powerpc: Hugetlb for BookE
[deliverable/linux.git] / arch / powerpc / mm / hugetlbpage.c
CommitLineData
1da177e4 1/*
41151e77 2 * PPC Huge TLB Page Support for Kernel.
1da177e4
LT
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
41151e77 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
1da177e4
LT
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
1da177e4 11#include <linux/mm.h>
883a3e52 12#include <linux/io.h>
5a0e3ad6 13#include <linux/slab.h>
1da177e4 14#include <linux/hugetlb.h>
41151e77
BB
15#include <linux/of_fdt.h>
16#include <linux/memblock.h>
17#include <linux/bootmem.h>
883a3e52 18#include <asm/pgtable.h>
1da177e4
LT
19#include <asm/pgalloc.h>
20#include <asm/tlb.h>
41151e77 21#include <asm/setup.h>
1da177e4 22
91224346
JT
23#define PAGE_SHIFT_64K 16
24#define PAGE_SHIFT_16M 24
25#define PAGE_SHIFT_16G 34
4ec161cf 26
41151e77 27unsigned int HPAGE_SHIFT;
ec4b2c0c 28
41151e77
BB
29/*
30 * Tracks gpages after the device tree is scanned and before the
31 * huge_boot_pages list is ready. On 64-bit implementations, this is
32 * just used to track 16G pages and so is a single array. 32-bit
33 * implementations may have more than one gpage size due to limitations
34 * of the memory allocators, so we need multiple arrays
35 */
36#ifdef CONFIG_PPC64
37#define MAX_NUMBER_GPAGES 1024
38static u64 gpage_freearray[MAX_NUMBER_GPAGES];
ec4b2c0c 39static unsigned nr_gpages;
41151e77
BB
40#else
41#define MAX_NUMBER_GPAGES 128
42struct psize_gpages {
43 u64 gpage_list[MAX_NUMBER_GPAGES];
44 unsigned int nr_gpages;
45};
46static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
47#endif
f10a04c0 48
0d9ea754
JT
49static inline int shift_to_mmu_psize(unsigned int shift)
50{
d1837cba
DG
51 int psize;
52
53 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
54 if (mmu_psize_defs[psize].shift == shift)
55 return psize;
0d9ea754
JT
56 return -1;
57}
58
59static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
60{
61 if (mmu_psize_defs[mmu_psize].shift)
62 return mmu_psize_defs[mmu_psize].shift;
63 BUG();
64}
65
a4fe3ce7
DG
66#define hugepd_none(hpd) ((hpd).pd == 0)
67
a4fe3ce7
DG
68pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
69{
70 pgd_t *pg;
71 pud_t *pu;
72 pmd_t *pm;
73 hugepd_t *hpdp = NULL;
74 unsigned pdshift = PGDIR_SHIFT;
75
76 if (shift)
77 *shift = 0;
78
79 pg = pgdir + pgd_index(ea);
80 if (is_hugepd(pg)) {
81 hpdp = (hugepd_t *)pg;
82 } else if (!pgd_none(*pg)) {
83 pdshift = PUD_SHIFT;
84 pu = pud_offset(pg, ea);
85 if (is_hugepd(pu))
86 hpdp = (hugepd_t *)pu;
87 else if (!pud_none(*pu)) {
88 pdshift = PMD_SHIFT;
89 pm = pmd_offset(pu, ea);
90 if (is_hugepd(pm))
91 hpdp = (hugepd_t *)pm;
92 else if (!pmd_none(*pm)) {
41151e77 93 return pte_offset_kernel(pm, ea);
a4fe3ce7
DG
94 }
95 }
96 }
97
98 if (!hpdp)
99 return NULL;
100
101 if (shift)
102 *shift = hugepd_shift(*hpdp);
103 return hugepte_offset(hpdp, ea, pdshift);
104}
105
106pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
107{
108 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
109}
110
f10a04c0 111static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
a4fe3ce7 112 unsigned long address, unsigned pdshift, unsigned pshift)
f10a04c0 113{
41151e77
BB
114 struct kmem_cache *cachep;
115 pte_t *new;
116
117#ifdef CONFIG_PPC64
118 cachep = PGT_CACHE(pdshift - pshift);
119#else
120 int i;
121 int num_hugepd = 1 << (pshift - pdshift);
122 cachep = hugepte_cache;
123#endif
124
125 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
f10a04c0 126
a4fe3ce7
DG
127 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
128 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
129
f10a04c0
DG
130 if (! new)
131 return -ENOMEM;
132
133 spin_lock(&mm->page_table_lock);
41151e77 134#ifdef CONFIG_PPC64
f10a04c0 135 if (!hugepd_none(*hpdp))
41151e77 136 kmem_cache_free(cachep, new);
f10a04c0 137 else
41151e77
BB
138 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
139#else
140 /*
141 * We have multiple higher-level entries that point to the same
142 * actual pte location. Fill in each as we go and backtrack on error.
