Merge remote-tracking branch 'asoc/topic/ac97' into asoc-fsl
[deliverable/linux.git] / arch / powerpc / mm / numa.c
CommitLineData
1da177e4
LT
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/threads.h>
12#include <linux/bootmem.h>
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
4b16f8e2 16#include <linux/export.h>
1da177e4
LT
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/notifier.h>
95f72d1e 20#include <linux/memblock.h>
6df1646e 21#include <linux/of.h>
06eccea6 22#include <linux/pfn.h>
9eff1a38
JL
23#include <linux/cpuset.h>
24#include <linux/node.h>
30c05350 25#include <linux/stop_machine.h>
e04fa612
NF
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/uaccess.h>
191a7120 29#include <linux/slab.h>
3be7db6a 30#include <asm/cputhreads.h>
45fb6cea 31#include <asm/sparsemem.h>
d9b2b2a2 32#include <asm/prom.h>
2249ca9d 33#include <asm/smp.h>
9eff1a38
JL
34#include <asm/firmware.h>
35#include <asm/paca.h>
39bf990e 36#include <asm/hvcall.h>
ae3a197e 37#include <asm/setup.h>
176bbf14 38#include <asm/vdso.h>
1da177e4
LT
39
40static int numa_enabled = 1;
41
1daa6d08
BS
42static char *cmdline __initdata;
43
1da177e4
LT
44static int numa_debug;
45#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
46
45fb6cea 47int numa_cpu_lookup_table[NR_CPUS];
25863de0 48cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
1da177e4 49struct pglist_data *node_data[MAX_NUMNODES];
45fb6cea
AB
50
51EXPORT_SYMBOL(numa_cpu_lookup_table);
25863de0 52EXPORT_SYMBOL(node_to_cpumask_map);
45fb6cea
AB
53EXPORT_SYMBOL(node_data);
54
1da177e4 55static int min_common_depth;
237a0989 56static int n_mem_addr_cells, n_mem_size_cells;
41eab6f8
AB
57static int form1_affinity;
58
59#define MAX_DISTANCE_REF_POINTS 4
60static int distance_ref_points_depth;
61static const unsigned int *distance_ref_points;
62static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
1da177e4 63
25863de0
AB
64/*
65 * Allocate node_to_cpumask_map based on number of available nodes
66 * Requires node_possible_map to be valid.
67 *
9512938b 68 * Note: cpumask_of_node() is not valid until after this is done.
25863de0
AB
69 */
70static void __init setup_node_to_cpumask_map(void)
71{
f9d531b8 72 unsigned int node;
25863de0
AB
73
74 /* setup nr_node_ids if not done yet */
f9d531b8
CS
75 if (nr_node_ids == MAX_NUMNODES)
76 setup_nr_node_ids();
25863de0
AB
77
78 /* allocate the map */
79 for (node = 0; node < nr_node_ids; node++)
80 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
81
82 /* cpumask_of_node() will now work */
83 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
84}
85
55671f3c 86static int __init fake_numa_create_new_node(unsigned long end_pfn,
1daa6d08
BS
87 unsigned int *nid)
88{
89 unsigned long long mem;
90 char *p = cmdline;
91 static unsigned int fake_nid;
92 static unsigned long long curr_boundary;
93
94 /*
95 * Modify node id, iff we started creating NUMA nodes
96 * We want to continue from where we left of the last time
97 */
98 if (fake_nid)
99 *nid = fake_nid;
100 /*
101 * In case there are no more arguments to parse, the
102 * node_id should be the same as the last fake node id
103 * (we've handled this above).
104 */
105 if (!p)
106 return 0;
107
108 mem = memparse(p, &p);
109 if (!mem)
110 return 0;
111
112 if (mem < curr_boundary)
113 return 0;
114
115 curr_boundary = mem;
116
117 if ((end_pfn << PAGE_SHIFT) > mem) {
118 /*
119 * Skip commas and spaces
120 */
121 while (*p == ',' || *p == ' ' || *p == '\t')
122 p++;
123
124 cmdline = p;
125 fake_nid++;
126 *nid = fake_nid;
127 dbg("created new fake_node with id %d\n", fake_nid);
128 return 1;
129 }
130 return 0;
131}
132
8f64e1f2 133/*
5dfe8660 134 * get_node_active_region - Return active region containing pfn
e8170372 135 * Active range returned is empty if none found.
5dfe8660
TH
136 * @pfn: The page to return the region for
137 * @node_ar: Returned set to the active region containing @pfn
8f64e1f2 138 */
5dfe8660
TH
139static void __init get_node_active_region(unsigned long pfn,
140 struct node_active_region *node_ar)
8f64e1f2 141{
5dfe8660
TH
142 unsigned long start_pfn, end_pfn;
143 int i, nid;
144
145 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
146 if (pfn >= start_pfn && pfn < end_pfn) {
147 node_ar->nid = nid;
148 node_ar->start_pfn = start_pfn;
149 node_ar->end_pfn = end_pfn;
150 break;
151 }
152 }
8f64e1f2
JT
153}
154
39bf990e 155static void map_cpu_to_node(int cpu, int node)
1da177e4
LT
156{
157 numa_cpu_lookup_table[cpu] = node;
45fb6cea 158
bf4b85b0
NL
159 dbg("adding cpu %d to node %d\n", cpu, node);
160
25863de0
AB
161 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
162 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
163}
164
39bf990e 165#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
1da177e4
LT
166static void unmap_cpu_from_node(unsigned long cpu)
167{
168 int node = numa_cpu_lookup_table[cpu];
169
170 dbg("removing cpu %lu from node %d\n", cpu, node);
171
25863de0 172 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
429f4d8d 173 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
174 } else {
175 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
176 cpu, node);
177 }
178}
39bf990e 179#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
1da177e4 180
1da177e4 181/* must hold reference to node during call */
a7f67bdf 182static const int *of_get_associativity(struct device_node *dev)
1da177e4 183{
e2eb6392 184 return of_get_property(dev, "ibm,associativity", NULL);
1da177e4
LT
185}
186
cf00085d
C
187/*
188 * Returns the property linux,drconf-usable-memory if
189 * it exists (the property exists only in kexec/kdump kernels,
190 * added by kexec-tools)
191 */
192static const u32 *of_get_usable_memory(struct device_node *memory)
193{
194 const u32 *prop;
195 u32 len;
196 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
197 if (!prop || len < sizeof(unsigned int))
198 return 0;
199 return prop;
200}
201
41eab6f8
AB
202int __node_distance(int a, int b)
203{
204 int i;
205 int distance = LOCAL_DISTANCE;
206
207 if (!form1_affinity)
7122beee 208 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
41eab6f8
AB
209
210 for (i = 0; i < distance_ref_points_depth; i++) {
211 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
212 break;
213
214 /* Double the distance for each NUMA level */
215 distance *= 2;
216 }
217
218 return distance;
219}
220
221static void initialize_distance_lookup_table(int nid,
222 const unsigned int *associativity)
223{
224 int i;
225
226 if (!form1_affinity)
227 return;
228
229 for (i = 0; i < distance_ref_points_depth; i++) {
230 distance_lookup_table[nid][i] =
231 associativity[distance_ref_points[i]];
232 }
233}
234
482ec7c4
NL
235/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
236 * info is found.
