Merge branch 'for-airlied' of git://people.freedesktop.org/~danvet/drm-intel into...
[deliverable/linux.git] / arch / powerpc / mm / numa.c
CommitLineData
1da177e4
LT
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/threads.h>
12#include <linux/bootmem.h>
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
4b16f8e2 16#include <linux/export.h>
1da177e4
LT
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/notifier.h>
95f72d1e 20#include <linux/memblock.h>
6df1646e 21#include <linux/of.h>
06eccea6 22#include <linux/pfn.h>
9eff1a38
JL
23#include <linux/cpuset.h>
24#include <linux/node.h>
45fb6cea 25#include <asm/sparsemem.h>
d9b2b2a2 26#include <asm/prom.h>
2249ca9d 27#include <asm/smp.h>
9eff1a38
JL
28#include <asm/firmware.h>
29#include <asm/paca.h>
39bf990e 30#include <asm/hvcall.h>
ae3a197e 31#include <asm/setup.h>
1da177e4
LT
32
33static int numa_enabled = 1;
34
1daa6d08
BS
35static char *cmdline __initdata;
36
1da177e4
LT
37static int numa_debug;
38#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
39
45fb6cea 40int numa_cpu_lookup_table[NR_CPUS];
25863de0 41cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
1da177e4 42struct pglist_data *node_data[MAX_NUMNODES];
45fb6cea
AB
43
44EXPORT_SYMBOL(numa_cpu_lookup_table);
25863de0 45EXPORT_SYMBOL(node_to_cpumask_map);
45fb6cea
AB
46EXPORT_SYMBOL(node_data);
47
1da177e4 48static int min_common_depth;
237a0989 49static int n_mem_addr_cells, n_mem_size_cells;
41eab6f8
AB
50static int form1_affinity;
51
52#define MAX_DISTANCE_REF_POINTS 4
53static int distance_ref_points_depth;
54static const unsigned int *distance_ref_points;
55static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
1da177e4 56
25863de0
AB
57/*
58 * Allocate node_to_cpumask_map based on number of available nodes
59 * Requires node_possible_map to be valid.
60 *
9512938b 61 * Note: cpumask_of_node() is not valid until after this is done.
25863de0
AB
62 */
63static void __init setup_node_to_cpumask_map(void)
64{
65 unsigned int node, num = 0;
66
67 /* setup nr_node_ids if not done yet */
68 if (nr_node_ids == MAX_NUMNODES) {
69 for_each_node_mask(node, node_possible_map)
70 num = node;
71 nr_node_ids = num + 1;
72 }
73
74 /* allocate the map */
75 for (node = 0; node < nr_node_ids; node++)
76 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
77
78 /* cpumask_of_node() will now work */
79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
80}
81
1daa6d08
BS
82static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
83 unsigned int *nid)
84{
85 unsigned long long mem;
86 char *p = cmdline;
87 static unsigned int fake_nid;
88 static unsigned long long curr_boundary;
89
90 /*
91 * Modify node id, iff we started creating NUMA nodes
92 * We want to continue from where we left of the last time
93 */
94 if (fake_nid)
95 *nid = fake_nid;
96 /*
97 * In case there are no more arguments to parse, the
98 * node_id should be the same as the last fake node id
99 * (we've handled this above).
100 */
101 if (!p)
102 return 0;
103
104 mem = memparse(p, &p);
105 if (!mem)
106 return 0;
107
108 if (mem < curr_boundary)
109 return 0;
110
111 curr_boundary = mem;
112
113 if ((end_pfn << PAGE_SHIFT) > mem) {
114 /*
115 * Skip commas and spaces
116 */
117 while (*p == ',' || *p == ' ' || *p == '\t')
118 p++;
119
120 cmdline = p;
121 fake_nid++;
122 *nid = fake_nid;
123 dbg("created new fake_node with id %d\n", fake_nid);
124 return 1;
125 }
126 return 0;
127}
128
8f64e1f2 129/*
5dfe8660 130 * get_node_active_region - Return active region containing pfn
e8170372 131 * Active range returned is empty if none found.
5dfe8660
TH
132 * @pfn: The page to return the region for
133 * @node_ar: Returned set to the active region containing @pfn
8f64e1f2 134 */
5dfe8660
TH
135static void __init get_node_active_region(unsigned long pfn,
136 struct node_active_region *node_ar)
8f64e1f2 137{
5dfe8660
TH
138 unsigned long start_pfn, end_pfn;
139 int i, nid;
140
141 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
142 if (pfn >= start_pfn && pfn < end_pfn) {
143 node_ar->nid = nid;
144 node_ar->start_pfn = start_pfn;
145 node_ar->end_pfn = end_pfn;
146 break;
147 }
148 }
8f64e1f2
JT
149}
150
39bf990e 151static void map_cpu_to_node(int cpu, int node)
1da177e4
LT
152{
153 numa_cpu_lookup_table[cpu] = node;
45fb6cea 154
bf4b85b0
NL
155 dbg("adding cpu %d to node %d\n", cpu, node);
156
25863de0
AB
157 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
158 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
159}
160
39bf990e 161#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
1da177e4
LT
162static void unmap_cpu_from_node(unsigned long cpu)
163{
164 int node = numa_cpu_lookup_table[cpu];
165
166 dbg("removing cpu %lu from node %d\n", cpu, node);
167
25863de0 168 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
429f4d8d 169 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
170 } else {
171 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
172 cpu, node);
173 }
174}
39bf990e 175#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
1da177e4 176
1da177e4 177/* must hold reference to node during call */
a7f67bdf 178static const int *of_get_associativity(struct device_node *dev)
1da177e4 179{
e2eb6392 180 return of_get_property(dev, "ibm,associativity", NULL);
1da177e4
LT
181}
182
cf00085d
C
183/*
184 * Returns the property linux,drconf-usable-memory if
185 * it exists (the property exists only in kexec/kdump kernels,
186 * added by kexec-tools)
187 */
188static const u32 *of_get_usable_memory(struct device_node *memory)
189{
190 const u32 *prop;
191 u32 len;
192 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
193 if (!prop || len < sizeof(unsigned int))
194 return 0;
195 return prop;
196}
197
41eab6f8
AB
198int __node_distance(int a, int b)
199{
200 int i;
201 int distance = LOCAL_DISTANCE;
202
203 if (!form1_affinity)
204 return distance;
205
206 for (i = 0; i < distance_ref_points_depth; i++) {
207 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
208 break;
209
210 /* Double the distance for each NUMA level */
211 distance *= 2;
212 }
213
214 return distance;
215}
216
217static void initialize_distance_lookup_table(int nid,
218 const unsigned int *associativity)
219{
220 int i;
221
222 if (!form1_affinity)
223 return;
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 distance_lookup_table[nid][i] =
227 associativity[distance_ref_points[i]];
228 }
229}
230
482ec7c4
NL
231/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
232 * info is found.