143 * We need all of these so the DTLB pgtable walk code can find the
144 * right higher-level entry without knowing if it's a hugepage or not.
145 */
146 for (i = 0; i < num_hugepd; i++, hpdp++) {
147 if (unlikely(!hugepd_none(*hpdp)))
148 break;
149 else
150 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
151 }
152 /* If we bailed from the for loop early, an error occurred, clean up */
153 if (i < num_hugepd) {
154 for (i = i - 1 ; i >= 0; i--, hpdp--)
155 hpdp->pd = 0;
156 kmem_cache_free(cachep, new);
157 }
158#endif
f10a04c0
DG
159 spin_unlock(&mm->page_table_lock);
160 return 0;
161}
162
a4fe3ce7 163pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
0b26425c 164{
a4fe3ce7
DG
165 pgd_t *pg;
166 pud_t *pu;
167 pmd_t *pm;
168 hugepd_t *hpdp = NULL;
169 unsigned pshift = __ffs(sz);
170 unsigned pdshift = PGDIR_SHIFT;
171
172 addr &= ~(sz-1);
173
174 pg = pgd_offset(mm, addr);
175 if (pshift >= PUD_SHIFT) {
176 hpdp = (hugepd_t *)pg;
177 } else {
178 pdshift = PUD_SHIFT;
179 pu = pud_alloc(mm, pg, addr);
180 if (pshift >= PMD_SHIFT) {
181 hpdp = (hugepd_t *)pu;
182 } else {
183 pdshift = PMD_SHIFT;
184 pm = pmd_alloc(mm, pu, addr);
185 hpdp = (hugepd_t *)pm;
186 }
187 }
188
189 if (!hpdp)
190 return NULL;
191
192 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
193
194 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
195 return NULL;
196
197 return hugepte_offset(hpdp, addr, pdshift);
4ec161cf 198}
4ec161cf 199
41151e77 200#ifdef CONFIG_PPC32
658013e9
JT
201/* Build list of addresses of gigantic pages. This function is used in early
202 * boot before the buddy or bootmem allocator is setup.
203 */
41151e77
BB
204void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
205{
206 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
207 int i;
208
209 if (addr == 0)
210 return;
211
212 gpage_freearray[idx].nr_gpages = number_of_pages;
213
214 for (i = 0; i < number_of_pages; i++) {
215 gpage_freearray[idx].gpage_list[i] = addr;
216 addr += page_size;
217 }
218}
219
220/*
221 * Moves the gigantic page addresses from the temporary list to the
222 * huge_boot_pages list.
223 */
224int alloc_bootmem_huge_page(struct hstate *hstate)
225{
226 struct huge_bootmem_page *m;
227 int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
228 int nr_gpages = gpage_freearray[idx].nr_gpages;
229
230 if (nr_gpages == 0)
231 return 0;
232
233#ifdef CONFIG_HIGHMEM
234 /*
235 * If gpages can be in highmem we can't use the trick of storing the
236 * data structure in the page; allocate space for this
237 */
238 m = alloc_bootmem(sizeof(struct huge_bootmem_page));
239 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
240#else
241 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
242#endif
243
244 list_add(&m->list, &huge_boot_pages);
245 gpage_freearray[idx].nr_gpages = nr_gpages;
246 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
247 m->hstate = hstate;
248
249 return 1;
250}
251/*
252 * Scan the command line hugepagesz= options for gigantic pages; store those in
253 * a list that we use to allocate the memory once all options are parsed.
