35635ef
PM
1202 struct kvm_memory_slot *memslot;
1203 unsigned long gfn;
1204 unsigned long *rmap;
1205 int srcu_idx;
93e60249 1206
93e60249 1207 put_page(page);
c35635ef
PM
1208
1209 if (!dirty || !kvm->arch.using_mmu_notifiers)
1210 return;
1211
1212 /* We need to mark this page dirty in the rmap chain */
1213 gfn = gpa >> PAGE_SHIFT;
1214 srcu_idx = srcu_read_lock(&kvm->srcu);
1215 memslot = gfn_to_memslot(kvm, gfn);
1216 if (memslot) {
1217 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1218 lock_rmap(rmap);
1219 *rmap |= KVMPPC_RMAP_CHANGED;
1220 unlock_rmap(rmap);
1221 }
1222 srcu_read_unlock(&kvm->srcu, srcu_idx);
93e60249
PM
1223}
1224
a2932923
PM
1225/*
1226 * Functions for reading and writing the hash table via reads and
1227 * writes on a file descriptor.
1228 *
1229 * Reads return the guest view of the hash table, which has to be
1230 * pieced together from the real hash table and the guest_rpte
1231 * values in the revmap array.
1232 *
1233 * On writes, each HPTE written is considered in turn, and if it
1234 * is valid, it is written to the HPT as if an H_ENTER with the
1235 * exact flag set was done. When the invalid count is non-zero
1236 * in the header written to the stream, the kernel will make
1237 * sure that that many HPTEs are invalid, and invalidate them
1238 * if not.
1239 */
1240
1241struct kvm_htab_ctx {
1242 unsigned long index;
1243 unsigned long flags;
1244 struct kvm *kvm;
1245 int first_pass;
1246};
1247
1248#define HPTE_SIZE (2 * sizeof(unsigned long))
1249
a1b4a0f6
PM
1250/*
1251 * Returns 1 if this HPT entry has been modified or has pending
1252 * R/C bit changes.
1253 */
1254static int hpte_dirty(struct revmap_entry *revp, unsigned long *hptp)
1255{
1256 unsigned long rcbits_unset;
1257
1258 if (revp->guest_rpte & HPTE_GR_MODIFIED)
1259 return 1;
1260
1261 /* Also need to consider changes in reference and changed bits */
1262 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1263 if ((hptp[0] & HPTE_V_VALID) && (hptp[1] & rcbits_unset))
1264 return 1;
1265
1266 return 0;
1267}
1268
a2932923
PM
1269static long record_hpte(unsigned long flags, unsigned long *hptp,
1270 unsigned long *hpte, struct revmap_entry *revp,
1271 int want_valid, int first_pass)
1272{
1273 unsigned long v, r;
a1b4a0f6 1274 unsigned long rcbits_unset;
a2932923
PM
1275 int ok = 1;
1276 int valid, dirty;
1277
1278 /* Unmodified entries are uninteresting except on the first pass */
a1b4a0f6 1279 dirty = hpte_dirty(revp, hptp);
a2932923
PM
1280 if (!first_pass && !dirty)
1281 return 0;
1282
1283 valid = 0;
1284 if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1285 valid = 1;
1286 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1287 !(hptp[0] & HPTE_V_BOLTED))
1288 valid = 0;
1289 }
1290 if (valid != want_valid)
1291 return 0;
1292
1293 v = r = 0;
1294 if (valid || dirty) {
1295 /* lock the HPTE so it's stable and read it */
1296 preempt_disable();
1297 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1298 cpu_relax();
1299 v = hptp[0];
a1b4a0f6
PM
1300
1301 /* re-evaluate valid and dirty from synchronized HPTE value */
1302 valid = !!(v & HPTE_V_VALID);
1303 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1304
1305 /* Harvest R and C into guest view if necessary */
1306 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1307 if (valid && (rcbits_unset & hptp[1])) {
1308 revp->guest_rpte |= (hptp[1] & (HPTE_R_R | HPTE_R_C)) |
1309 HPTE_GR_MODIFIED;
1310 dirty = 1;
1311 }
1312
a2932923
PM
1313 if (v & HPTE_V_ABSENT) {
1314 v &= ~HPTE_V_ABSENT;
1315 v |= HPTE_V_VALID;
a1b4a0f6 1316 valid = 1;
a2932923 1317 }
a2932923
PM
1318 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1319 valid = 0;
a1b4a0f6
PM
1320
1321 r = revp->guest_rpte;
a2932923
PM
1322 /* only clear modified if this is the right sort of entry */
1323 if (valid == want_valid && dirty) {
1324 r &= ~HPTE_GR_MODIFIED;
1325 revp->guest_rpte = r;
1326 }