233 */
9eff1a38 234static int associativity_to_nid(const unsigned int *associativity)
1da177e4 235{
482ec7c4 236 int nid = -1;
1da177e4
LT
237
238 if (min_common_depth == -1)
482ec7c4 239 goto out;
1da177e4 240
9eff1a38
JL
241 if (associativity[0] >= min_common_depth)
242 nid = associativity[min_common_depth];
bc16a759
NL
243
244 /* POWER4 LPAR uses 0xffff as invalid node */
482ec7c4
NL
245 if (nid == 0xffff || nid >= MAX_NUMNODES)
246 nid = -1;
41eab6f8 247
9eff1a38
JL
248 if (nid > 0 && associativity[0] >= distance_ref_points_depth)
249 initialize_distance_lookup_table(nid, associativity);
41eab6f8 250
482ec7c4 251out:
cf950b7a 252 return nid;
1da177e4
LT
253}
254
9eff1a38
JL
255/* Returns the nid associated with the given device tree node,
256 * or -1 if not found.
257 */
258static int of_node_to_nid_single(struct device_node *device)
259{
260 int nid = -1;
261 const unsigned int *tmp;
262
263 tmp = of_get_associativity(device);
264 if (tmp)
265 nid = associativity_to_nid(tmp);
266 return nid;
267}
268
953039c8
JK
269/* Walk the device tree upwards, looking for an associativity id */
270int of_node_to_nid(struct device_node *device)
271{
272 struct device_node *tmp;
273 int nid = -1;
274
275 of_node_get(device);
276 while (device) {
277 nid = of_node_to_nid_single(device);
278 if (nid != -1)
279 break;
280
281 tmp = device;
282 device = of_get_parent(tmp);
283 of_node_put(tmp);
284 }
285 of_node_put(device);
286
287 return nid;
288}
289EXPORT_SYMBOL_GPL(of_node_to_nid);
290
1da177e4
LT
291static int __init find_min_common_depth(void)
292{
41eab6f8 293 int depth;
bc8449cc 294 struct device_node *chosen;
e70606eb 295 struct device_node *root;
bc8449cc 296 const char *vec5;
1da177e4 297
1c8ee733
DS
298 if (firmware_has_feature(FW_FEATURE_OPAL))
299 root = of_find_node_by_path("/ibm,opal");
300 else
301 root = of_find_node_by_path("/rtas");
e70606eb
ME
302 if (!root)
303 root = of_find_node_by_path("/");
1da177e4
LT
304
305 /*
41eab6f8
AB
306 * This property is a set of 32-bit integers, each representing
307 * an index into the ibm,associativity nodes.
308 *
309 * With form 0 affinity the first integer is for an SMP configuration
310 * (should be all 0's) and the second is for a normal NUMA
311 * configuration. We have only one level of NUMA.
312 *
313 * With form 1 affinity the first integer is the most significant
314 * NUMA boundary and the following are progressively less significant
315 * boundaries. There can be more than one level of NUMA.
1da177e4 316 */
e70606eb 317 distance_ref_points = of_get_property(root,
41eab6f8
AB
318 "ibm,associativity-reference-points",
319 &distance_ref_points_depth);
320
321 if (!distance_ref_points) {
322 dbg("NUMA: ibm,associativity-reference-points not found.\n");
323 goto err;
324 }
325
326 distance_ref_points_depth /= sizeof(int);
1da177e4 327
bc8449cc
AB
328#define VEC5_AFFINITY_BYTE 5
329#define VEC5_AFFINITY 0x80
1c8ee733
DS
330
331 if (firmware_has_feature(FW_FEATURE_OPAL))
332 form1_affinity = 1;
333 else {
334 chosen = of_find_node_by_path("/chosen");
335 if (chosen) {
336 vec5 = of_get_property(chosen,
337 "ibm,architecture-vec-5", NULL);
338 if (vec5 && (vec5[VEC5_AFFINITY_BYTE] &
339 VEC5_AFFINITY)) {
340 dbg("Using form 1 affinity\n");
341 form1_affinity = 1;
342 }
5b958a7e
GS
343
344 of_node_put(chosen);
bc8449cc 345 }
4b83c330
AB
346 }
347
41eab6f8
AB
348 if (form1_affinity) {
349 depth = distance_ref_points[0];
1da177e4 350 } else {
41eab6f8
AB
351 if (distance_ref_points_depth < 2) {
352 printk(KERN_WARNING "NUMA: "
353 "short ibm,associativity-reference-points\n");
354 goto err;
355 }
356
357 depth = distance_ref_points[1];
1da177e4 358 }
1da177e4 359
41eab6f8
AB
360 /*
361 * Warn and cap if the hardware supports more than
362 * MAX_DISTANCE_REF_POINTS domains.
363 */
364 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
365 printk(KERN_WARNING "NUMA: distance array capped at "
366 "%d entries\n", MAX_DISTANCE_REF_POINTS);
367 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
368 }
369
e70606eb 370 of_node_put(root);
1da177e4 371 return depth;
41eab6f8
AB
372
373err:
e70606eb 374 of_node_put(root);
41eab6f8 375 return -1;
1da177e4
LT
376}
377
84c9fdd1 378static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
1da177e4
LT
379{
380 struct device_node *memory = NULL;
1da177e4
LT
381
382 memory = of_find_node_by_type(memory, "memory");
54c23310 383 if (!memory)
84c9fdd1 384 panic("numa.c: No memory nodes found!");
54c23310 385
a8bda5dd 386 *n_addr_cells = of_n_addr_cells(memory);
9213feea 387 *n_size_cells = of_n_size_cells(memory);
84c9fdd1 388 of_node_put(memory);
1da177e4
LT
389}
390
2011b1d0 391static unsigned long read_n_cells(int n, const unsigned int **buf)
1da177e4
LT
392{
393 unsigned long result = 0;
394
395 while (n--) {
396 result = (result << 32) | **buf;
397 (*buf)++;
398 }
399 return result;
400}
401
8342681d
NF
402struct of_drconf_cell {
403 u64 base_addr;
404 u32 drc_index;
405 u32 reserved;
406 u32 aa_index;
407 u32 flags;
408};
409
410#define DRCONF_MEM_ASSIGNED 0x00000008
411#define DRCONF_MEM_AI_INVALID 0x00000040
412#define DRCONF_MEM_RESERVED 0x00000080
413
414/*
95f72d1e 415 * Read the next memblock list entry from the ibm,dynamic-memory property
8342681d
NF
416 * and return the information in the provided of_drconf_cell structure.