237 */
9eff1a38 238static int associativity_to_nid(const unsigned int *associativity)
1da177e4 239{
482ec7c4 240 int nid = -1;
1da177e4
LT
241
242 if (min_common_depth == -1)
482ec7c4 243 goto out;
1da177e4 244
9eff1a38
JL
245 if (associativity[0] >= min_common_depth)
246 nid = associativity[min_common_depth];
bc16a759
NL
247
248 /* POWER4 LPAR uses 0xffff as invalid node */
482ec7c4
NL
249 if (nid == 0xffff || nid >= MAX_NUMNODES)
250 nid = -1;
41eab6f8 251
9eff1a38
JL
252 if (nid > 0 && associativity[0] >= distance_ref_points_depth)
253 initialize_distance_lookup_table(nid, associativity);
41eab6f8 254
482ec7c4 255out:
cf950b7a 256 return nid;
1da177e4
LT
257}
258
9eff1a38
JL
259/* Returns the nid associated with the given device tree node,
260 * or -1 if not found.
261 */
262static int of_node_to_nid_single(struct device_node *device)
263{
264 int nid = -1;
265 const unsigned int *tmp;
266
267 tmp = of_get_associativity(device);
268 if (tmp)
269 nid = associativity_to_nid(tmp);
270 return nid;
271}
272
953039c8
JK
273/* Walk the device tree upwards, looking for an associativity id */
274int of_node_to_nid(struct device_node *device)
275{
276 struct device_node *tmp;
277 int nid = -1;
278
279 of_node_get(device);
280 while (device) {
281 nid = of_node_to_nid_single(device);
282 if (nid != -1)
283 break;
284
285 tmp = device;
286 device = of_get_parent(tmp);
287 of_node_put(tmp);
288 }
289 of_node_put(device);
290
291 return nid;
292}
293EXPORT_SYMBOL_GPL(of_node_to_nid);
294
1da177e4
LT
295static int __init find_min_common_depth(void)
296{
41eab6f8 297 int depth;
e70606eb 298 struct device_node *root;
1da177e4 299
1c8ee733
DS
300 if (firmware_has_feature(FW_FEATURE_OPAL))
301 root = of_find_node_by_path("/ibm,opal");
302 else
303 root = of_find_node_by_path("/rtas");
e70606eb
ME
304 if (!root)
305 root = of_find_node_by_path("/");
1da177e4
LT
306
307 /*
41eab6f8
AB
308 * This property is a set of 32-bit integers, each representing
309 * an index into the ibm,associativity nodes.
310 *
311 * With form 0 affinity the first integer is for an SMP configuration
312 * (should be all 0's) and the second is for a normal NUMA
313 * configuration. We have only one level of NUMA.
314 *
315 * With form 1 affinity the first integer is the most significant
316 * NUMA boundary and the following are progressively less significant
317 * boundaries. There can be more than one level of NUMA.
1da177e4 318 */
e70606eb 319 distance_ref_points = of_get_property(root,
41eab6f8
AB
320 "ibm,associativity-reference-points",
321 &distance_ref_points_depth);
322
323 if (!distance_ref_points) {
324 dbg("NUMA: ibm,associativity-reference-points not found.\n");
325 goto err;
326 }
327
328 distance_ref_points_depth /= sizeof(int);
1da177e4 329
8002b0c5
NF
330 if (firmware_has_feature(FW_FEATURE_OPAL) ||
331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
332 dbg("Using form 1 affinity\n");
1c8ee733 333 form1_affinity = 1;
4b83c330
AB
334 }
335
41eab6f8
AB
336 if (form1_affinity) {
337 depth = distance_ref_points[0];
1da177e4 338 } else {
41eab6f8
AB
339 if (distance_ref_points_depth < 2) {
340 printk(KERN_WARNING "NUMA: "
341 "short ibm,associativity-reference-points\n");
342 goto err;
343 }
344
345 depth = distance_ref_points[1];
1da177e4 346 }
1da177e4 347
41eab6f8
AB
348 /*
349 * Warn and cap if the hardware supports more than
350 * MAX_DISTANCE_REF_POINTS domains.
351 */
352 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
353 printk(KERN_WARNING "NUMA: distance array capped at "
354 "%d entries\n", MAX_DISTANCE_REF_POINTS);
355 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
356 }
357
e70606eb 358 of_node_put(root);
1da177e4 359 return depth;
41eab6f8
AB
360
361err:
e70606eb 362 of_node_put(root);
41eab6f8 363 return -1;
1da177e4
LT
364}
365
84c9fdd1 366static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
1da177e4
LT
367{
368 struct device_node *memory = NULL;
1da177e4
LT
369
370 memory = of_find_node_by_type(memory, "memory");
54c23310 371 if (!memory)
84c9fdd1 372 panic("numa.c: No memory nodes found!");
54c23310 373
a8bda5dd 374 *n_addr_cells = of_n_addr_cells(memory);
9213feea 375 *n_size_cells = of_n_size_cells(memory);
84c9fdd1 376 of_node_put(memory);
1da177e4
LT
377}
378
2011b1d0 379static unsigned long read_n_cells(int n, const unsigned int **buf)
1da177e4
LT
380{
381 unsigned long result = 0;
382
383 while (n--) {
384 result = (result << 32) | **buf;
385 (*buf)++;
386 }
387 return result;
388}
389
8342681d 390/*
95f72d1e 391 * Read the next memblock list entry from the ibm,dynamic-memory property
8342681d
NF
392 * and return the information in the provided of_drconf_cell structure.
393 */
394static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
395{
396 const u32 *cp;
397
398 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
399
400 cp = *cellp;
401 drmem->drc_index = cp[0];
402 drmem->reserved = cp[1];
403 drmem->aa_index = cp[2];
404 drmem->flags = cp[3];
405
406 *cellp = cp + 4;
407}
408
409/*
25985edc 410 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
8342681d 411 *
95f72d1e
YL
412 * The layout of the ibm,dynamic-memory property is a number N of memblock
413 * list entries followed by N memblock list entries. Each memblock list entry
25985edc 414 * contains information as laid out in the of_drconf_cell struct above.
8342681d
NF
415 */
416static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
417{
418 const u32 *prop;
419 u32 len, entries;
420
421 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
422 if (!prop || len < sizeof(unsigned int))
423 return 0;
424
425 entries = *prop++;
426
427 /* Now that we know the number of entries, revalidate the size
428 * of the property read in to ensure we have everything
429 */
430 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
431 return 0;
432
433 *dm = prop;
434 return entries;
435}
436
437/*
25985edc 438 * Retrieve and validate the ibm,lmb-size property for drconf memory
8342681d
NF
439 * from the device tree.
440 */
3fdfd990 441static u64 of_get_lmb_size(struct device_node *memory)
8342681d
NF
442{
443 const u32 *prop;
444 u32 len;
445
3fdfd990 446 prop = of_get_property(memory, "ibm,lmb-size", &len);
8342681d
NF
447 if (!prop || len < sizeof(unsigned int))
448 return 0;
449
450 return read_n_cells(n_mem_size_cells, &prop);
451}
452
453struct assoc_arrays {
454 u32 n_arrays;
455 u32 array_sz;
456 const u32 *arrays;
457};
458
459/*
25985edc 460 * Retrieve and validate the list of associativity arrays for drconf
8342681d
NF
461 * memory from the ibm,associativity-lookup-arrays property of the
462 * device tree..