1327 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1328 hptp[0] &= ~HPTE_V_HVLOCK;
1329 preempt_enable();
1330 if (!(valid == want_valid && (first_pass || dirty)))
1331 ok = 0;
1332 }
1333 hpte[0] = v;
1334 hpte[1] = r;
1335 return ok;
1336}
1337
1338static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1339 size_t count, loff_t *ppos)
1340{
1341 struct kvm_htab_ctx *ctx = file->private_data;
1342 struct kvm *kvm = ctx->kvm;
1343 struct kvm_get_htab_header hdr;
1344 unsigned long *hptp;
1345 struct revmap_entry *revp;
1346 unsigned long i, nb, nw;
1347 unsigned long __user *lbuf;
1348 struct kvm_get_htab_header __user *hptr;
1349 unsigned long flags;
1350 int first_pass;
1351 unsigned long hpte[2];
1352
1353 if (!access_ok(VERIFY_WRITE, buf, count))
1354 return -EFAULT;
1355
1356 first_pass = ctx->first_pass;
1357 flags = ctx->flags;
1358
1359 i = ctx->index;
1360 hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1361 revp = kvm->arch.revmap + i;
1362 lbuf = (unsigned long __user *)buf;
1363
1364 nb = 0;
1365 while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1366 /* Initialize header */
1367 hptr = (struct kvm_get_htab_header __user *)buf;
a2932923
PM
1368 hdr.n_valid = 0;
1369 hdr.n_invalid = 0;
1370 nw = nb;
1371 nb += sizeof(hdr);
1372 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1373
1374 /* Skip uninteresting entries, i.e. clean on not-first pass */
1375 if (!first_pass) {
1376 while (i < kvm->arch.hpt_npte &&
a1b4a0f6 1377 !hpte_dirty(revp, hptp)) {
a2932923
PM
1378 ++i;
1379 hptp += 2;
1380 ++revp;
1381 }
1382 }
05dd85f7 1383 hdr.index = i;
a2932923
PM
1384
1385 /* Grab a series of valid entries */
1386 while (i < kvm->arch.hpt_npte &&
1387 hdr.n_valid < 0xffff &&
1388 nb + HPTE_SIZE < count &&
1389 record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1390 /* valid entry, write it out */
1391 ++hdr.n_valid;
1392 if (__put_user(hpte[0], lbuf) ||
1393 __put_user(hpte[1], lbuf + 1))
1394 return -EFAULT;
1395 nb += HPTE_SIZE;
1396 lbuf += 2;
1397 ++i;
1398 hptp += 2;
1399 ++revp;
1400 }
1401 /* Now skip invalid entries while we can */
1402 while (i < kvm->arch.hpt_npte &&
1403 hdr.n_invalid < 0xffff &&
1404 record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1405 /* found an invalid entry */
1406 ++hdr.n_invalid;
1407 ++i;
1408 hptp += 2;
1409 ++revp;
1410 }
1411
1412 if (hdr.n_valid || hdr.n_invalid) {
1413 /* write back the header */
1414 if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1415 return -EFAULT;
1416 nw = nb;
1417 buf = (char __user *)lbuf;
1418 } else {
1419 nb = nw;
1420 }
1421
1422 /* Check if we've wrapped around the hash table */
1423 if (i >= kvm->arch.hpt_npte) {
1424 i = 0;
1425 ctx->first_pass = 0;
1426 break;
1427 }
1428 }
1429
1430 ctx->index = i;
1431
1432 return nb;
1433}
1434
1435static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1436 size_t count, loff_t *ppos)
1437{
1438 struct kvm_htab_ctx *ctx = file->private_data;
1439 struct kvm *kvm = ctx->kvm;
1440 struct kvm_get_htab_header hdr;
1441 unsigned long i, j;
1442 unsigned long v, r;
1443 unsigned long __user *lbuf;
1444 unsigned long *hptp;
1445 unsigned long tmp[2];
1446 ssize_t nb;
1447 long int err, ret;
1448 int rma_setup;
1449
1450 if (!access_ok(VERIFY_READ, buf, count))
1451 return -EFAULT;
1452
1453 /* lock out vcpus from running while we're doing this */
1454 mutex_lock(&kvm->lock);
1455 rma_setup = kvm->arch.rma_setup_done;
1456 if (rma_setup) {
1457 kvm->arch.rma_setup_done = 0; /* temporarily */
1458 /* order rma_setup_done vs. vcpus_running */
1459 smp_mb();
1460 if (atomic_read(&kvm->arch.vcpus_running)) {
1461 kvm->arch.rma_setup_done = 1;
1462 mutex_unlock(&kvm->lock);
1463 return -EBUSY;
1464 }
1465 }
1466
1467 err = 0;
1468 for (nb = 0; nb + sizeof(hdr) <= count; ) {
1469 err = -EFAULT;
1470 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1471 break;
1472
1473 err = 0;
1474 if (nb + hdr.n_valid * HPTE_SIZE > count)
1475 break;