417 */
418static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
419{
420 const u32 *cp;
421
422 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
423
424 cp = *cellp;
425 drmem->drc_index = cp[0];
426 drmem->reserved = cp[1];
427 drmem->aa_index = cp[2];
428 drmem->flags = cp[3];
429
430 *cellp = cp + 4;
431}
432
433/*
25985edc 434 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
8342681d 435 *
95f72d1e
YL
436 * The layout of the ibm,dynamic-memory property is a number N of memblock
437 * list entries followed by N memblock list entries. Each memblock list entry
25985edc 438 * contains information as laid out in the of_drconf_cell struct above.
8342681d
NF
439 */
440static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
441{
442 const u32 *prop;
443 u32 len, entries;
444
445 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
446 if (!prop || len < sizeof(unsigned int))
447 return 0;
448
449 entries = *prop++;
450
451 /* Now that we know the number of entries, revalidate the size
452 * of the property read in to ensure we have everything
453 */
454 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
455 return 0;
456
457 *dm = prop;
458 return entries;
459}
460
461/*
25985edc 462 * Retrieve and validate the ibm,lmb-size property for drconf memory
8342681d
NF
463 * from the device tree.
464 */
3fdfd990 465static u64 of_get_lmb_size(struct device_node *memory)
8342681d
NF
466{
467 const u32 *prop;
468 u32 len;
469
3fdfd990 470 prop = of_get_property(memory, "ibm,lmb-size", &len);
8342681d
NF
471 if (!prop || len < sizeof(unsigned int))
472 return 0;
473
474 return read_n_cells(n_mem_size_cells, &prop);
475}
476
477struct assoc_arrays {
478 u32 n_arrays;
479 u32 array_sz;
480 const u32 *arrays;
481};
482
483/*
25985edc 484 * Retrieve and validate the list of associativity arrays for drconf
8342681d
NF
485 * memory from the ibm,associativity-lookup-arrays property of the
486 * device tree..
487 *
488 * The layout of the ibm,associativity-lookup-arrays property is a number N
489 * indicating the number of associativity arrays, followed by a number M
490 * indicating the size of each associativity array, followed by a list
491 * of N associativity arrays.
492 */
493static int of_get_assoc_arrays(struct device_node *memory,
494 struct assoc_arrays *aa)
495{
496 const u32 *prop;
497 u32 len;
498
499 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
500 if (!prop || len < 2 * sizeof(unsigned int))
501 return -1;
502
503 aa->n_arrays = *prop++;
504 aa->array_sz = *prop++;
505
42b2aa86 506 /* Now that we know the number of arrays and size of each array,
8342681d
NF
507 * revalidate the size of the property read in.
508 */
509 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
510 return -1;
511
512 aa->arrays = prop;
513 return 0;
514}
515
516/*
517 * This is like of_node_to_nid_single() for memory represented in the
518 * ibm,dynamic-reconfiguration-memory node.
519 */
520static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
521 struct assoc_arrays *aa)
522{
523 int default_nid = 0;
524 int nid = default_nid;
525 int index;
526
527 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
528 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
529 drmem->aa_index < aa->n_arrays) {
530 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
531 nid = aa->arrays[index];
532
533 if (nid == 0xffff || nid >= MAX_NUMNODES)
534 nid = default_nid;
535 }
536
537 return nid;
538}
539
1da177e4
LT
540/*
541 * Figure out to which domain a cpu belongs and stick it there.
542 * Return the id of the domain used.
543 */
2e5ce39d 544static int __cpuinit numa_setup_cpu(unsigned long lcpu)
1da177e4 545{
cf950b7a 546 int nid = 0;
8b16cd23 547 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
1da177e4
LT
548
549 if (!cpu) {
550 WARN_ON(1);
551 goto out;
552 }
553
953039c8 554 nid = of_node_to_nid_single(cpu);
1da177e4 555
482ec7c4 556 if (nid < 0 || !node_online(nid))
72c33688 557 nid = first_online_node;
1da177e4 558out:
cf950b7a 559 map_cpu_to_node(lcpu, nid);
1da177e4
LT
560
561 of_node_put(cpu);
562
cf950b7a 563 return nid;
1da177e4
LT
564}
565
74b85f37 566static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
1da177e4
LT
567 unsigned long action,
568 void *hcpu)
569{
570 unsigned long lcpu = (unsigned long)hcpu;
571 int ret = NOTIFY_DONE;
572
573 switch (action) {
574 case CPU_UP_PREPARE:
8bb78442 575 case CPU_UP_PREPARE_FROZEN:
2b261227 576 numa_setup_cpu(lcpu);
1da177e4
LT
577 ret = NOTIFY_OK;
578 break;
579#ifdef CONFIG_HOTPLUG_CPU
580 case CPU_DEAD:
8bb78442 581 case CPU_DEAD_FROZEN:
1da177e4 582 case CPU_UP_CANCELED:
8bb78442 583 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
584 unmap_cpu_from_node(lcpu);
585 break;
586 ret = NOTIFY_OK;
587#endif
588 }
589 return ret;
590}
591
592/*
593 * Check and possibly modify a memory region to enforce the memory limit.
594 *
595 * Returns the size the region should have to enforce the memory limit.
596 * This will either be the original value of size, a truncated value,
597 * or zero. If the returned value of size is 0 the region should be
25985edc 598 * discarded as it lies wholly above the memory limit.
1da177e4 599 */
45fb6cea
AB
600static unsigned long __init numa_enforce_memory_limit(unsigned long start,
601 unsigned long size)
1da177e4
LT
602{
603 /*
95f72d1e 604 * We use memblock_end_of_DRAM() in here instead of memory_limit because
1da177e4 605 * we've already adjusted it for the limit and it takes care of
fe55249d
MM
606 * having memory holes below the limit. Also, in the case of
607 * iommu_is_off, memory_limit is not set but is implicitly enforced.