463 *
464 * The layout of the ibm,associativity-lookup-arrays property is a number N
465 * indicating the number of associativity arrays, followed by a number M
466 * indicating the size of each associativity array, followed by a list
467 * of N associativity arrays.
468 */
469static int of_get_assoc_arrays(struct device_node *memory,
470 struct assoc_arrays *aa)
471{
472 const u32 *prop;
473 u32 len;
474
475 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
476 if (!prop || len < 2 * sizeof(unsigned int))
477 return -1;
478
479 aa->n_arrays = *prop++;
480 aa->array_sz = *prop++;
481
42b2aa86 482 /* Now that we know the number of arrays and size of each array,
8342681d
NF
483 * revalidate the size of the property read in.
484 */
485 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
486 return -1;
487
488 aa->arrays = prop;
489 return 0;
490}
491
492/*
493 * This is like of_node_to_nid_single() for memory represented in the
494 * ibm,dynamic-reconfiguration-memory node.
495 */
496static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
497 struct assoc_arrays *aa)
498{
499 int default_nid = 0;
500 int nid = default_nid;
501 int index;
502
503 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
504 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
505 drmem->aa_index < aa->n_arrays) {
506 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
507 nid = aa->arrays[index];
508
509 if (nid == 0xffff || nid >= MAX_NUMNODES)
510 nid = default_nid;
511 }
512
513 return nid;
514}
515
1da177e4
LT
516/*
517 * Figure out to which domain a cpu belongs and stick it there.
518 * Return the id of the domain used.
519 */
061d19f2 520static int numa_setup_cpu(unsigned long lcpu)
1da177e4 521{
cf950b7a 522 int nid = 0;
8b16cd23 523 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
1da177e4
LT
524
525 if (!cpu) {
526 WARN_ON(1);
527 goto out;
528 }
529
953039c8 530 nid = of_node_to_nid_single(cpu);
1da177e4 531
482ec7c4 532 if (nid < 0 || !node_online(nid))
72c33688 533 nid = first_online_node;
1da177e4 534out:
cf950b7a 535 map_cpu_to_node(lcpu, nid);
1da177e4
LT
536
537 of_node_put(cpu);
538
cf950b7a 539 return nid;
1da177e4
LT
540}
541
061d19f2 542static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
1da177e4
LT
543 void *hcpu)
544{
545 unsigned long lcpu = (unsigned long)hcpu;
546 int ret = NOTIFY_DONE;
547
548 switch (action) {
549 case CPU_UP_PREPARE:
8bb78442 550 case CPU_UP_PREPARE_FROZEN:
2b261227 551 numa_setup_cpu(lcpu);
1da177e4
LT
552 ret = NOTIFY_OK;
553 break;
554#ifdef CONFIG_HOTPLUG_CPU
555 case CPU_DEAD:
8bb78442 556 case CPU_DEAD_FROZEN:
1da177e4 557 case CPU_UP_CANCELED:
8bb78442 558 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
559 unmap_cpu_from_node(lcpu);
560 break;
561 ret = NOTIFY_OK;
562#endif
563 }
564 return ret;
565}
566
567/*
568 * Check and possibly modify a memory region to enforce the memory limit.
569 *
570 * Returns the size the region should have to enforce the memory limit.
571 * This will either be the original value of size, a truncated value,
572 * or zero. If the returned value of size is 0 the region should be
25985edc 573 * discarded as it lies wholly above the memory limit.
1da177e4 574 */
45fb6cea
AB
575static unsigned long __init numa_enforce_memory_limit(unsigned long start,
576 unsigned long size)
1da177e4
LT
577{
578 /*
95f72d1e 579 * We use memblock_end_of_DRAM() in here instead of memory_limit because
1da177e4 580 * we've already adjusted it for the limit and it takes care of
fe55249d
MM
581 * having memory holes below the limit. Also, in the case of
582 * iommu_is_off, memory_limit is not set but is implicitly enforced.
1da177e4 583 */
1da177e4 584
95f72d1e 585 if (start + size <= memblock_end_of_DRAM())
1da177e4
LT
586 return size;
587
95f72d1e 588 if (start >= memblock_end_of_DRAM())
1da177e4
LT
589 return 0;
590
95f72d1e 591 return memblock_end_of_DRAM() - start;
1da177e4
LT
592}
593
cf00085d
C
594/*
595 * Reads the counter for a given entry in
596 * linux,drconf-usable-memory property
597 */
598static inline int __init read_usm_ranges(const u32 **usm)
599{
600 /*
3fdfd990 601 * For each lmb in ibm,dynamic-memory a corresponding
cf00085d
C
602 * entry in linux,drconf-usable-memory property contains
603 * a counter followed by that many (base, size) duple.
604 * read the counter from linux,drconf-usable-memory
605 */
606 return read_n_cells(n_mem_size_cells, usm);
607}
608
0204568a
PM
609/*
610 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
611 * node. This assumes n_mem_{addr,size}_cells have been set.
612 */
613static void __init parse_drconf_memory(struct device_node *memory)
614{
82b2521d 615 const u32 *uninitialized_var(dm), *usm;
cf00085d 616 unsigned int n, rc, ranges, is_kexec_kdump = 0;
3fdfd990 617 unsigned long lmb_size, base, size, sz;
8342681d 618 int nid;
aa709f3b 619 struct assoc_arrays aa = { .arrays = NULL };
8342681d
NF
620
621 n = of_get_drconf_memory(memory, &dm);
622 if (!n)
0204568a
PM
623 return;
624
3fdfd990
BH
625 lmb_size = of_get_lmb_size(memory);
626 if (!lmb_size)
8342681d
NF
627 return;
628
629 rc = of_get_assoc_arrays(memory, &aa);
630 if (rc)
0204568a
PM
631 return;
632
cf00085d
C
633 /* check if this is a kexec/kdump kernel */
634 usm = of_get_usable_memory(memory);
635 if (usm != NULL)
636 is_kexec_kdump = 1;
637
0204568a 638 for (; n != 0; --n) {
8342681d
NF
639 struct of_drconf_cell drmem;
640
641 read_drconf_cell(&drmem, &dm);
642
643 /* skip this block if the reserved bit is set in flags (0x80)
644 or if the block is not assigned to this partition (0x8) */
645 if ((drmem.flags & DRCONF_MEM_RESERVED)
646 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
0204568a 647 continue;
1daa6d08 648
cf00085d 649 base = drmem.base_addr;
3fdfd990 650 size = lmb_size;
cf00085d 651 ranges = 1;
8342681d 652
cf00085d
C
653 if (is_kexec_kdump) {
654 ranges = read_usm_ranges(&usm);
655 if (!ranges) /* there are no (base, size) duple */
656 continue;
657 }
658 do {
659 if (is_kexec_kdump) {
660 base = read_n_cells(n_mem_addr_cells, &usm);
661 size = read_n_cells(n_mem_size_cells, &usm);
662 }
663 nid = of_drconf_to_nid_single(&drmem, &aa);
664 fake_numa_create_new_node(
665 ((base + size) >> PAGE_SHIFT),
8342681d 666 &nid);
cf00085d
C
667 node_set_online(nid);
668 sz = numa_enforce_memory_limit(base, size);
669 if (sz)
1d7cfe18 670 memblock_set_node(base, sz, nid);
cf00085d 671 } while (--ranges);
0204568a
PM
672 }
673}
674
1da177e4
LT
675static int __init parse_numa_properties(void)
676{
94db7c5e 677 struct device_node *memory;
482ec7c4 678 int default_nid = 0;
1da177e4
LT
679 unsigned long i;
680
681 if (numa_enabled == 0) {
682 printk(KERN_WARNING "NUMA disabled by user\n");
683 return -1;
684 }
685
1da177e4
LT
686 min_common_depth = find_min_common_depth();
687
1da177e4
LT
688 if (min_common_depth < 0)
689 return min_common_depth;
690
bf4b85b0
NL
691 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
692
1da177e4 693 /*
482ec7c4
NL
694 * Even though we connect cpus to numa domains later in SMP
695 * init, we need to know the node ids now. This is because
696 * each node to be onlined must have NODE_DATA etc backing it.