254 */
255
256unsigned long gpage_npages[MMU_PAGE_COUNT];
257
258static int __init do_gpage_early_setup(char *param, char *val)
259{
260 static phys_addr_t size;
261 unsigned long npages;
262
263 /*
264 * The hugepagesz and hugepages cmdline options are interleaved. We
265 * use the size variable to keep track of whether or not this was done
266 * properly and skip over instances where it is incorrect. Other
267 * command-line parsing code will issue warnings, so we don't need to.
268 *
269 */
270 if ((strcmp(param, "default_hugepagesz") == 0) ||
271 (strcmp(param, "hugepagesz") == 0)) {
272 size = memparse(val, NULL);
273 } else if (strcmp(param, "hugepages") == 0) {
274 if (size != 0) {
275 if (sscanf(val, "%lu", &npages) <= 0)
276 npages = 0;
277 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
278 size = 0;
279 }
280 }
281 return 0;
282}
283
284
285/*
286 * This function allocates physical space for pages that are larger than the
287 * buddy allocator can handle. We want to allocate these in highmem because
288 * the amount of lowmem is limited. This means that this function MUST be
289 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
290 * allocate to grab highmem.
291 */
292void __init reserve_hugetlb_gpages(void)
293{
294 static __initdata char cmdline[COMMAND_LINE_SIZE];
295 phys_addr_t size, base;
296 int i;
297
298 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
299 parse_args("hugetlb gpages", cmdline, NULL, 0, &do_gpage_early_setup);
300
301 /*
302 * Walk gpage list in reverse, allocating larger page sizes first.
303 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
304 * When we reach the point in the list where pages are no longer
305 * considered gpages, we're done.
306 */
307 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
308 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
309 continue;
310 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
311 break;
312
313 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
314 base = memblock_alloc_base(size * gpage_npages[i], size,
315 MEMBLOCK_ALLOC_ANYWHERE);
316 add_gpage(base, size, gpage_npages[i]);
317 }
318}
319
320#else /* PPC64 */
321
322/* Build list of addresses of gigantic pages. This function is used in early
323 * boot before the buddy or bootmem allocator is setup.
324 */
325void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
658013e9
JT
326{
327 if (!addr)
328 return;
329 while (number_of_pages > 0) {
330 gpage_freearray[nr_gpages] = addr;
331 nr_gpages++;
332 number_of_pages--;
333 addr += page_size;
334 }
335}
336
ec4b2c0c 337/* Moves the gigantic page addresses from the temporary list to the
0d9ea754
JT
338 * huge_boot_pages list.
