[PATCH] mm: unbloat get_futex_key
[deliverable/linux.git] / arch / powerpc / mm / mem.c
CommitLineData
14cf11af
PM
1/*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 * Amiga/APUS changes by Jesper Skov (jskov@cygnus.co.uk).
9 * PPC44x/36-bit changes by Matt Porter (mporter@mvista.com)
10 *
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 *
19 */
20
21#include <linux/config.h>
22#include <linux/module.h>
23#include <linux/sched.h>
24#include <linux/kernel.h>
25#include <linux/errno.h>
26#include <linux/string.h>
27#include <linux/types.h>
28#include <linux/mm.h>
29#include <linux/stddef.h>
30#include <linux/init.h>
31#include <linux/bootmem.h>
32#include <linux/highmem.h>
33#include <linux/initrd.h>
34#include <linux/pagemap.h>
35
36#include <asm/pgalloc.h>
37#include <asm/prom.h>
38#include <asm/io.h>
39#include <asm/mmu_context.h>
40#include <asm/pgtable.h>
41#include <asm/mmu.h>
42#include <asm/smp.h>
43#include <asm/machdep.h>
44#include <asm/btext.h>
45#include <asm/tlb.h>
14cf11af 46#include <asm/prom.h>
7c8c6b97
PM
47#include <asm/lmb.h>
48#include <asm/sections.h>
ab1f9dac 49#include <asm/vdso.h>
14cf11af 50
14cf11af
PM
51#include "mmu_decl.h"
52
53#ifndef CPU_FTR_COHERENT_ICACHE
54#define CPU_FTR_COHERENT_ICACHE 0 /* XXX for now */
55#define CPU_FTR_NOEXECUTE 0
56#endif
57
7c8c6b97
PM
58int init_bootmem_done;
59int mem_init_done;
cf00a8d1 60unsigned long memory_limit;
7c8c6b97 61
3c726f8d
BH
62extern void hash_preload(struct mm_struct *mm, unsigned long ea,
63 unsigned long access, unsigned long trap);
64
14cf11af
PM
65/*
66 * This is called by /dev/mem to know if a given address has to
67 * be mapped non-cacheable or not
68 */
69int page_is_ram(unsigned long pfn)
70{
71 unsigned long paddr = (pfn << PAGE_SHIFT);
72
73#ifndef CONFIG_PPC64 /* XXX for now */
74 return paddr < __pa(high_memory);
75#else
76 int i;
77 for (i=0; i < lmb.memory.cnt; i++) {
78 unsigned long base;
79
80 base = lmb.memory.region[i].base;
81
82 if ((paddr >= base) &&
83 (paddr < (base + lmb.memory.region[i].size))) {
84 return 1;
85 }
86 }
87
88 return 0;
89#endif
90}
91EXPORT_SYMBOL(page_is_ram);
92
8b150478 93pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
14cf11af
PM
94 unsigned long size, pgprot_t vma_prot)
95{
96 if (ppc_md.phys_mem_access_prot)
8b150478 97 return ppc_md.phys_mem_access_prot(file, pfn, size, vma_prot);
14cf11af 98
8b150478 99 if (!page_is_ram(pfn))
14cf11af
PM
100 vma_prot = __pgprot(pgprot_val(vma_prot)
101 | _PAGE_GUARDED | _PAGE_NO_CACHE);
102 return vma_prot;
103}
104EXPORT_SYMBOL(phys_mem_access_prot);
105
23fd0775
PM
106#ifdef CONFIG_MEMORY_HOTPLUG
107
108void online_page(struct page *page)
109{
110 ClearPageReserved(page);
dd7ccbd3 111 set_page_count(page, 0);
23fd0775
PM
112 free_cold_page(page);
113 totalram_pages++;
114 num_physpages++;
115}
116
117/*
118 * This works only for the non-NUMA case. Later, we'll need a lookup
119 * to convert from real physical addresses to nid, that doesn't use
120 * pfn_to_nid().