1da177e4 608 */
1da177e4 609
95f72d1e 610 if (start + size <= memblock_end_of_DRAM())
1da177e4
LT
611 return size;
612
95f72d1e 613 if (start >= memblock_end_of_DRAM())
1da177e4
LT
614 return 0;
615
95f72d1e 616 return memblock_end_of_DRAM() - start;
1da177e4
LT
617}
618
cf00085d
C
619/*
620 * Reads the counter for a given entry in
621 * linux,drconf-usable-memory property
622 */
623static inline int __init read_usm_ranges(const u32 **usm)
624{
625 /*
3fdfd990 626 * For each lmb in ibm,dynamic-memory a corresponding
cf00085d
C
627 * entry in linux,drconf-usable-memory property contains
628 * a counter followed by that many (base, size) duple.
629 * read the counter from linux,drconf-usable-memory
630 */
631 return read_n_cells(n_mem_size_cells, usm);
632}
633
0204568a
PM
634/*
635 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
636 * node. This assumes n_mem_{addr,size}_cells have been set.
637 */
638static void __init parse_drconf_memory(struct device_node *memory)
639{
82b2521d 640 const u32 *uninitialized_var(dm), *usm;
cf00085d 641 unsigned int n, rc, ranges, is_kexec_kdump = 0;
3fdfd990 642 unsigned long lmb_size, base, size, sz;
8342681d 643 int nid;
aa709f3b 644 struct assoc_arrays aa = { .arrays = NULL };
8342681d
NF
645
646 n = of_get_drconf_memory(memory, &dm);
647 if (!n)
0204568a
PM
648 return;
649
3fdfd990
BH
650 lmb_size = of_get_lmb_size(memory);
651 if (!lmb_size)
8342681d
NF
652 return;
653
654 rc = of_get_assoc_arrays(memory, &aa);
655 if (rc)
0204568a
PM
656 return;
657
cf00085d
C
658 /* check if this is a kexec/kdump kernel */
659 usm = of_get_usable_memory(memory);
660 if (usm != NULL)
661 is_kexec_kdump = 1;
662
0204568a 663 for (; n != 0; --n) {
8342681d
NF
664 struct of_drconf_cell drmem;
665
666 read_drconf_cell(&drmem, &dm);
667
668 /* skip this block if the reserved bit is set in flags (0x80)
669 or if the block is not assigned to this partition (0x8) */
670 if ((drmem.flags & DRCONF_MEM_RESERVED)
671 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
0204568a 672 continue;
1daa6d08 673
cf00085d 674 base = drmem.base_addr;
3fdfd990 675 size = lmb_size;
cf00085d 676 ranges = 1;
8342681d 677
cf00085d
C
678 if (is_kexec_kdump) {
679 ranges = read_usm_ranges(&usm);
680 if (!ranges) /* there are no (base, size) duple */
681 continue;
682 }
683 do {
684 if (is_kexec_kdump) {
685 base = read_n_cells(n_mem_addr_cells, &usm);
686 size = read_n_cells(n_mem_size_cells, &usm);
687 }
688 nid = of_drconf_to_nid_single(&drmem, &aa);
689 fake_numa_create_new_node(
690 ((base + size) >> PAGE_SHIFT),
8342681d 691 &nid);
cf00085d
C
692 node_set_online(nid);
693 sz = numa_enforce_memory_limit(base, size);
694 if (sz)
1d7cfe18 695 memblock_set_node(base, sz, nid);
cf00085d 696 } while (--ranges);
0204568a
PM
697 }
698}
699
1da177e4
LT
700static int __init parse_numa_properties(void)
701{
94db7c5e 702 struct device_node *memory;
482ec7c4 703 int default_nid = 0;
1da177e4
LT
704 unsigned long i;
705
706 if (numa_enabled == 0) {
707 printk(KERN_WARNING "NUMA disabled by user\n");
708 return -1;
709 }
710
1da177e4
LT
711 min_common_depth = find_min_common_depth();
712
1da177e4
LT
713 if (min_common_depth < 0)
714 return min_common_depth;
715
bf4b85b0
NL
716 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
717
1da177e4 718 /*
482ec7c4
NL
719 * Even though we connect cpus to numa domains later in SMP
720 * init, we need to know the node ids now. This is because
721 * each node to be onlined must have NODE_DATA etc backing it.
1da177e4 722 */
482ec7c4 723 for_each_present_cpu(i) {
dfbe93a2 724 struct device_node *cpu;
cf950b7a 725 int nid;
1da177e4 726
8b16cd23 727 cpu = of_get_cpu_node(i, NULL);
482ec7c4 728 BUG_ON(!cpu);
953039c8 729 nid = of_node_to_nid_single(cpu);
482ec7c4 730 of_node_put(cpu);
1da177e4 731
482ec7c4
NL
732 /*
733 * Don't fall back to default_nid yet -- we will plug
734 * cpus into nodes once the memory scan has discovered
735 * the topology.
736 */
737 if (nid < 0)
738 continue;
739 node_set_online(nid);
1da177e4
LT
740 }
741
237a0989 742 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
94db7c5e
AB
743
744 for_each_node_by_type(memory, "memory") {
1da177e4
LT
745 unsigned long start;
746 unsigned long size;
cf950b7a 747 int nid;
1da177e4 748 int ranges;
a7f67bdf 749 const unsigned int *memcell_buf;
1da177e4
LT
750 unsigned int len;
751
e2eb6392 752 memcell_buf = of_get_property(memory,
ba759485
ME
753 "linux,usable-memory", &len);
754 if (!memcell_buf || len <= 0)
e2eb6392 755 memcell_buf = of_get_property(memory, "reg", &len);
1da177e4
LT
756 if (!memcell_buf || len <= 0)
757 continue;
758
cc5d0189
BH
759 /* ranges in cell */
760 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1da177e4
LT
761new_range:
762 /* these are order-sensitive, and modify the buffer pointer */
237a0989
MK
763 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
764 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1da177e4 765
482ec7c4
NL
766 /*
767 * Assumption: either all memory nodes or none will
768 * have associativity properties. If none, then
769 * everything goes to default_nid.
770 */
953039c8 771 nid = of_node_to_nid_single(memory);
482ec7c4
NL
772 if (nid < 0)
773 nid = default_nid;
1daa6d08
BS
774
775 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
482ec7c4 776 node_set_online(nid);
1da177e4 777
45fb6cea 778 if (!(size = numa_enforce_memory_limit(start, size))) {
1da177e4
LT
779 if (--ranges)
780 goto new_range;
781 else
782 continue;
783 }
784
1d7cfe18 785 memblock_set_node(start, size, nid);
1da177e4
LT
786
787 if (--ranges)
788 goto new_range;
789 }
790
0204568a 791 /*
dfbe93a2
AB
792 * Now do the same thing for each MEMBLOCK listed in the
793 * ibm,dynamic-memory property in the
794 * ibm,dynamic-reconfiguration-memory node.