339 */
340int alloc_bootmem_huge_page(struct hstate *hstate)
ec4b2c0c
JT
341{
342 struct huge_bootmem_page *m;
343 if (nr_gpages == 0)
344 return 0;
345 m = phys_to_virt(gpage_freearray[--nr_gpages]);
346 gpage_freearray[nr_gpages] = 0;
347 list_add(&m->list, &huge_boot_pages);
0d9ea754 348 m->hstate = hstate;
ec4b2c0c
JT
349 return 1;
350}
41151e77 351#endif
ec4b2c0c 352
39dde65c
CK
353int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
354{
355 return 0;
356}
357
41151e77
BB
358#ifdef CONFIG_PPC32
359#define HUGEPD_FREELIST_SIZE \
360 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
361
362struct hugepd_freelist {
363 struct rcu_head rcu;
364 unsigned int index;
365 void *ptes[0];
366};
367
368static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
369
370static void hugepd_free_rcu_callback(struct rcu_head *head)
371{
372 struct hugepd_freelist *batch =
373 container_of(head, struct hugepd_freelist, rcu);
374 unsigned int i;
375
376 for (i = 0; i < batch->index; i++)
377 kmem_cache_free(hugepte_cache, batch->ptes[i]);
378
379 free_page((unsigned long)batch);
380}
381
382static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
383{
384 struct hugepd_freelist **batchp;
385
386 batchp = &__get_cpu_var(hugepd_freelist_cur);
387
388 if (atomic_read(&tlb->mm->mm_users) < 2 ||
389 cpumask_equal(mm_cpumask(tlb->mm),
390 cpumask_of(smp_processor_id()))) {
391 kmem_cache_free(hugepte_cache, hugepte);
392 return;
393 }
394
395 if (*batchp == NULL) {
396 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
397 (*batchp)->index = 0;
398 }
399
400 (*batchp)->ptes[(*batchp)->index++] = hugepte;
401 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
402 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
403 *batchp = NULL;
404 }
405}
406#endif
407
a4fe3ce7
DG
408static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
409 unsigned long start, unsigned long end,
410 unsigned long floor, unsigned long ceiling)
f10a04c0
DG
411{
412 pte_t *hugepte = hugepd_page(*hpdp);
41151e77
BB
413 int i;
414
a4fe3ce7 415 unsigned long pdmask = ~((1UL << pdshift) - 1);
41151e77
BB
416 unsigned int num_hugepd = 1;
417
418#ifdef CONFIG_PPC64
419 unsigned int shift = hugepd_shift(*hpdp);
420#else
421 /* Note: On 32-bit the hpdp may be the first of several */
422 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
423#endif
a4fe3ce7
DG
424
425 start &= pdmask;
426 if (start < floor)
427 return;
428 if (ceiling) {
429 ceiling &= pdmask;
430 if (! ceiling)
431 return;
432 }
433 if (end - 1 > ceiling - 1)
434 return;
f10a04c0 435
41151e77
BB
436 for (i = 0; i < num_hugepd; i++, hpdp++)
437 hpdp->pd = 0;
438
f10a04c0 439 tlb->need_flush = 1;
41151e77 440#ifdef CONFIG_PPC64
a4fe3ce7 441 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
41151e77
BB
442#else
443 hugepd_free(tlb, hugepte);
444#endif
f10a04c0
DG
445}
446
f10a04c0
DG
447static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
448 unsigned long addr, unsigned long end,
a4fe3ce7 449 unsigned long floor, unsigned long ceiling)
f10a04c0
DG
450{
451 pmd_t *pmd;
452 unsigned long next;
453 unsigned long start;
454
455 start = addr;
456 pmd = pmd_offset(pud, addr);
457 do {
458 next = pmd_addr_end(addr, end);
459 if (pmd_none(*pmd))
460 continue;
a4fe3ce7
DG
461 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
462 addr, next, floor, ceiling);
f10a04c0
DG
463 } while (pmd++, addr = next, addr != end);
464
465 start &= PUD_MASK;
466 if (start < floor)
467 return;
468 if (ceiling) {
469 ceiling &= PUD_MASK;
470 if (!ceiling)
471 return;
1da177e4 472 }
f10a04c0
DG
473 if (end - 1 > ceiling - 1)
474 return;
1da177e4 475
f10a04c0
DG
476 pmd = pmd_offset(pud, start);
477 pud_clear(pud);
9e1b32ca 478 pmd_free_tlb(tlb, pmd, start);
f10a04c0 479}
f10a04c0
DG
480
481static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
482 unsigned long addr, unsigned long end,
483 unsigned long floor, unsigned long ceiling)
484{
485 pud_t *pud;
486 unsigned long next;
487 unsigned long start;
488
489 start = addr;
490 pud = pud_offset(pgd, addr);
491 do {
492 next = pud_addr_end(addr, end);
a4fe3ce7 493 if (!is_hugepd(pud)) {
4ec161cf
JT
494 if (pud_none_or_clear_bad(pud))
495 continue;
0d9ea754 496 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
a4fe3ce7 497 ceiling);
4ec161cf 498 } else {
a4fe3ce7
DG
499 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
500 addr, next, floor, ceiling);
4ec161cf 501 }
f10a04c0
DG
502 } while (pud++, addr = next, addr != end);
503
504 start &= PGDIR_MASK;
505 if (start < floor)
506 return;
507 if (ceiling) {
508 ceiling &= PGDIR_MASK;
509 if (!ceiling)
510 return;
511 }
512 if (end - 1 > ceiling - 1)
513 return;
514
515 pud = pud_offset(pgd, start);
516 pgd_clear(pgd);
9e1b32ca 517 pud_free_tlb(tlb, pud, start);
f10a04c0
DG
518}
519
520/*
521 * This function frees user-level page tables of a process.