121 */
122int __devinit add_memory(u64 start, u64 size)
123{
124 struct pglist_data *pgdata = NODE_DATA(0);
125 struct zone *zone;
126 unsigned long start_pfn = start >> PAGE_SHIFT;
127 unsigned long nr_pages = size >> PAGE_SHIFT;
128
54b79248
MK
129 start += KERNELBASE;
130 create_section_mapping(start, start + size);
131
23fd0775
PM
132 /* this should work for most non-highmem platforms */
133 zone = pgdata->node_zones;
134
135 return __add_pages(zone, start_pfn, nr_pages);
136
137 return 0;
138}
139
140/*
141 * First pass at this code will check to determine if the remove
142 * request is within the RMO. Do not allow removal within the RMO.
143 */
144int __devinit remove_memory(u64 start, u64 size)
145{
146 struct zone *zone;
147 unsigned long start_pfn, end_pfn, nr_pages;
148
149 start_pfn = start >> PAGE_SHIFT;
150 nr_pages = size >> PAGE_SHIFT;
151 end_pfn = start_pfn + nr_pages;
152
153 printk("%s(): Attempting to remove memoy in range "
154 "%lx to %lx\n", __func__, start, start+size);
155 /*
156 * check for range within RMO
157 */
158 zone = page_zone(pfn_to_page(start_pfn));
159
160 printk("%s(): memory will be removed from "
161 "the %s zone\n", __func__, zone->name);
162
163 /*
164 * not handling removing memory ranges that
165 * overlap multiple zones yet
166 */
167 if (end_pfn > (zone->zone_start_pfn + zone->spanned_pages))
168 goto overlap;
169
170 /* make sure it is NOT in RMO */
171 if ((start < lmb.rmo_size) || ((start+size) < lmb.rmo_size)) {
172 printk("%s(): range to be removed must NOT be in RMO!\n",
173 __func__);
174 goto in_rmo;
175 }
176
177 return __remove_pages(zone, start_pfn, nr_pages);
178
179overlap:
180 printk("%s(): memory range to be removed overlaps "
181 "multiple zones!!!\n", __func__);
182in_rmo:
183 return -1;
184}
185#endif /* CONFIG_MEMORY_HOTPLUG */
186
14cf11af
PM
187void show_mem(void)
188{
189 unsigned long total = 0, reserved = 0;
190 unsigned long shared = 0, cached = 0;
191 unsigned long highmem = 0;
192 struct page *page;
193 pg_data_t *pgdat;
194 unsigned long i;
195
196 printk("Mem-info:\n");
197 show_free_areas();
198 printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
199 for_each_pgdat(pgdat) {
23fd0775
PM
200 unsigned long flags;
201 pgdat_resize_lock(pgdat, &flags);
14cf11af 202 for (i = 0; i < pgdat->node_spanned_pages; i++) {
fb6d73d3
PM
203 if (!pfn_valid(pgdat->node_start_pfn + i))
204 continue;
14cf11af
PM
205 page = pgdat_page_nr(pgdat, i);
206 total++;
207 if (PageHighMem(page))
208 highmem++;
209 if (PageReserved(page))
210 reserved++;
211 else if (PageSwapCache(page))
212 cached++;
213 else if (page_count(page))
214 shared += page_count(page) - 1;
215 }
23fd0775 216 pgdat_resize_unlock(pgdat, &flags);
14cf11af
PM
217 }
218 printk("%ld pages of RAM\n", total);
219#ifdef CONFIG_HIGHMEM
220 printk("%ld pages of HIGHMEM\n", highmem);
221#endif
222 printk("%ld reserved pages\n", reserved);
223 printk("%ld pages shared\n", shared);
224 printk("%ld pages swap cached\n", cached);
225}
226
7c8c6b97
PM
227/*
228 * Initialize the bootmem system and give it all the memory we
229 * have available. If we are using highmem, we only put the
230 * lowmem into the bootmem system.
231 */
232#ifndef CONFIG_NEED_MULTIPLE_NODES
233void __init do_init_bootmem(void)
234{
235 unsigned long i;
236 unsigned long start, bootmap_pages;
237 unsigned long total_pages;
238 int boot_mapsize;
239
240 max_pfn = total_pages = lmb_end_of_DRAM() >> PAGE_SHIFT;
241#ifdef CONFIG_HIGHMEM
242 total_pages = total_lowmem >> PAGE_SHIFT;
243#endif
244
245 /*
246 * Find an area to use for the bootmem bitmap. Calculate the size of
247 * bitmap required as (Total Memory) / PAGE_SIZE / BITS_PER_BYTE.