1da177e4 697 */
482ec7c4 698 for_each_present_cpu(i) {
dfbe93a2 699 struct device_node *cpu;
cf950b7a 700 int nid;
1da177e4 701
8b16cd23 702 cpu = of_get_cpu_node(i, NULL);
482ec7c4 703 BUG_ON(!cpu);
953039c8 704 nid = of_node_to_nid_single(cpu);
482ec7c4 705 of_node_put(cpu);
1da177e4 706
482ec7c4
NL
707 /*
708 * Don't fall back to default_nid yet -- we will plug
709 * cpus into nodes once the memory scan has discovered
710 * the topology.
711 */
712 if (nid < 0)
713 continue;
714 node_set_online(nid);
1da177e4
LT
715 }
716
237a0989 717 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
94db7c5e
AB
718
719 for_each_node_by_type(memory, "memory") {
1da177e4
LT
720 unsigned long start;
721 unsigned long size;
cf950b7a 722 int nid;
1da177e4 723 int ranges;
a7f67bdf 724 const unsigned int *memcell_buf;
1da177e4
LT
725 unsigned int len;
726
e2eb6392 727 memcell_buf = of_get_property(memory,
ba759485
ME
728 "linux,usable-memory", &len);
729 if (!memcell_buf || len <= 0)
e2eb6392 730 memcell_buf = of_get_property(memory, "reg", &len);
1da177e4
LT
731 if (!memcell_buf || len <= 0)
732 continue;
733
cc5d0189
BH
734 /* ranges in cell */
735 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1da177e4
LT
736new_range:
737 /* these are order-sensitive, and modify the buffer pointer */
237a0989
MK
738 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
739 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1da177e4 740
482ec7c4
NL
741 /*
742 * Assumption: either all memory nodes or none will
743 * have associativity properties. If none, then
744 * everything goes to default_nid.
745 */
953039c8 746 nid = of_node_to_nid_single(memory);
482ec7c4
NL
747 if (nid < 0)
748 nid = default_nid;
1daa6d08
BS
749
750 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
482ec7c4 751 node_set_online(nid);
1da177e4 752
45fb6cea 753 if (!(size = numa_enforce_memory_limit(start, size))) {
1da177e4
LT
754 if (--ranges)
755 goto new_range;
756 else
757 continue;
758 }
759
1d7cfe18 760 memblock_set_node(start, size, nid);
1da177e4
LT
761
762 if (--ranges)
763 goto new_range;
764 }
765
0204568a 766 /*
dfbe93a2
AB
767 * Now do the same thing for each MEMBLOCK listed in the
768 * ibm,dynamic-memory property in the
769 * ibm,dynamic-reconfiguration-memory node.
0204568a
PM
770 */
771 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
772 if (memory)
773 parse_drconf_memory(memory);
774
1da177e4
LT
775 return 0;
776}
777
778static void __init setup_nonnuma(void)
779{
95f72d1e
YL
780 unsigned long top_of_ram = memblock_end_of_DRAM();
781 unsigned long total_ram = memblock_phys_mem_size();
c67c3cb4 782 unsigned long start_pfn, end_pfn;
28be7072
BH
783 unsigned int nid = 0;
784 struct memblock_region *reg;
1da177e4 785
e110b281 786 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1da177e4 787 top_of_ram, total_ram);
e110b281 788 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1da177e4
LT
789 (top_of_ram - total_ram) >> 20);
790
28be7072 791 for_each_memblock(memory, reg) {
c7fc2de0
YL
792 start_pfn = memblock_region_memory_base_pfn(reg);
793 end_pfn = memblock_region_memory_end_pfn(reg);
1daa6d08
BS
794
795 fake_numa_create_new_node(end_pfn, &nid);
1d7cfe18
TH
796 memblock_set_node(PFN_PHYS(start_pfn),
797 PFN_PHYS(end_pfn - start_pfn), nid);
1daa6d08 798 node_set_online(nid);
c67c3cb4 799 }
1da177e4
LT
800}
801
4b703a23
AB
802void __init dump_numa_cpu_topology(void)
803{
804 unsigned int node;
805 unsigned int cpu, count;
806
807 if (min_common_depth == -1 || !numa_enabled)
808 return;
809
810 for_each_online_node(node) {
e110b281 811 printk(KERN_DEBUG "Node %d CPUs:", node);
4b703a23
AB
812
813 count = 0;
814 /*
815 * If we used a CPU iterator here we would miss printing
816 * the holes in the cpumap.
817 */
25863de0
AB
818 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
819 if (cpumask_test_cpu(cpu,
820 node_to_cpumask_map[node])) {
4b703a23
AB
821 if (count == 0)
822 printk(" %u", cpu);
823 ++count;
824 } else {
825 if (count > 1)
826 printk("-%u", cpu - 1);
827 count = 0;
828 }
829 }
830
831 if (count > 1)
25863de0 832 printk("-%u", nr_cpu_ids - 1);
4b703a23
AB
833 printk("\n");
834 }
835}
836
837static void __init dump_numa_memory_topology(void)
1da177e4
LT
838{
839 unsigned int node;
840 unsigned int count;
841
842 if (min_common_depth == -1 || !numa_enabled)
843 return;
844
845 for_each_online_node(node) {
846 unsigned long i;
847
e110b281 848 printk(KERN_DEBUG "Node %d Memory:", node);
1da177e4
LT
849
850 count = 0;
851
95f72d1e 852 for (i = 0; i < memblock_end_of_DRAM();
45fb6cea
AB
853 i += (1 << SECTION_SIZE_BITS)) {
854 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
1da177e4
LT
855 if (count == 0)
856 printk(" 0x%lx", i);
857 ++count;
858 } else {
859 if (count > 0)
860 printk("-0x%lx", i);
861 count = 0;
862 }
863 }
864
865 if (count > 0)
866 printk("-0x%lx", i);
867 printk("\n");
868 }
1da177e4
LT
869}
870
871/*
95f72d1e 872 * Allocate some memory, satisfying the memblock or bootmem allocator where
1da177e4
LT
873 * required. nid is the preferred node and end is the physical address of
874 * the highest address in the node.
875 *
0be210fd 876 * Returns the virtual address of the memory.