0204568a
PM
795 */
796 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
797 if (memory)
798 parse_drconf_memory(memory);
799
1da177e4
LT
800 return 0;
801}
802
803static void __init setup_nonnuma(void)
804{
95f72d1e
YL
805 unsigned long top_of_ram = memblock_end_of_DRAM();
806 unsigned long total_ram = memblock_phys_mem_size();
c67c3cb4 807 unsigned long start_pfn, end_pfn;
28be7072
BH
808 unsigned int nid = 0;
809 struct memblock_region *reg;
1da177e4 810
e110b281 811 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1da177e4 812 top_of_ram, total_ram);
e110b281 813 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1da177e4
LT
814 (top_of_ram - total_ram) >> 20);
815
28be7072 816 for_each_memblock(memory, reg) {
c7fc2de0
YL
817 start_pfn = memblock_region_memory_base_pfn(reg);
818 end_pfn = memblock_region_memory_end_pfn(reg);
1daa6d08
BS
819
820 fake_numa_create_new_node(end_pfn, &nid);
1d7cfe18
TH
821 memblock_set_node(PFN_PHYS(start_pfn),
822 PFN_PHYS(end_pfn - start_pfn), nid);
1daa6d08 823 node_set_online(nid);
c67c3cb4 824 }
1da177e4
LT
825}
826
4b703a23
AB
827void __init dump_numa_cpu_topology(void)
828{
829 unsigned int node;
830 unsigned int cpu, count;
831
832 if (min_common_depth == -1 || !numa_enabled)
833 return;
834
835 for_each_online_node(node) {
e110b281 836 printk(KERN_DEBUG "Node %d CPUs:", node);
4b703a23
AB
837
838 count = 0;
839 /*
840 * If we used a CPU iterator here we would miss printing
841 * the holes in the cpumap.
842 */
25863de0
AB
843 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
844 if (cpumask_test_cpu(cpu,
845 node_to_cpumask_map[node])) {
4b703a23
AB
846 if (count == 0)
847 printk(" %u", cpu);
848 ++count;
849 } else {
850 if (count > 1)
851 printk("-%u", cpu - 1);
852 count = 0;
853 }
854 }
855
856 if (count > 1)
25863de0 857 printk("-%u", nr_cpu_ids - 1);
4b703a23
AB
858 printk("\n");
859 }
860}
861
862static void __init dump_numa_memory_topology(void)
1da177e4
LT
863{
864 unsigned int node;
865 unsigned int count;
866
867 if (min_common_depth == -1 || !numa_enabled)
868 return;
869
870 for_each_online_node(node) {
871 unsigned long i;
872
e110b281 873 printk(KERN_DEBUG "Node %d Memory:", node);
1da177e4
LT
874
875 count = 0;
876
95f72d1e 877 for (i = 0; i < memblock_end_of_DRAM();
45fb6cea
AB
878 i += (1 << SECTION_SIZE_BITS)) {
879 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
1da177e4
LT
880 if (count == 0)
881 printk(" 0x%lx", i);
882 ++count;
883 } else {
884 if (count > 0)
885 printk("-0x%lx", i);
886 count = 0;
887 }
888 }
889
890 if (count > 0)
891 printk("-0x%lx", i);
892 printk("\n");
893 }
1da177e4
LT
894}
895
896/*
95f72d1e 897 * Allocate some memory, satisfying the memblock or bootmem allocator where
1da177e4
LT
898 * required. nid is the preferred node and end is the physical address of
899 * the highest address in the node.
900 *
0be210fd 901 * Returns the virtual address of the memory.
1da177e4 902 */
893473df 903static void __init *careful_zallocation(int nid, unsigned long size,
45fb6cea
AB
904 unsigned long align,
905 unsigned long end_pfn)
1da177e4 906{
0be210fd 907 void *ret;
45fb6cea 908 int new_nid;
0be210fd
DH
909 unsigned long ret_paddr;
910
95f72d1e 911 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
1da177e4
LT
912
913 /* retry over all memory */
0be210fd 914 if (!ret_paddr)
95f72d1e 915 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
1da177e4 916
0be210fd 917 if (!ret_paddr)
5d21ea2b 918 panic("numa.c: cannot allocate %lu bytes for node %d",
1da177e4
LT
919 size, nid);
920
0be210fd
DH
921 ret = __va(ret_paddr);
922
1da177e4 923 /*
c555e520 924 * We initialize the nodes in numeric order: 0, 1, 2...
95f72d1e 925 * and hand over control from the MEMBLOCK allocator to the
c555e520
DH
926 * bootmem allocator. If this function is called for
927 * node 5, then we know that all nodes <5 are using the
95f72d1e 928 * bootmem allocator instead of the MEMBLOCK allocator.
c555e520
DH
929 *
930 * So, check the nid from which this allocation came
931 * and double check to see if we need to use bootmem
95f72d1e 932 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
c555e520 933 * since it would be useless.
1da177e4 934 */
0be210fd 935 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
45fb6cea 936 if (new_nid < nid) {
0be210fd 937 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
1da177e4
LT
938 size, align, 0);
939
0be210fd 940 dbg("alloc_bootmem %p %lx\n", ret, size);
1da177e4
LT
941 }
942
893473df 943 memset(ret, 0, size);
0be210fd 944 return ret;
1da177e4
LT
945}
946
74b85f37
CS
947static struct notifier_block __cpuinitdata ppc64_numa_nb = {
948 .notifier_call = cpu_numa_callback,
949 .priority = 1 /* Must run before sched domains notifier. */
950};
951
28e86bdb 952static void __init mark_reserved_regions_for_nid(int nid)
4a618669
DH
953{
954 struct pglist_data *node = NODE_DATA(nid);
28be7072 955 struct memblock_region *reg;
4a618669 956
28be7072
BH
957 for_each_memblock(reserved, reg) {
958 unsigned long physbase = reg->base;
959 unsigned long size = reg->size;
4a618669 960 unsigned long start_pfn = physbase >> PAGE_SHIFT;
06eccea6 961 unsigned long end_pfn = PFN_UP(physbase + size);
4a618669
DH
962 struct node_active_region node_ar;
963 unsigned long node_end_pfn = node->node_start_pfn +
964 node->node_spanned_pages;
965
966 /*
95f72d1e 967 * Check to make sure that this memblock.reserved area is
4a618669
DH
968 * within the bounds of the node that we care about.