248 * Add 1 additional page in case the address isn't page-aligned.
249 */
250 bootmap_pages = bootmem_bootmap_pages(total_pages);
251
252 start = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
253 BUG_ON(!start);
254
255 boot_mapsize = init_bootmem(start >> PAGE_SHIFT, total_pages);
256
257 /* Add all physical memory to the bootmem map, mark each area
258 * present.
259 */
260 for (i = 0; i < lmb.memory.cnt; i++) {
261 unsigned long base = lmb.memory.region[i].base;
262 unsigned long size = lmb_size_bytes(&lmb.memory, i);
263#ifdef CONFIG_HIGHMEM
264 if (base >= total_lowmem)
265 continue;
266 if (base + size > total_lowmem)
267 size = total_lowmem - base;
268#endif
269 free_bootmem(base, size);
270 }
271
272 /* reserve the sections we're already using */
273 for (i = 0; i < lmb.reserved.cnt; i++)
274 reserve_bootmem(lmb.reserved.region[i].base,
275 lmb_size_bytes(&lmb.reserved, i));
276
277 /* XXX need to clip this if using highmem? */
278 for (i = 0; i < lmb.memory.cnt; i++)
279 memory_present(0, lmb_start_pfn(&lmb.memory, i),
280 lmb_end_pfn(&lmb.memory, i));
281 init_bootmem_done = 1;
282}
283
284/*
285 * paging_init() sets up the page tables - in fact we've already done this.
286 */
287void __init paging_init(void)
288{
289 unsigned long zones_size[MAX_NR_ZONES];
290 unsigned long zholes_size[MAX_NR_ZONES];
291 unsigned long total_ram = lmb_phys_mem_size();
292 unsigned long top_of_ram = lmb_end_of_DRAM();
293
294#ifdef CONFIG_HIGHMEM
295 map_page(PKMAP_BASE, 0, 0); /* XXX gross */
296 pkmap_page_table = pte_offset_kernel(pmd_offset(pgd_offset_k
297 (PKMAP_BASE), PKMAP_BASE), PKMAP_BASE);
298 map_page(KMAP_FIX_BEGIN, 0, 0); /* XXX gross */
299 kmap_pte = pte_offset_kernel(pmd_offset(pgd_offset_k
300 (KMAP_FIX_BEGIN), KMAP_FIX_BEGIN), KMAP_FIX_BEGIN);
301 kmap_prot = PAGE_KERNEL;
302#endif /* CONFIG_HIGHMEM */
303
304 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
305 top_of_ram, total_ram);
306 printk(KERN_INFO "Memory hole size: %ldMB\n",
307 (top_of_ram - total_ram) >> 20);
308 /*
309 * All pages are DMA-able so we put them all in the DMA zone.