1da177e4 877 */
893473df 878static void __init *careful_zallocation(int nid, unsigned long size,
45fb6cea
AB
879 unsigned long align,
880 unsigned long end_pfn)
1da177e4 881{
0be210fd 882 void *ret;
45fb6cea 883 int new_nid;
0be210fd
DH
884 unsigned long ret_paddr;
885
95f72d1e 886 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
1da177e4
LT
887
888 /* retry over all memory */
0be210fd 889 if (!ret_paddr)
95f72d1e 890 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
1da177e4 891
0be210fd 892 if (!ret_paddr)
5d21ea2b 893 panic("numa.c: cannot allocate %lu bytes for node %d",
1da177e4
LT
894 size, nid);
895
0be210fd
DH
896 ret = __va(ret_paddr);
897
1da177e4 898 /*
c555e520 899 * We initialize the nodes in numeric order: 0, 1, 2...
95f72d1e 900 * and hand over control from the MEMBLOCK allocator to the
c555e520
DH
901 * bootmem allocator. If this function is called for
902 * node 5, then we know that all nodes <5 are using the
95f72d1e 903 * bootmem allocator instead of the MEMBLOCK allocator.
c555e520
DH
904 *
905 * So, check the nid from which this allocation came
906 * and double check to see if we need to use bootmem
95f72d1e 907 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
c555e520 908 * since it would be useless.
1da177e4 909 */
0be210fd 910 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
45fb6cea 911 if (new_nid < nid) {
0be210fd 912 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
1da177e4
LT
913 size, align, 0);
914
0be210fd 915 dbg("alloc_bootmem %p %lx\n", ret, size);
1da177e4
LT
916 }
917
893473df 918 memset(ret, 0, size);
0be210fd 919 return ret;
1da177e4
LT
920}
921
061d19f2 922static struct notifier_block ppc64_numa_nb = {
74b85f37
CS
923 .notifier_call = cpu_numa_callback,
924 .priority = 1 /* Must run before sched domains notifier. */
925};
926
28e86bdb 927static void __init mark_reserved_regions_for_nid(int nid)
4a618669
DH
928{
929 struct pglist_data *node = NODE_DATA(nid);
28be7072 930 struct memblock_region *reg;
4a618669 931
28be7072
BH
932 for_each_memblock(reserved, reg) {
933 unsigned long physbase = reg->base;
934 unsigned long size = reg->size;
4a618669 935 unsigned long start_pfn = physbase >> PAGE_SHIFT;
06eccea6 936 unsigned long end_pfn = PFN_UP(physbase + size);
4a618669
DH
937 struct node_active_region node_ar;
938 unsigned long node_end_pfn = node->node_start_pfn +
939 node->node_spanned_pages;
940
941 /*
95f72d1e 942 * Check to make sure that this memblock.reserved area is
4a618669
DH
943 * within the bounds of the node that we care about.
944 * Checking the nid of the start and end points is not
945 * sufficient because the reserved area could span the
946 * entire node.
947 */
948 if (end_pfn <= node->node_start_pfn ||
949 start_pfn >= node_end_pfn)
950 continue;
951
952 get_node_active_region(start_pfn, &node_ar);
953 while (start_pfn < end_pfn &&
954 node_ar.start_pfn < node_ar.end_pfn) {
955 unsigned long reserve_size = size;
956 /*
957 * if reserved region extends past active region
958 * then trim size to active region
959 */
960 if (end_pfn > node_ar.end_pfn)
961 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
06eccea6 962 - physbase;
a4c74ddd
DH
963 /*
964 * Only worry about *this* node, others may not
965 * yet have valid NODE_DATA().
966 */
967 if (node_ar.nid == nid) {
968 dbg("reserve_bootmem %lx %lx nid=%d\n",
969 physbase, reserve_size, node_ar.nid);
970 reserve_bootmem_node(NODE_DATA(node_ar.nid),
971 physbase, reserve_size,
972 BOOTMEM_DEFAULT);
973 }
4a618669
DH
974 /*
975 * if reserved region is contained in the active region
976 * then done.
977 */
978 if (end_pfn <= node_ar.end_pfn)
979 break;
980
981 /*
982 * reserved region extends past the active region
983 * get next active region that contains this
984 * reserved region
985 */
986 start_pfn = node_ar.end_pfn;
987 physbase = start_pfn << PAGE_SHIFT;
988 size = size - reserve_size;
989 get_node_active_region(start_pfn, &node_ar);
990 }
991 }
992}
993
994
1da177e4
LT
995void __init do_init_bootmem(void)
996{
997 int nid;
1da177e4
LT
998
999 min_low_pfn = 0;
95f72d1e 1000 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1da177e4
LT
1001 max_pfn = max_low_pfn;
1002
1003 if (parse_numa_properties())
1004 setup_nonnuma();
1005 else
4b703a23 1006 dump_numa_memory_topology();
1da177e4 1007
1da177e4 1008 for_each_online_node(nid) {
c67c3cb4 1009 unsigned long start_pfn, end_pfn;
0be210fd 1010 void *bootmem_vaddr;
1da177e4
LT
1011 unsigned long bootmap_pages;
1012
c67c3cb4 1013 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1da177e4 1014
4a618669
DH
1015 /*
1016 * Allocate the node structure node local if possible
1017 *
1018 * Be careful moving this around, as it relies on all
1019 * previous nodes' bootmem to be initialized and have
1020 * all reserved areas marked.
1021 */
893473df 1022 NODE_DATA(nid) = careful_zallocation(nid,
1da177e4 1023 sizeof(struct pglist_data),
45fb6cea 1024 SMP_CACHE_BYTES, end_pfn);
1da177e4
LT
1025
1026 dbg("node %d\n", nid);
1027 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1028
b61bfa3c 1029 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
45fb6cea
AB
1030 NODE_DATA(nid)->node_start_pfn = start_pfn;
1031 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1da177e4
LT
1032
1033 if (NODE_DATA(nid)->node_spanned_pages == 0)
1034 continue;
1035
45fb6cea
AB
1036 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1037 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1da177e4 1038
45fb6cea 1039 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
893473df 1040 bootmem_vaddr = careful_zallocation(nid,
45fb6cea
AB
1041 bootmap_pages << PAGE_SHIFT,
1042 PAGE_SIZE, end_pfn);
1da177e4 1043
0be210fd 1044 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1da177e4 1045
0be210fd
DH
1046 init_bootmem_node(NODE_DATA(nid),
1047 __pa(bootmem_vaddr) >> PAGE_SHIFT,
45fb6cea 1048 start_pfn, end_pfn);
1da177e4 1049
c67c3cb4 1050 free_bootmem_with_active_regions(nid, end_pfn);
4a618669
DH
1051 /*
1052 * Be very careful about moving this around. Future
893473df 1053 * calls to careful_zallocation() depend on this getting
4a618669
DH
1054 * done correctly.
1055 */
1056 mark_reserved_regions_for_nid(nid);
8f64e1f2 1057 sparse_memory_present_with_active_regions(nid);
4a618669 1058 }
d3f6204a
BH
1059
1060 init_bootmem_done = 1;
25863de0
AB
1061
1062 /*
1063 * Now bootmem is initialised we can create the node to cpumask
1064 * lookup tables and setup the cpu callback to populate them.