969 * Checking the nid of the start and end points is not
970 * sufficient because the reserved area could span the
971 * entire node.
972 */
973 if (end_pfn <= node->node_start_pfn ||
974 start_pfn >= node_end_pfn)
975 continue;
976
977 get_node_active_region(start_pfn, &node_ar);
978 while (start_pfn < end_pfn &&
979 node_ar.start_pfn < node_ar.end_pfn) {
980 unsigned long reserve_size = size;
981 /*
982 * if reserved region extends past active region
983 * then trim size to active region
984 */
985 if (end_pfn > node_ar.end_pfn)
986 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
06eccea6 987 - physbase;
a4c74ddd
DH
988 /*
989 * Only worry about *this* node, others may not
990 * yet have valid NODE_DATA().
991 */
992 if (node_ar.nid == nid) {
993 dbg("reserve_bootmem %lx %lx nid=%d\n",
994 physbase, reserve_size, node_ar.nid);
995 reserve_bootmem_node(NODE_DATA(node_ar.nid),
996 physbase, reserve_size,
997 BOOTMEM_DEFAULT);
998 }
4a618669
DH
999 /*
1000 * if reserved region is contained in the active region
1001 * then done.
1002 */
1003 if (end_pfn <= node_ar.end_pfn)
1004 break;
1005
1006 /*
1007 * reserved region extends past the active region
1008 * get next active region that contains this
1009 * reserved region
1010 */
1011 start_pfn = node_ar.end_pfn;
1012 physbase = start_pfn << PAGE_SHIFT;
1013 size = size - reserve_size;
1014 get_node_active_region(start_pfn, &node_ar);
1015 }
1016 }
1017}
1018
1019
1da177e4
LT
1020void __init do_init_bootmem(void)
1021{
1022 int nid;
1da177e4
LT
1023
1024 min_low_pfn = 0;
95f72d1e 1025 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1da177e4
LT
1026 max_pfn = max_low_pfn;
1027
1028 if (parse_numa_properties())
1029 setup_nonnuma();
1030 else
4b703a23 1031 dump_numa_memory_topology();
1da177e4 1032
1da177e4 1033 for_each_online_node(nid) {
c67c3cb4 1034 unsigned long start_pfn, end_pfn;
0be210fd 1035 void *bootmem_vaddr;
1da177e4
LT
1036 unsigned long bootmap_pages;
1037
c67c3cb4 1038 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1da177e4 1039
4a618669
DH
1040 /*
1041 * Allocate the node structure node local if possible
1042 *
1043 * Be careful moving this around, as it relies on all
1044 * previous nodes' bootmem to be initialized and have
1045 * all reserved areas marked.
1046 */
893473df 1047 NODE_DATA(nid) = careful_zallocation(nid,
1da177e4 1048 sizeof(struct pglist_data),
45fb6cea 1049 SMP_CACHE_BYTES, end_pfn);
1da177e4
LT
1050
1051 dbg("node %d\n", nid);
1052 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1053
b61bfa3c 1054 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
45fb6cea
AB
1055 NODE_DATA(nid)->node_start_pfn = start_pfn;
1056 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1da177e4
LT
1057
1058 if (NODE_DATA(nid)->node_spanned_pages == 0)
1059 continue;
1060
45fb6cea
AB
1061 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1062 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1da177e4 1063
45fb6cea 1064 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
893473df 1065 bootmem_vaddr = careful_zallocation(nid,
45fb6cea
AB
1066 bootmap_pages << PAGE_SHIFT,
1067 PAGE_SIZE, end_pfn);
1da177e4 1068
0be210fd 1069 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1da177e4 1070
0be210fd
DH
1071 init_bootmem_node(NODE_DATA(nid),
1072 __pa(bootmem_vaddr) >> PAGE_SHIFT,
45fb6cea 1073 start_pfn, end_pfn);
1da177e4 1074
c67c3cb4 1075 free_bootmem_with_active_regions(nid, end_pfn);
4a618669
DH
1076 /*
1077 * Be very careful about moving this around. Future
893473df 1078 * calls to careful_zallocation() depend on this getting
4a618669
DH
1079 * done correctly.
1080 */
1081 mark_reserved_regions_for_nid(nid);
8f64e1f2 1082 sparse_memory_present_with_active_regions(nid);
4a618669 1083 }
d3f6204a
BH
1084
1085 init_bootmem_done = 1;
25863de0
AB
1086
1087 /*
1088 * Now bootmem is initialised we can create the node to cpumask
1089 * lookup tables and setup the cpu callback to populate them.
1090 */
1091 setup_node_to_cpumask_map();
1092
1093 register_cpu_notifier(&ppc64_numa_nb);
1094 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1095 (void *)(unsigned long)boot_cpuid);
1da177e4
LT
1096}
1097
1098void __init paging_init(void)
1099{
6391af17
MG
1100 unsigned long max_zone_pfns[MAX_NR_ZONES];
1101 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
95f72d1e 1102 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
c67c3cb4 1103 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
1104}
1105
1106static int __init early_numa(char *p)
1107{
1108 if (!p)
1109 return 0;
1110
1111 if (strstr(p, "off"))
1112 numa_enabled = 0;
1113
1114 if (strstr(p, "debug"))
1115 numa_debug = 1;
1116
1daa6d08
BS
1117 p = strstr(p, "fake=");
1118 if (p)
1119 cmdline = p + strlen("fake=");
1120
1da177e4
LT
1121 return 0;
1122}
1123early_param("numa", early_numa);
237a0989
MK
1124
1125#ifdef CONFIG_MEMORY_HOTPLUG
0db9360a 1126/*
0f16ef7f
NF
1127 * Find the node associated with a hot added memory section for
1128 * memory represented in the device tree by the property
1129 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
0db9360a
NF
1130 */
1131static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1132 unsigned long scn_addr)
1133{
1134 const u32 *dm;
0f16ef7f 1135 unsigned int drconf_cell_cnt, rc;
3fdfd990 1136 unsigned long lmb_size;
0db9360a 1137 struct assoc_arrays aa;
0f16ef7f 1138 int nid = -1;
0db9360a 1139
0f16ef7f
NF
1140 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1141 if (!drconf_cell_cnt)
1142 return -1;
0db9360a 1143
3fdfd990
BH
1144 lmb_size = of_get_lmb_size(memory);
1145 if (!lmb_size)
0f16ef7f 1146 return -1;
0db9360a
NF
1147
1148 rc = of_get_assoc_arrays(memory, &aa);
1149 if (rc)
0f16ef7f 1150 return -1;
0db9360a 1151
0f16ef7f 1152 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
0db9360a
NF
1153 struct of_drconf_cell drmem;
1154
1155 read_drconf_cell(&drmem, &dm);
1156
1157 /* skip this block if it is reserved or not assigned to
1158 * this partition */
1159 if ((drmem.flags & DRCONF_MEM_RESERVED)
1160 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1161 continue;
1162
0f16ef7f 1163 if ((scn_addr < drmem.base_addr)
3fdfd990 1164 || (scn_addr >= (drmem.base_addr + lmb_size)))
0f16ef7f
NF
1165 continue;
1166
0db9360a 1167 nid = of_drconf_to_nid_single(&drmem, &aa);
0f16ef7f
NF
1168 break;
1169 }
1170
1171 return nid;
1172}
1173
1174/*
1175 * Find the node associated with a hot added memory section for memory
1176 * represented in the device tree as a node (i.e. memory@XXXX) for
95f72d1e 1177 * each memblock.