310 */
311 memset(zones_size, 0, sizeof(zones_size));
312 memset(zholes_size, 0, sizeof(zholes_size));
313
314 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
315 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
316
317#ifdef CONFIG_HIGHMEM
318 zones_size[ZONE_DMA] = total_lowmem >> PAGE_SHIFT;
319 zones_size[ZONE_HIGHMEM] = (total_memory - total_lowmem) >> PAGE_SHIFT;
320 zholes_size[ZONE_HIGHMEM] = (top_of_ram - total_ram) >> PAGE_SHIFT;
321#else
322 zones_size[ZONE_DMA] = top_of_ram >> PAGE_SHIFT;
323 zholes_size[ZONE_DMA] = (top_of_ram - total_ram) >> PAGE_SHIFT;
324#endif /* CONFIG_HIGHMEM */
325
326 free_area_init_node(0, NODE_DATA(0), zones_size,
327 __pa(PAGE_OFFSET) >> PAGE_SHIFT, zholes_size);
328}
329#endif /* ! CONFIG_NEED_MULTIPLE_NODES */
330
331void __init mem_init(void)
332{
333#ifdef CONFIG_NEED_MULTIPLE_NODES
334 int nid;
335#endif
336 pg_data_t *pgdat;
337 unsigned long i;
338 struct page *page;
339 unsigned long reservedpages = 0, codesize, initsize, datasize, bsssize;
340
fb6d73d3 341 num_physpages = lmb.memory.size >> PAGE_SHIFT;
7c8c6b97
PM
342 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);
343
344#ifdef CONFIG_NEED_MULTIPLE_NODES
345 for_each_online_node(nid) {
346 if (NODE_DATA(nid)->node_spanned_pages != 0) {
347 printk("freeing bootmem node %x\n", nid);
348 totalram_pages +=
349 free_all_bootmem_node(NODE_DATA(nid));
350 }
351 }
352#else
fb6d73d3 353 max_mapnr = max_pfn;
7c8c6b97
PM
354 totalram_pages += free_all_bootmem();
355#endif
356 for_each_pgdat(pgdat) {
357 for (i = 0; i < pgdat->node_spanned_pages; i++) {
fb6d73d3
PM
358 if (!pfn_valid(pgdat->node_start_pfn + i))
359 continue;
7c8c6b97
PM
360 page = pgdat_page_nr(pgdat, i);
361 if (PageReserved(page))
362 reservedpages++;
363 }
364 }
365
366 codesize = (unsigned long)&_sdata - (unsigned long)&_stext;
bcb35576 367 datasize = (unsigned long)&_edata - (unsigned long)&_sdata;
7c8c6b97
PM
368 initsize = (unsigned long)&__init_end - (unsigned long)&__init_begin;
369 bsssize = (unsigned long)&__bss_stop - (unsigned long)&__bss_start;
370
371#ifdef CONFIG_HIGHMEM
372 {
373 unsigned long pfn, highmem_mapnr;
374
375 highmem_mapnr = total_lowmem >> PAGE_SHIFT;
376 for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
377 struct page *page = pfn_to_page(pfn);
378
379 ClearPageReserved(page);
380 set_page_count(page, 1);
381 __free_page(page);
382 totalhigh_pages++;
383 }
384 totalram_pages += totalhigh_pages;
385 printk(KERN_INFO "High memory: %luk\n",
386 totalhigh_pages << (PAGE_SHIFT-10));
387 }
388#endif /* CONFIG_HIGHMEM */
389
390 printk(KERN_INFO "Memory: %luk/%luk available (%luk kernel code, "
391 "%luk reserved, %luk data, %luk bss, %luk init)\n",
392 (unsigned long)nr_free_pages() << (PAGE_SHIFT-10),
393 num_physpages << (PAGE_SHIFT-10),
394 codesize >> 10,
395 reservedpages << (PAGE_SHIFT-10),
396 datasize >> 10,
397 bsssize >> 10,
398 initsize >> 10);
399
400 mem_init_done = 1;
401
7c8c6b97
PM
402 /* Initialize the vDSO */
403 vdso_init();
7c8c6b97
PM
404}
405
14cf11af
PM
406/*
407 * This is called when a page has been modified by the kernel.
408 * It just marks the page as not i-cache clean. We do the i-cache
409 * flush later when the page is given to a user process, if necessary.
410 */
411void flush_dcache_page(struct page *page)
412{
413 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
414 return;
415 /* avoid an atomic op if possible */
416 if (test_bit(PG_arch_1, &page->flags))
417 clear_bit(PG_arch_1, &page->flags);
418}
419EXPORT_SYMBOL(flush_dcache_page);
420
421void flush_dcache_icache_page(struct page *page)
422{
423#ifdef CONFIG_BOOKE
424 void *start = kmap_atomic(page, KM_PPC_SYNC_ICACHE);
425 __flush_dcache_icache(start);
426 kunmap_atomic(start, KM_PPC_SYNC_ICACHE);
ab1f9dac 427#elif defined(CONFIG_8xx) || defined(CONFIG_PPC64)
14cf11af
PM
428 /* On 8xx there is no need to kmap since highmem is not supported */
429 __flush_dcache_icache(page_address(page));
430#else
431 __flush_dcache_icache_phys(page_to_pfn(page) << PAGE_SHIFT);
432#endif
433
434}
435void clear_user_page(void *page, unsigned long vaddr, struct page *pg)
436{
437 clear_page(page);
438
439 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
440 return;
441 /*
442 * We shouldnt have to do this, but some versions of glibc
443 * require it (ld.so assumes zero filled pages are icache clean)
444 * - Anton
445 */
446
447 /* avoid an atomic op if possible */
448 if (test_bit(PG_arch_1, &pg->flags))
449 clear_bit(PG_arch_1, &pg->flags);
450}
451EXPORT_SYMBOL(clear_user_page);
452
453void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
454 struct page *pg)
455{
456 copy_page(vto, vfrom);
457
458 /*
459 * We should be able to use the following optimisation, however
460 * there are two problems.