522 *
523 * Must be called with pagetable lock held.
524 */
42b77728 525void hugetlb_free_pgd_range(struct mmu_gather *tlb,
f10a04c0
DG
526 unsigned long addr, unsigned long end,
527 unsigned long floor, unsigned long ceiling)
528{
529 pgd_t *pgd;
530 unsigned long next;
f10a04c0
DG
531
532 /*
a4fe3ce7
DG
533 * Because there are a number of different possible pagetable
534 * layouts for hugepage ranges, we limit knowledge of how
535 * things should be laid out to the allocation path
536 * (huge_pte_alloc(), above). Everything else works out the
537 * structure as it goes from information in the hugepd
538 * pointers. That means that we can't here use the
539 * optimization used in the normal page free_pgd_range(), of
540 * checking whether we're actually covering a large enough
541 * range to have to do anything at the top level of the walk
542 * instead of at the bottom.
f10a04c0 543 *
a4fe3ce7
DG
544 * To make sense of this, you should probably go read the big
545 * block comment at the top of the normal free_pgd_range(),
546 * too.
f10a04c0 547 */
f10a04c0 548
f10a04c0 549 do {
f10a04c0 550 next = pgd_addr_end(addr, end);
41151e77 551 pgd = pgd_offset(tlb->mm, addr);
a4fe3ce7 552 if (!is_hugepd(pgd)) {
0b26425c
DG
553 if (pgd_none_or_clear_bad(pgd))
554 continue;
555 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
556 } else {
41151e77
BB
557#ifdef CONFIG_PPC32
558 /*
559 * Increment next by the size of the huge mapping since
560 * on 32-bit there may be more than one entry at the pgd
561 * level for a single hugepage, but all of them point to
562 * the same kmem cache that holds the hugepte.
563 */
564 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
565#endif
a4fe3ce7
DG
566 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
567 addr, next, floor, ceiling);
0b26425c 568 }
41151e77 569 } while (addr = next, addr != end);
1da177e4
LT
570}
571
1da177e4
LT
572struct page *
573follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
574{
575 pte_t *ptep;
576 struct page *page;
a4fe3ce7
DG
577 unsigned shift;
578 unsigned long mask;
579
580 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
1da177e4 581
0d9ea754 582 /* Verify it is a huge page else bail. */
a4fe3ce7 583 if (!ptep || !shift)
1da177e4
LT
584 return ERR_PTR(-EINVAL);
585
a4fe3ce7 586 mask = (1UL << shift) - 1;
1da177e4 587 page = pte_page(*ptep);
a4fe3ce7
DG
588 if (page)
589 page += (address & mask) / PAGE_SIZE;
1da177e4
LT
590
591 return page;
592}
593
594int pmd_huge(pmd_t pmd)
595{
596 return 0;
597}
598
ceb86879
AK
599int pud_huge(pud_t pud)
600{
601 return 0;
602}
603
1da177e4
LT
604struct page *
605follow_huge_pmd(struct mm_struct *mm, unsigned long address,
606 pmd_t *pmd, int write)
607{
608 BUG();
609 return NULL;
610}
611
a4fe3ce7
DG
612static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
613 unsigned long end, int write, struct page **pages, int *nr)
614{
615 unsigned long mask;
616 unsigned long pte_end;
617 struct page *head, *page;
618 pte_t pte;
619 int refs;
620
621 pte_end = (addr + sz) & ~(sz-1);
622 if (pte_end < end)
623 end = pte_end;
624
625 pte = *ptep;
626 mask = _PAGE_PRESENT | _PAGE_USER;
627 if (write)
628 mask |= _PAGE_RW;
629
630 if ((pte_val(pte) & mask) != mask)
631 return 0;
632
633 /* hugepages are never "special" */