0f16ef7f
NF
1178 */
1179int hot_add_node_scn_to_nid(unsigned long scn_addr)
1180{
94db7c5e 1181 struct device_node *memory;
0f16ef7f
NF
1182 int nid = -1;
1183
94db7c5e 1184 for_each_node_by_type(memory, "memory") {
0f16ef7f
NF
1185 unsigned long start, size;
1186 int ranges;
1187 const unsigned int *memcell_buf;
1188 unsigned int len;
1189
1190 memcell_buf = of_get_property(memory, "reg", &len);
1191 if (!memcell_buf || len <= 0)
1192 continue;
1193
1194 /* ranges in cell */
1195 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1196
1197 while (ranges--) {
1198 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1199 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1200
1201 if ((scn_addr < start) || (scn_addr >= (start + size)))
1202 continue;
1203
1204 nid = of_node_to_nid_single(memory);
1205 break;
1206 }
0db9360a 1207
0f16ef7f
NF
1208 if (nid >= 0)
1209 break;
0db9360a
NF
1210 }
1211
60831842
AB
1212 of_node_put(memory);
1213
0f16ef7f 1214 return nid;
0db9360a
NF
1215}
1216
237a0989
MK
1217/*
1218 * Find the node associated with a hot added memory section. Section
95f72d1e
YL
1219 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1220 * sections are fully contained within a single MEMBLOCK.
237a0989
MK
1221 */
1222int hot_add_scn_to_nid(unsigned long scn_addr)
1223{
1224 struct device_node *memory = NULL;
0f16ef7f 1225 int nid, found = 0;
237a0989
MK
1226
1227 if (!numa_enabled || (min_common_depth < 0))
72c33688 1228 return first_online_node;
0db9360a
NF
1229
1230 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1231 if (memory) {
1232 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1233 of_node_put(memory);
0f16ef7f
NF
1234 } else {
1235 nid = hot_add_node_scn_to_nid(scn_addr);
0db9360a 1236 }
237a0989 1237
0f16ef7f 1238 if (nid < 0 || !node_online(nid))
72c33688 1239 nid = first_online_node;
237a0989 1240
0f16ef7f
NF
1241 if (NODE_DATA(nid)->node_spanned_pages)
1242 return nid;
237a0989 1243
0f16ef7f
NF
1244 for_each_online_node(nid) {
1245 if (NODE_DATA(nid)->node_spanned_pages) {
1246 found = 1;
1247 break;
237a0989 1248 }
237a0989 1249 }
0f16ef7f
NF
1250
1251 BUG_ON(!found);
1252 return nid;
237a0989 1253}
0f16ef7f 1254
cd34206e
NA
1255static u64 hot_add_drconf_memory_max(void)
1256{
1257 struct device_node *memory = NULL;
1258 unsigned int drconf_cell_cnt = 0;
1259 u64 lmb_size = 0;
1260 const u32 *dm = 0;
1261
1262 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1263 if (memory) {
1264 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1265 lmb_size = of_get_lmb_size(memory);
1266 of_node_put(memory);
1267 }
1268 return lmb_size * drconf_cell_cnt;
1269}
1270
1271/*
1272 * memory_hotplug_max - return max address of memory that may be added
1273 *
1274 * This is currently only used on systems that support drconfig memory
1275 * hotplug.
1276 */
1277u64 memory_hotplug_max(void)
1278{
1279 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1280}
237a0989 1281#endif /* CONFIG_MEMORY_HOTPLUG */
9eff1a38 1282
bd03403a 1283/* Virtual Processor Home Node (VPHN) support */
39bf990e 1284#ifdef CONFIG_PPC_SPLPAR
5de16699 1285static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
9eff1a38
JL
1286static cpumask_t cpu_associativity_changes_mask;
1287static int vphn_enabled;
1288static void set_topology_timer(void);
9eff1a38
JL
1289
1290/*
1291 * Store the current values of the associativity change counters in the
1292 * hypervisor.
1293 */
1294static void setup_cpu_associativity_change_counters(void)
1295{
cd9d6cc7 1296 int cpu;
9eff1a38 1297
5de16699
AB
1298 /* The VPHN feature supports a maximum of 8 reference points */
1299 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1300
9eff1a38 1301 for_each_possible_cpu(cpu) {
cd9d6cc7 1302 int i;
9eff1a38
JL
1303 u8 *counts = vphn_cpu_change_counts[cpu];
1304 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1305
5de16699 1306 for (i = 0; i < distance_ref_points_depth; i++)
9eff1a38 1307 counts[i] = hypervisor_counts[i];
9eff1a38
JL
1308 }
1309}
1310
1311/*
1312 * The hypervisor maintains a set of 8 associativity change counters in
1313 * the VPA of each cpu that correspond to the associativity levels in the
1314 * ibm,associativity-reference-points property. When an associativity
1315 * level changes, the corresponding counter is incremented.
1316 *
1317 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1318 * node associativity levels have changed.
1319 *
1320 * Returns the number of cpus with unhandled associativity changes.
1321 */
1322static int update_cpu_associativity_changes_mask(void)
1323{
cd9d6cc7 1324 int cpu, nr_cpus = 0;
9eff1a38
JL
1325 cpumask_t *changes = &cpu_associativity_changes_mask;
1326
1327 cpumask_clear(changes);
1328
1329 for_each_possible_cpu(cpu) {
1330 int i, changed = 0;
1331 u8 *counts = vphn_cpu_change_counts[cpu];
1332 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1333
5de16699 1334 for (i = 0; i < distance_ref_points_depth; i++) {
d69043e8 1335 if (hypervisor_counts[i] != counts[i]) {
9eff1a38
JL
1336 counts[i] = hypervisor_counts[i];
1337 changed = 1;
1338 }
1339 }
1340 if (changed) {
1341 cpumask_set_cpu(cpu, changes);
1342 nr_cpus++;
1343 }
1344 }
1345
1346 return nr_cpus;
1347}
1348
c0e5e46f
AB
1349/*
1350 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1351 * the complete property we have to add the length in the first cell.