1476
1477 nb += sizeof(hdr);
1478 buf += sizeof(hdr);
1479
1480 err = -EINVAL;
1481 i = hdr.index;
1482 if (i >= kvm->arch.hpt_npte ||
1483 i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1484 break;
1485
1486 hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1487 lbuf = (unsigned long __user *)buf;
1488 for (j = 0; j < hdr.n_valid; ++j) {
1489 err = -EFAULT;
1490 if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
1491 goto out;
1492 err = -EINVAL;
1493 if (!(v & HPTE_V_VALID))
1494 goto out;
1495 lbuf += 2;
1496 nb += HPTE_SIZE;
1497
1498 if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1499 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1500 err = -EIO;
1501 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1502 tmp);
1503 if (ret != H_SUCCESS) {
1504 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1505 "r=%lx\n", ret, i, v, r);
1506 goto out;
1507 }
1508 if (!rma_setup && is_vrma_hpte(v)) {
1509 unsigned long psize = hpte_page_size(v, r);
1510 unsigned long senc = slb_pgsize_encoding(psize);
1511 unsigned long lpcr;
1512
1513 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1514 (VRMA_VSID << SLB_VSID_SHIFT_1T);
1515 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1516 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1517 kvm->arch.lpcr = lpcr;
1518 rma_setup = 1;
1519 }
1520 ++i;
1521 hptp += 2;
1522 }
1523
1524 for (j = 0; j < hdr.n_invalid; ++j) {
1525 if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1526 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1527 ++i;
1528 hptp += 2;
1529 }
1530 err = 0;
1531 }
1532
1533 out:
1534 /* Order HPTE updates vs. rma_setup_done */
1535 smp_wmb();
1536 kvm->arch.rma_setup_done = rma_setup;
1537 mutex_unlock(&kvm->lock);
1538
1539 if (err)
1540 return err;
1541 return nb;
1542}
1543
1544static int kvm_htab_release(struct inode *inode, struct file *filp)
1545{
1546 struct kvm_htab_ctx *ctx = filp->private_data;
1547
1548 filp->private_data = NULL;
1549 if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1550 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1551 kvm_put_kvm(ctx->kvm);
1552 kfree(ctx);
1553 return 0;
1554}
1555
75ef9de1 1556static const struct file_operations kvm_htab_fops = {
a2932923
PM
1557 .read = kvm_htab_read,
1558 .write = kvm_htab_write,
1559 .llseek = default_llseek,
1560 .release = kvm_htab_release,
1561};
1562
1563int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1564{
1565 int ret;
1566 struct kvm_htab_ctx *ctx;
1567 int rwflag;
1568
1569 /* reject flags we don't recognize */
1570 if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1571 return -EINVAL;
1572 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1573 if (!ctx)
1574 return -ENOMEM;
1575 kvm_get_kvm(kvm);
1576 ctx->kvm = kvm;
1577 ctx->index = ghf->start_index;
1578 ctx->flags = ghf->flags;
1579 ctx->first_pass = 1;
1580
1581 rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
2f84d5ea 1582 ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
a2932923
PM
1583 if (ret < 0) {
1584 kvm_put_kvm(kvm);
1585 return ret;
1586 }
1587
1588 if (rwflag == O_RDONLY) {
1589 mutex_lock(&kvm->slots_lock);
1590 atomic_inc(&kvm->arch.hpte_mod_interest);
1591 /* make sure kvmppc_do_h_enter etc. see the increment */
1592 synchronize_srcu_expedited(&kvm->srcu);
1593 mutex_unlock(&kvm->slots_lock);
1594 }
1595
1596 return ret;
1597}
1598
de56a948
PM
1599void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1600{
1601 struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1602
9e368f29
PM
1603 if (cpu_has_feature(CPU_FTR_ARCH_206))
1604 vcpu->arch.slb_nr = 32; /* POWER7 */
1605 else
1606 vcpu->arch.slb_nr = 64;
de56a948
PM
1607
1608 mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1609 mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1610
1611 vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1612}
This page took 0.176884 seconds and 5 git commands to generate.