634 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
635
636 refs = 0;
637 head = pte_page(pte);
638
639 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
640 do {
641 VM_BUG_ON(compound_head(page) != head);
642 pages[*nr] = page;
643 (*nr)++;
644 page++;
645 refs++;
646 } while (addr += PAGE_SIZE, addr != end);
647
648 if (!page_cache_add_speculative(head, refs)) {
649 *nr -= refs;
650 return 0;
651 }
652
653 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
654 /* Could be optimized better */
655 while (*nr) {
656 put_page(page);
657 (*nr)--;
658 }
659 }
660
661 return 1;
662}
663
39adfa54
DG
664static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
665 unsigned long sz)
666{
667 unsigned long __boundary = (addr + sz) & ~(sz-1);
668 return (__boundary - 1 < end - 1) ? __boundary : end;
669}
670
a4fe3ce7
DG
671int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
672 unsigned long addr, unsigned long end,
673 int write, struct page **pages, int *nr)
674{
675 pte_t *ptep;
676 unsigned long sz = 1UL << hugepd_shift(*hugepd);
39adfa54 677 unsigned long next;
a4fe3ce7
DG
678
679 ptep = hugepte_offset(hugepd, addr, pdshift);
680 do {
39adfa54 681 next = hugepte_addr_end(addr, end, sz);
a4fe3ce7
DG
682 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
683 return 0;
39adfa54 684 } while (ptep++, addr = next, addr != end);
a4fe3ce7
DG
685
686 return 1;
687}
1da177e4
LT
688
689unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
690 unsigned long len, unsigned long pgoff,
691 unsigned long flags)
692{
41151e77 693#ifdef CONFIG_MM_SLICES
0d9ea754
JT
694 struct hstate *hstate = hstate_file(file);
695 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
48f797de 696
0d9ea754 697 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
41151e77
BB
698#else
699 return get_unmapped_area(file, addr, len, pgoff, flags);
700#endif
1da177e4
LT
701}
702
3340289d
MG
703unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
704{
41151e77 705#ifdef CONFIG_MM_SLICES
3340289d
MG
706 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
707
708 return 1UL << mmu_psize_to_shift(psize);
41151e77
BB
709#else
710 if (!is_vm_hugetlb_page(vma))
711 return PAGE_SIZE;
712
713 return huge_page_size(hstate_vma(vma));
714#endif
715}
716
717static inline bool is_power_of_4(unsigned long x)
718{
719 if (is_power_of_2(x))
720 return (__ilog2(x) % 2) ? false : true;
721 return false;
3340289d
MG
722}
723
d1837cba 724static int __init add_huge_page_size(unsigned long long size)
4ec161cf 725{
d1837cba
DG
726 int shift = __ffs(size);
727 int mmu_psize;
a4fe3ce7 728
4ec161cf 729 /* Check that it is a page size supported by the hardware and
d1837cba 730 * that it fits within pagetable and slice limits. */
41151e77
BB
731#ifdef CONFIG_PPC_FSL_BOOK3E
732 if ((size < PAGE_SIZE) || !is_power_of_4(size))
733 return -EINVAL;
734#else
d1837cba
DG
735 if (!is_power_of_2(size)
736 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
737 return -EINVAL;
41151e77 738#endif
91224346 739
d1837cba
DG
740 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
741 return -EINVAL;
742
743#ifdef CONFIG_SPU_FS_64K_LS
744 /* Disable support for 64K huge pages when 64K SPU local store
745 * support is enabled as the current implementation conflicts.