1352 */
1353#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
9eff1a38
JL
1354
1355/*
1356 * Convert the associativity domain numbers returned from the hypervisor
1357 * to the sequence they would appear in the ibm,associativity property.
1358 */
1359static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1360{
cd9d6cc7 1361 int i, nr_assoc_doms = 0;
9eff1a38
JL
1362 const u16 *field = (const u16*) packed;
1363
1364#define VPHN_FIELD_UNUSED (0xffff)
1365#define VPHN_FIELD_MSB (0x8000)
1366#define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1367
c0e5e46f 1368 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
9eff1a38
JL
1369 if (*field == VPHN_FIELD_UNUSED) {
1370 /* All significant fields processed, and remaining
1371 * fields contain the reserved value of all 1's.
1372 * Just store them.
1373 */
1374 unpacked[i] = *((u32*)field);
1375 field += 2;
7639adaa 1376 } else if (*field & VPHN_FIELD_MSB) {
9eff1a38
JL
1377 /* Data is in the lower 15 bits of this field */
1378 unpacked[i] = *field & VPHN_FIELD_MASK;
1379 field++;
1380 nr_assoc_doms++;
7639adaa 1381 } else {
9eff1a38
JL
1382 /* Data is in the lower 15 bits of this field
1383 * concatenated with the next 16 bit field
1384 */
1385 unpacked[i] = *((u32*)field);
1386 field += 2;
1387 nr_assoc_doms++;
1388 }
1389 }
1390
c0e5e46f
AB
1391 /* The first cell contains the length of the property */
1392 unpacked[0] = nr_assoc_doms;
1393
9eff1a38
JL
1394 return nr_assoc_doms;
1395}
1396
1397/*
1398 * Retrieve the new associativity information for a virtual processor's
1399 * home node.
1400 */
1401static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1402{
cd9d6cc7 1403 long rc;
9eff1a38
JL
1404 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1405 u64 flags = 1;
1406 int hwcpu = get_hard_smp_processor_id(cpu);
1407
1408 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1409 vphn_unpack_associativity(retbuf, associativity);
1410
1411 return rc;
1412}
1413
1414static long vphn_get_associativity(unsigned long cpu,
1415 unsigned int *associativity)
1416{
cd9d6cc7 1417 long rc;
9eff1a38
JL
1418
1419 rc = hcall_vphn(cpu, associativity);
1420
1421 switch (rc) {
1422 case H_FUNCTION:
1423 printk(KERN_INFO
1424 "VPHN is not supported. Disabling polling...\n");
1425 stop_topology_update();
1426 break;
1427 case H_HARDWARE:
1428 printk(KERN_ERR
1429 "hcall_vphn() experienced a hardware fault "
1430 "preventing VPHN. Disabling polling...\n");
1431 stop_topology_update();
1432 }
1433
1434 return rc;
1435}
1436
1437/*
1438 * Update the node maps and sysfs entries for each cpu whose home node
79c5fceb 1439 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
9eff1a38
JL
1440 */
1441int arch_update_cpu_topology(void)
1442{
79c5fceb 1443 int cpu, nid, old_nid, changed = 0;
9eff1a38 1444 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
8a25a2fd 1445 struct device *dev;
9eff1a38 1446
104699c0 1447 for_each_cpu(cpu,&cpu_associativity_changes_mask) {
9eff1a38
JL
1448 vphn_get_associativity(cpu, associativity);
1449 nid = associativity_to_nid(associativity);
1450
1451 if (nid < 0 || !node_online(nid))
1452 nid = first_online_node;
1453
1454 old_nid = numa_cpu_lookup_table[cpu];
1455
1456 /* Disable hotplug while we update the cpu
1457 * masks and sysfs.
1458 */
1459 get_online_cpus();
1460 unregister_cpu_under_node(cpu, old_nid);
1461 unmap_cpu_from_node(cpu);
1462 map_cpu_to_node(cpu, nid);
1463 register_cpu_under_node(cpu, nid);
1464 put_online_cpus();
1465
8a25a2fd
KS
1466 dev = get_cpu_device(cpu);
1467 if (dev)
1468 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
79c5fceb 1469 changed = 1;
9eff1a38
JL
1470 }
1471
79c5fceb 1472 return changed;
9eff1a38
JL
1473}
1474
1475static void topology_work_fn(struct work_struct *work)
1476{
1477 rebuild_sched_domains();
1478}
1479static DECLARE_WORK(topology_work, topology_work_fn);
1480
1481void topology_schedule_update(void)
1482{
1483 schedule_work(&topology_work);
1484}
1485
1486static void topology_timer_fn(unsigned long ignored)
1487{
1488 if (!vphn_enabled)
1489 return;
1490 if (update_cpu_associativity_changes_mask() > 0)
1491 topology_schedule_update();
1492 set_topology_timer();
1493}
1494static struct timer_list topology_timer =
1495 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1496
1497static void set_topology_timer(void)
1498{
1499 topology_timer.data = 0;
1500 topology_timer.expires = jiffies + 60 * HZ;
1501 add_timer(&topology_timer);
1502}
1503
1504/*
1505 * Start polling for VPHN associativity changes.
1506 */
1507int start_topology_update(void)
1508{
1509 int rc = 0;
1510
36e8695c
BH
1511 /* Disabled until races with load balancing are fixed */
1512 if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
fe5cfd63 1513 get_lppaca()->shared_proc) {
9eff1a38
JL
1514 vphn_enabled = 1;
1515 setup_cpu_associativity_change_counters();
1516 init_timer_deferrable(&topology_timer);
1517 set_topology_timer();
1518 rc = 1;
1519 }
1520
1521 return rc;
1522}
1523__initcall(start_topology_update);
1524
1525/*
1526 * Disable polling for VPHN associativity changes.
1527 */
1528int stop_topology_update(void)
1529{
1530 vphn_enabled = 0;
1531 return del_timer_sync(&topology_timer);
1532}
39bf990e 1533#endif /* CONFIG_PPC_SPLPAR */
This page took 0.792644 seconds and 5 git commands to generate.