1065 */
1066 setup_node_to_cpumask_map();
1067
1068 register_cpu_notifier(&ppc64_numa_nb);
1069 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1070 (void *)(unsigned long)boot_cpuid);
1da177e4
LT
1071}
1072
1073void __init paging_init(void)
1074{
6391af17
MG
1075 unsigned long max_zone_pfns[MAX_NR_ZONES];
1076 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
95f72d1e 1077 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
c67c3cb4 1078 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
1079}
1080
1081static int __init early_numa(char *p)
1082{
1083 if (!p)
1084 return 0;
1085
1086 if (strstr(p, "off"))
1087 numa_enabled = 0;
1088
1089 if (strstr(p, "debug"))
1090 numa_debug = 1;
1091
1daa6d08
BS
1092 p = strstr(p, "fake=");
1093 if (p)
1094 cmdline = p + strlen("fake=");
1095
1da177e4
LT
1096 return 0;
1097}
1098early_param("numa", early_numa);
237a0989
MK
1099
1100#ifdef CONFIG_MEMORY_HOTPLUG
0db9360a 1101/*
0f16ef7f
NF
1102 * Find the node associated with a hot added memory section for
1103 * memory represented in the device tree by the property
1104 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
0db9360a
NF
1105 */
1106static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1107 unsigned long scn_addr)
1108{
1109 const u32 *dm;
0f16ef7f 1110 unsigned int drconf_cell_cnt, rc;
3fdfd990 1111 unsigned long lmb_size;
0db9360a 1112 struct assoc_arrays aa;
0f16ef7f 1113 int nid = -1;
0db9360a 1114
0f16ef7f
NF
1115 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1116 if (!drconf_cell_cnt)
1117 return -1;
0db9360a 1118
3fdfd990
BH
1119 lmb_size = of_get_lmb_size(memory);
1120 if (!lmb_size)
0f16ef7f 1121 return -1;
0db9360a
NF
1122
1123 rc = of_get_assoc_arrays(memory, &aa);
1124 if (rc)
0f16ef7f 1125 return -1;
0db9360a 1126
0f16ef7f 1127 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
0db9360a
NF
1128 struct of_drconf_cell drmem;
1129
1130 read_drconf_cell(&drmem, &dm);
1131
1132 /* skip this block if it is reserved or not assigned to
1133 * this partition */
1134 if ((drmem.flags & DRCONF_MEM_RESERVED)
1135 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1136 continue;
1137
0f16ef7f 1138 if ((scn_addr < drmem.base_addr)
3fdfd990 1139 || (scn_addr >= (drmem.base_addr + lmb_size)))
0f16ef7f
NF
1140 continue;
1141
0db9360a 1142 nid = of_drconf_to_nid_single(&drmem, &aa);
0f16ef7f
NF
1143 break;
1144 }
1145
1146 return nid;
1147}
1148
1149/*
1150 * Find the node associated with a hot added memory section for memory
1151 * represented in the device tree as a node (i.e. memory@XXXX) for
95f72d1e 1152 * each memblock.
0f16ef7f
NF
1153 */
1154int hot_add_node_scn_to_nid(unsigned long scn_addr)
1155{
94db7c5e 1156 struct device_node *memory;
0f16ef7f
NF
1157 int nid = -1;
1158
94db7c5e 1159 for_each_node_by_type(memory, "memory") {
0f16ef7f
NF
1160 unsigned long start, size;
1161 int ranges;
1162 const unsigned int *memcell_buf;
1163 unsigned int len;
1164
1165 memcell_buf = of_get_property(memory, "reg", &len);
1166 if (!memcell_buf || len <= 0)
1167 continue;
1168
1169 /* ranges in cell */
1170 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1171
1172 while (ranges--) {
1173 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1174 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1175
1176 if ((scn_addr < start) || (scn_addr >= (start + size)))
1177 continue;
1178
1179 nid = of_node_to_nid_single(memory);
1180 break;
1181 }
0db9360a 1182
0f16ef7f
NF
1183 if (nid >= 0)
1184 break;
0db9360a
NF
1185 }
1186
60831842
AB
1187 of_node_put(memory);
1188
0f16ef7f 1189 return nid;
0db9360a
NF
1190}
1191
237a0989
MK
1192/*
1193 * Find the node associated with a hot added memory section. Section
95f72d1e
YL
1194 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1195 * sections are fully contained within a single MEMBLOCK.
237a0989
MK
1196 */
1197int hot_add_scn_to_nid(unsigned long scn_addr)
1198{
1199 struct device_node *memory = NULL;
0f16ef7f 1200 int nid, found = 0;
237a0989
MK
1201
1202 if (!numa_enabled || (min_common_depth < 0))
72c33688 1203 return first_online_node;
0db9360a
NF
1204
1205 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1206 if (memory) {
1207 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1208 of_node_put(memory);
0f16ef7f
NF
1209 } else {
1210 nid = hot_add_node_scn_to_nid(scn_addr);
0db9360a 1211 }
237a0989 1212
0f16ef7f 1213 if (nid < 0 || !node_online(nid))
72c33688 1214 nid = first_online_node;
237a0989 1215
0f16ef7f
NF
1216 if (NODE_DATA(nid)->node_spanned_pages)
1217 return nid;
237a0989 1218
0f16ef7f
NF
1219 for_each_online_node(nid) {
1220 if (NODE_DATA(nid)->node_spanned_pages) {
1221 found = 1;
1222 break;
237a0989 1223 }
237a0989 1224 }
0f16ef7f
NF
1225
1226 BUG_ON(!found);
1227 return nid;
237a0989 1228}
0f16ef7f 1229
cd34206e
NA
1230static u64 hot_add_drconf_memory_max(void)
1231{
1232 struct device_node *memory = NULL;
1233 unsigned int drconf_cell_cnt = 0;
1234 u64 lmb_size = 0;
1235 const u32 *dm = 0;
1236
1237 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1238 if (memory) {
1239 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1240 lmb_size = of_get_lmb_size(memory);
1241 of_node_put(memory);
1242 }
1243 return lmb_size * drconf_cell_cnt;
1244}
1245
1246/*
1247 * memory_hotplug_max - return max address of memory that may be added
1248 *
1249 * This is currently only used on systems that support drconfig memory
1250 * hotplug.
1251 */
1252u64 memory_hotplug_max(void)
1253{
1254 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1255}
237a0989 1256#endif /* CONFIG_MEMORY_HOTPLUG */
9eff1a38 1257
bd03403a 1258/* Virtual Processor Home Node (VPHN) support */
39bf990e 1259#ifdef CONFIG_PPC_SPLPAR
30c05350
NF
1260struct topology_update_data {
1261 struct topology_update_data *next;
1262 unsigned int cpu;
1263 int old_nid;
1264 int new_nid;
1265};
1266
5de16699 1267static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
9eff1a38
JL
1268static cpumask_t cpu_associativity_changes_mask;
1269static int vphn_enabled;
5d88aa85
JL
1270static int prrn_enabled;
1271static void reset_topology_timer(void);
9eff1a38
JL
1272
1273/*
1274 * Store the current values of the associativity change counters in the
1275 * hypervisor.