746 */
747 if (shift == PAGE_SHIFT_64K)
748 return -EINVAL;
749#endif /* CONFIG_SPU_FS_64K_LS */
750
751 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
752
753 /* Return if huge page size has already been setup */
754 if (size_to_hstate(size))
755 return 0;
756
757 hugetlb_add_hstate(shift - PAGE_SHIFT);
758
759 return 0;
4ec161cf
JT
760}
761
762static int __init hugepage_setup_sz(char *str)
763{
764 unsigned long long size;
4ec161cf
JT
765
766 size = memparse(str, &str);
767
d1837cba 768 if (add_huge_page_size(size) != 0)
4ec161cf
JT
769 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
770
771 return 1;
772}
773__setup("hugepagesz=", hugepage_setup_sz);
774
41151e77
BB
775#ifdef CONFIG_FSL_BOOKE
776struct kmem_cache *hugepte_cache;
777static int __init hugetlbpage_init(void)
778{
779 int psize;
780
781 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
782 unsigned shift;
783
784 if (!mmu_psize_defs[psize].shift)
785 continue;
786
787 shift = mmu_psize_to_shift(psize);
788
789 /* Don't treat normal page sizes as huge... */
790 if (shift != PAGE_SHIFT)
791 if (add_huge_page_size(1ULL << shift) < 0)
792 continue;
793 }
794
795 /*
796 * Create a kmem cache for hugeptes. The bottom bits in the pte have
797 * size information encoded in them, so align them to allow this
798 */
799 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
800 HUGEPD_SHIFT_MASK + 1, 0, NULL);
801 if (hugepte_cache == NULL)
802 panic("%s: Unable to create kmem cache for hugeptes\n",
803 __func__);
804
805 /* Default hpage size = 4M */
806 if (mmu_psize_defs[MMU_PAGE_4M].shift)
807 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
808 else
809 panic("%s: Unable to set default huge page size\n", __func__);
810
811
812 return 0;
813}
814#else
f10a04c0
DG
815static int __init hugetlbpage_init(void)
816{
a4fe3ce7 817 int psize;
0d9ea754 818
44ae3ab3 819 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
f10a04c0 820 return -ENODEV;
00df438e 821
d1837cba
DG
822 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
823 unsigned shift;
824 unsigned pdshift;
0d9ea754 825
d1837cba
DG
826 if (!mmu_psize_defs[psize].shift)
827 continue;
00df438e 828
d1837cba
DG
829 shift = mmu_psize_to_shift(psize);
830
831 if (add_huge_page_size(1ULL << shift) < 0)
832 continue;
833
834 if (shift < PMD_SHIFT)
835 pdshift = PMD_SHIFT;
836 else if (shift < PUD_SHIFT)
837 pdshift = PUD_SHIFT;
838 else
839 pdshift = PGDIR_SHIFT;
840
841 pgtable_cache_add(pdshift - shift, NULL);
842 if (!PGT_CACHE(pdshift - shift))
843 panic("hugetlbpage_init(): could not create "
844 "pgtable cache for %d bit pagesize\n", shift);
0d9ea754 845 }
f10a04c0 846
d1837cba
DG
847 /* Set default large page size. Currently, we pick 16M or 1M
848 * depending on what is available
849 */
850 if (mmu_psize_defs[MMU_PAGE_16M].shift)
851 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
852 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
853 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
854
f10a04c0
DG
855 return 0;
856}
41151e77 857#endif
f10a04c0 858module_init(hugetlbpage_init);
0895ecda
DG
859
860void flush_dcache_icache_hugepage(struct page *page)
861{
862 int i;
41151e77 863 void *start;
0895ecda
DG
864
865 BUG_ON(!PageCompound(page));
866
41151e77
BB
867 for (i = 0; i < (1UL << compound_order(page)); i++) {
868 if (!PageHighMem(page)) {
869 __flush_dcache_icache(page_address(page+i));
870 } else {
871 start = kmap_atomic(page+i, KM_PPC_SYNC_ICACHE);
872 __flush_dcache_icache(start);
873 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
874 }
875 }
0895ecda 876}
This page took 0.607684 seconds and 5 git commands to generate.