461 * Firstly a bug in some versions of binutils meant PLT sections
462 * were not marked executable.
463 * Secondly the first word in the GOT section is blrl, used
464 * to establish the GOT address. Until recently the GOT was
465 * not marked executable.
466 * - Anton
467 */
468#if 0
469 if (!vma->vm_file && ((vma->vm_flags & VM_EXEC) == 0))
470 return;
471#endif
472
473 if (cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
474 return;
475
476 /* avoid an atomic op if possible */
477 if (test_bit(PG_arch_1, &pg->flags))
478 clear_bit(PG_arch_1, &pg->flags);
479}
480
481void flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
482 unsigned long addr, int len)
483{
484 unsigned long maddr;
485
486 maddr = (unsigned long) kmap(page) + (addr & ~PAGE_MASK);
487 flush_icache_range(maddr, maddr + len);
488 kunmap(page);
489}
490EXPORT_SYMBOL(flush_icache_user_range);
491
492/*
493 * This is called at the end of handling a user page fault, when the
494 * fault has been handled by updating a PTE in the linux page tables.
495 * We use it to preload an HPTE into the hash table corresponding to
496 * the updated linux PTE.
497 *
498 * This must always be called with the mm->page_table_lock held
499 */
500void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
501 pte_t pte)
502{
3c726f8d
BH
503#ifdef CONFIG_PPC_STD_MMU
504 unsigned long access = 0, trap;
14cf11af 505#endif
3c726f8d 506 unsigned long pfn = pte_pfn(pte);
14cf11af
PM
507
508 /* handle i-cache coherency */
509 if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE) &&
510 !cpu_has_feature(CPU_FTR_NOEXECUTE) &&
511 pfn_valid(pfn)) {
512 struct page *page = pfn_to_page(pfn);
513 if (!PageReserved(page)
514 && !test_bit(PG_arch_1, &page->flags)) {
515 if (vma->vm_mm == current->active_mm) {
516#ifdef CONFIG_8xx
517 /* On 8xx, cache control instructions (particularly
518 * "dcbst" from flush_dcache_icache) fault as write
519 * operation if there is an unpopulated TLB entry
520 * for the address in question. To workaround that,
521 * we invalidate the TLB here, thus avoiding dcbst
522 * misbehaviour.
523 */
524 _tlbie(address);
525#endif
526 __flush_dcache_icache((void *) address);
527 } else
528 flush_dcache_icache_page(page);
529 set_bit(PG_arch_1, &page->flags);
530 }
531 }
532
533#ifdef CONFIG_PPC_STD_MMU
534 /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
535 if (!pte_young(pte) || address >= TASK_SIZE)
536 return;
14cf11af 537
3c726f8d
BH
538 /* We try to figure out if we are coming from an instruction
539 * access fault and pass that down to __hash_page so we avoid
540 * double-faulting on execution of fresh text. We have to test
541 * for regs NULL since init will get here first thing at boot
542 *
543 * We also avoid filling the hash if not coming from a fault
544 */
545 if (current->thread.regs == NULL)
14cf11af 546 return;
3c726f8d
BH
547 trap = TRAP(current->thread.regs);
548 if (trap == 0x400)
549 access |= _PAGE_EXEC;
550 else if (trap != 0x300)
551 return;
552 hash_preload(vma->vm_mm, address, access, trap);
553#endif /* CONFIG_PPC_STD_MMU */
14cf11af 554}
This page took 0.075262 seconds and 5 git commands to generate.