1276 */
1277static void setup_cpu_associativity_change_counters(void)
1278{
cd9d6cc7 1279 int cpu;
9eff1a38 1280
5de16699
AB
1281 /* The VPHN feature supports a maximum of 8 reference points */
1282 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1283
9eff1a38 1284 for_each_possible_cpu(cpu) {
cd9d6cc7 1285 int i;
9eff1a38
JL
1286 u8 *counts = vphn_cpu_change_counts[cpu];
1287 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1288
5de16699 1289 for (i = 0; i < distance_ref_points_depth; i++)
9eff1a38 1290 counts[i] = hypervisor_counts[i];
9eff1a38
JL
1291 }
1292}
1293
1294/*
1295 * The hypervisor maintains a set of 8 associativity change counters in
1296 * the VPA of each cpu that correspond to the associativity levels in the
1297 * ibm,associativity-reference-points property. When an associativity
1298 * level changes, the corresponding counter is incremented.
1299 *
1300 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1301 * node associativity levels have changed.
1302 *
1303 * Returns the number of cpus with unhandled associativity changes.
1304 */
1305static int update_cpu_associativity_changes_mask(void)
1306{
5d88aa85 1307 int cpu;
9eff1a38
JL
1308 cpumask_t *changes = &cpu_associativity_changes_mask;
1309
9eff1a38
JL
1310 for_each_possible_cpu(cpu) {
1311 int i, changed = 0;
1312 u8 *counts = vphn_cpu_change_counts[cpu];
1313 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1314
5de16699 1315 for (i = 0; i < distance_ref_points_depth; i++) {
d69043e8 1316 if (hypervisor_counts[i] != counts[i]) {
9eff1a38
JL
1317 counts[i] = hypervisor_counts[i];
1318 changed = 1;
1319 }
1320 }
1321 if (changed) {
3be7db6a
RJ
1322 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1323 cpu = cpu_last_thread_sibling(cpu);
9eff1a38
JL
1324 }
1325 }
1326
5d88aa85 1327 return cpumask_weight(changes);
9eff1a38
JL
1328}
1329
c0e5e46f
AB
1330/*
1331 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1332 * the complete property we have to add the length in the first cell.
1333 */
1334#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
9eff1a38
JL
1335
1336/*
1337 * Convert the associativity domain numbers returned from the hypervisor
1338 * to the sequence they would appear in the ibm,associativity property.
1339 */
1340static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1341{
cd9d6cc7 1342 int i, nr_assoc_doms = 0;
9eff1a38
JL
1343 const u16 *field = (const u16*) packed;
1344
1345#define VPHN_FIELD_UNUSED (0xffff)
1346#define VPHN_FIELD_MSB (0x8000)
1347#define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1348
c0e5e46f 1349 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
9eff1a38
JL
1350 if (*field == VPHN_FIELD_UNUSED) {
1351 /* All significant fields processed, and remaining
1352 * fields contain the reserved value of all 1's.
1353 * Just store them.
1354 */
1355 unpacked[i] = *((u32*)field);
1356 field += 2;
7639adaa 1357 } else if (*field & VPHN_FIELD_MSB) {
9eff1a38
JL
1358 /* Data is in the lower 15 bits of this field */
1359 unpacked[i] = *field & VPHN_FIELD_MASK;
1360 field++;
1361 nr_assoc_doms++;
7639adaa 1362 } else {
9eff1a38
JL
1363 /* Data is in the lower 15 bits of this field
1364 * concatenated with the next 16 bit field
1365 */
1366 unpacked[i] = *((u32*)field);
1367 field += 2;
1368 nr_assoc_doms++;
1369 }
1370 }
1371
c0e5e46f
AB
1372 /* The first cell contains the length of the property */
1373 unpacked[0] = nr_assoc_doms;
1374
9eff1a38
JL
1375 return nr_assoc_doms;
1376}
1377
1378/*
1379 * Retrieve the new associativity information for a virtual processor's
1380 * home node.
1381 */
1382static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1383{
cd9d6cc7 1384 long rc;
9eff1a38
JL
1385 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1386 u64 flags = 1;
1387 int hwcpu = get_hard_smp_processor_id(cpu);
1388
1389 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1390 vphn_unpack_associativity(retbuf, associativity);
1391
1392 return rc;
1393}
1394
1395static long vphn_get_associativity(unsigned long cpu,
1396 unsigned int *associativity)
1397{
cd9d6cc7 1398 long rc;
9eff1a38
JL
1399
1400 rc = hcall_vphn(cpu, associativity);
1401
1402 switch (rc) {
1403 case H_FUNCTION:
1404 printk(KERN_INFO
1405 "VPHN is not supported. Disabling polling...\n");
1406 stop_topology_update();
1407 break;
1408 case H_HARDWARE:
1409 printk(KERN_ERR
1410 "hcall_vphn() experienced a hardware fault "
1411 "preventing VPHN. Disabling polling...\n");
1412 stop_topology_update();
1413 }
1414
1415 return rc;
1416}
1417
30c05350
NF
1418/*
1419 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1420 * characteristics change. This function doesn't perform any locking and is
1421 * only safe to call from stop_machine().
1422 */
1423static int update_cpu_topology(void *data)
1424{
1425 struct topology_update_data *update;
1426 unsigned long cpu;
1427
1428 if (!data)
1429 return -EINVAL;
1430
3be7db6a 1431 cpu = smp_processor_id();
30c05350
NF
1432
1433 for (update = data; update; update = update->next) {
1434 if (cpu != update->cpu)
1435 continue;
1436
30c05350
NF
1437 unmap_cpu_from_node(update->cpu);
1438 map_cpu_to_node(update->cpu, update->new_nid);
176bbf14 1439 vdso_getcpu_init();
30c05350
NF
1440 }
1441
1442 return 0;
1443}
1444
9eff1a38
JL
1445/*
1446 * Update the node maps and sysfs entries for each cpu whose home node
79c5fceb 1447 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
9eff1a38
JL
1448 */
1449int arch_update_cpu_topology(void)
1450{
3be7db6a 1451 unsigned int cpu, sibling, changed = 0;
30c05350 1452 struct topology_update_data *updates, *ud;
9eff1a38 1453 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
176bbf14 1454 cpumask_t updated_cpus;
8a25a2fd 1455 struct device *dev;
3be7db6a 1456 int weight, new_nid, i = 0;
9eff1a38 1457
30c05350
NF
1458 weight = cpumask_weight(&cpu_associativity_changes_mask);
1459 if (!weight)
1460 return 0;
1461
1462 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1463 if (!updates)
1464 return 0;
9eff1a38 1465
176bbf14
JL
1466 cpumask_clear(&updated_cpus);
1467
5d88aa85 1468 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
3be7db6a
RJ
1469 /*
1470 * If siblings aren't flagged for changes, updates list
1471 * will be too short. Skip on this update and set for next
1472 * update.
1473 */
1474 if (!cpumask_subset(cpu_sibling_mask(cpu),
1475 &cpu_associativity_changes_mask)) {
1476 pr_info("Sibling bits not set for associativity "
1477 "change, cpu%d\n", cpu);
1478 cpumask_or(&cpu_associativity_changes_mask,
1479 &cpu_associativity_changes_mask,
1480 cpu_sibling_mask(cpu));
1481 cpu = cpu_last_thread_sibling(cpu);
1482 continue;
1483 }
9eff1a38 1484
3be7db6a
RJ
1485 /* Use associativity from first thread for all siblings */
1486 vphn_get_associativity(cpu, associativity);
1487 new_nid = associativity_to_nid(associativity);
1488 if (new_nid < 0 || !node_online(new_nid))
1489 new_nid = first_online_node;
1490
1491 if (new_nid == numa_cpu_lookup_table[cpu]) {
1492 cpumask_andnot(&cpu_associativity_changes_mask,
1493 &cpu_associativity_changes_mask,
1494 cpu_sibling_mask(cpu));
1495 cpu = cpu_last_thread_sibling(cpu);
1496 continue;
1497 }
9eff1a38 1498
3be7db6a
RJ
1499 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1500 ud = &updates[i++];
1501 ud->cpu = sibling;
1502 ud->new_nid = new_nid;
1503 ud->old_nid = numa_cpu_lookup_table[sibling];
1504 cpumask_set_cpu(sibling, &updated_cpus);
1505 if (i < weight)
1506 ud->next = &updates[i];
1507 }
1508 cpu = cpu_last_thread_sibling(cpu);
30c05350
NF
1509 }
1510
176bbf14 1511 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
30c05350
NF
1512
1513 for (ud = &updates[0]; ud; ud = ud->next) {
dd023217
NF
1514 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1515 register_cpu_under_node(ud->cpu, ud->new_nid);
1516
30c05350 1517 dev = get_cpu_device(ud->cpu);
8a25a2fd
KS
1518 if (dev)
1519 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
30c05350 1520 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
79c5fceb 1521 changed = 1;
9eff1a38
JL
1522 }
1523
30c05350 1524 kfree(updates);
79c5fceb 1525 return changed;
9eff1a38
JL
1526}
1527
1528static void topology_work_fn(struct work_struct *work)
1529{
1530 rebuild_sched_domains();
1531}
1532static DECLARE_WORK(topology_work, topology_work_fn);
1533
1534void topology_schedule_update(void)
1535{
1536 schedule_work(&topology_work);
1537}
1538
1539static void topology_timer_fn(unsigned long ignored)
1540{
5d88aa85 1541 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
9eff1a38 1542 topology_schedule_update();
5d88aa85
JL
1543 else if (vphn_enabled) {
1544 if (update_cpu_associativity_changes_mask() > 0)
1545 topology_schedule_update();
1546 reset_topology_timer();
1547 }
9eff1a38
JL
1548}
1549static struct timer_list topology_timer =
1550 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1551
5d88aa85 1552static void reset_topology_timer(void)
9eff1a38
JL
1553{
1554 topology_timer.data = 0;
1555 topology_timer.expires = jiffies + 60 * HZ;
5d88aa85 1556 mod_timer(&topology_timer, topology_timer.expires);
9eff1a38
JL
1557}
1558
601abdc3
NF
1559#ifdef CONFIG_SMP
1560
5d88aa85
JL
1561static void stage_topology_update(int core_id)
1562{
1563 cpumask_or(&cpu_associativity_changes_mask,
1564 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1565 reset_topology_timer();
1566}
1567
1568static int dt_update_callback(struct notifier_block *nb,
1569 unsigned long action, void *data)
1570{
1571 struct of_prop_reconfig *update;
1572 int rc = NOTIFY_DONE;
1573
1574 switch (action) {
5d88aa85
JL
1575 case OF_RECONFIG_UPDATE_PROPERTY:
1576 update = (struct of_prop_reconfig *)data;
30c05350
NF
1577 if (!of_prop_cmp(update->dn->type, "cpu") &&
1578 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
5d88aa85
JL
1579 u32 core_id;
1580 of_property_read_u32(update->dn, "reg", &core_id);
1581 stage_topology_update(core_id);
1582 rc = NOTIFY_OK;
1583 }
1584 break;
1585 }
1586
1587 return rc;
9eff1a38
JL
1588}
1589
5d88aa85
JL
1590static struct notifier_block dt_update_nb = {
1591 .notifier_call = dt_update_callback,
1592};
1593
601abdc3
NF
1594#endif
1595
9eff1a38 1596/*
5d88aa85 1597 * Start polling for associativity changes.
9eff1a38
JL
1598 */
1599int start_topology_update(void)
1600{
1601 int rc = 0;
1602
5d88aa85
JL
1603 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1604 if (!prrn_enabled) {
1605 prrn_enabled = 1;
1606 vphn_enabled = 0;
601abdc3 1607#ifdef CONFIG_SMP
5d88aa85 1608 rc = of_reconfig_notifier_register(&dt_update_nb);
601abdc3 1609#endif
5d88aa85 1610 }
b7abef04 1611 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
5d88aa85 1612 get_lppaca()->shared_proc) {
5d88aa85
JL
1613 if (!vphn_enabled) {
1614 prrn_enabled = 0;
1615 vphn_enabled = 1;
1616 setup_cpu_associativity_change_counters();
1617 init_timer_deferrable(&topology_timer);
1618 reset_topology_timer();
1619 }
9eff1a38
JL
1620 }
1621
1622 return rc;
1623}
9eff1a38
JL
1624
1625/*
1626 * Disable polling for VPHN associativity changes.
1627 */
1628int stop_topology_update(void)
1629{
5d88aa85
JL
1630 int rc = 0;
1631
1632 if (prrn_enabled) {
1633 prrn_enabled = 0;
601abdc3 1634#ifdef CONFIG_SMP
5d88aa85 1635 rc = of_reconfig_notifier_unregister(&dt_update_nb);
601abdc3 1636#endif
5d88aa85
JL
1637 } else if (vphn_enabled) {
1638 vphn_enabled = 0;
1639 rc = del_timer_sync(&topology_timer);
1640 }
1641
1642 return rc;
9eff1a38 1643}
e04fa612
NF
1644
1645int prrn_is_enabled(void)
1646{
1647 return prrn_enabled;
1648}
1649
1650static int topology_read(struct seq_file *file, void *v)
1651{
1652 if (vphn_enabled || prrn_enabled)
1653 seq_puts(file, "on\n");
1654 else
1655 seq_puts(file, "off\n");
1656
1657 return 0;
1658}
1659
1660static int topology_open(struct inode *inode, struct file *file)
1661{
1662 return single_open(file, topology_read, NULL);
1663}
1664
1665static ssize_t topology_write(struct file *file, const char __user *buf,
1666 size_t count, loff_t *off)
1667{
1668 char kbuf[4]; /* "on" or "off" plus null. */
1669 int read_len;
1670
1671 read_len = count < 3 ? count : 3;
1672 if (copy_from_user(kbuf, buf, read_len))
1673 return -EINVAL;
1674
1675 kbuf[read_len] = '\0';
1676
1677 if (!strncmp(kbuf, "on", 2))
1678 start_topology_update();
1679 else if (!strncmp(kbuf, "off", 3))
1680 stop_topology_update();
1681 else
1682 return -EINVAL;
1683
1684 return count;
1685}
1686
1687static const struct file_operations topology_ops = {
1688 .read = seq_read,
1689 .write = topology_write,
1690 .open = topology_open,
1691 .release = single_release
1692};
1693
1694static int topology_update_init(void)
1695{
1696 start_topology_update();
1697 proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);
1698
1699 return 0;
9eff1a38 1700}
e04fa612 1701device_initcall(topology_update_init);
39bf990e 1702#endif /* CONFIG_PPC_SPLPAR */
This page took 0.637855 seconds and 5 git commands to generate.