powerpc/perf: Rework disable logic in pmu_disable()
[deliverable/linux.git] / arch / powerpc / perf / core-book3s.c
CommitLineData
4574910e 1/*
cdd6c482 2 * Performance event support - powerpc architecture code
4574910e
PM
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
cdd6c482 13#include <linux/perf_event.h>
4574910e
PM
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
69123184 16#include <linux/uaccess.h>
4574910e
PM
17#include <asm/reg.h>
18#include <asm/pmc.h>
01d0287f 19#include <asm/machdep.h>
0475f9ea 20#include <asm/firmware.h>
0bbd0d4b 21#include <asm/ptrace.h>
69123184 22#include <asm/code-patching.h>
4574910e 23
3925f46b
AK
24#define BHRB_MAX_ENTRIES 32
25#define BHRB_TARGET 0x0000000000000002
26#define BHRB_PREDICTION 0x0000000000000001
27#define BHRB_EA 0xFFFFFFFFFFFFFFFC
28
cdd6c482
IM
29struct cpu_hw_events {
30 int n_events;
4574910e
PM
31 int n_percpu;
32 int disabled;
33 int n_added;
ab7ef2e5
PM
34 int n_limited;
35 u8 pmcs_enabled;
cdd6c482
IM
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
448d64f8 39 unsigned long mmcr[3];
a8f90e90
PM
40 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
41 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
cdd6c482
IM
42 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
43 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
8e6d5573
LM
45
46 unsigned int group_flag;
47 int n_txn_start;
3925f46b
AK
48
49 /* BHRB bits */
50 u64 bhrb_filter; /* BHRB HW branch filter */
51 int bhrb_users;
52 void *bhrb_context;
53 struct perf_branch_stack bhrb_stack;
54 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
4574910e 55};
3925f46b 56
cdd6c482 57DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
4574910e
PM
58
59struct power_pmu *ppmu;
60
d095cd46 61/*
57c0c15b 62 * Normally, to ignore kernel events we set the FCS (freeze counters
d095cd46
PM
63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
64 * hypervisor bit set in the MSR, or if we are running on a processor
65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
66 * then we need to use the FCHV bit to ignore kernel events.
67 */
cdd6c482 68static unsigned int freeze_events_kernel = MMCR0_FCS;
d095cd46 69
98fb1807
PM
70/*
71 * 32-bit doesn't have MMCRA but does have an MMCR2,
72 * and a few other names are different.
73 */
74#ifdef CONFIG_PPC32
75
76#define MMCR0_FCHV 0
77#define MMCR0_PMCjCE MMCR0_PMCnCE
378a6ee9 78#define MMCR0_PMAO 0
98fb1807
PM
79
80#define SPRN_MMCRA SPRN_MMCR2
81#define MMCRA_SAMPLE_ENABLE 0
82
83static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
84{
85 return 0;
86}
98fb1807
PM
87static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
88static inline u32 perf_get_misc_flags(struct pt_regs *regs)
89{
90 return 0;
91}
75382aa7
AB
92static inline void perf_read_regs(struct pt_regs *regs)
93{
94 regs->result = 0;
95}
98fb1807
PM
96static inline int perf_intr_is_nmi(struct pt_regs *regs)
97{
98 return 0;
99}
100
e6878835 101static inline int siar_valid(struct pt_regs *regs)
102{
103 return 1;
104}
105
d52f2dc4
MN
106static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
107static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
108void power_pmu_flush_branch_stack(void) {}
109static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
98fb1807
PM
110#endif /* CONFIG_PPC32 */
111
33904054
ME
112static bool regs_use_siar(struct pt_regs *regs)
113{
cbda6aa1 114 return !!regs->result;
33904054
ME
115}
116
98fb1807
PM
117/*
118 * Things that are specific to 64-bit implementations.
119 */
120#ifdef CONFIG_PPC64
121
122static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
123{
124 unsigned long mmcra = regs->dsisr;
125
7a786832 126 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
98fb1807
PM
127 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
128 if (slot > 1)
129 return 4 * (slot - 1);
130 }
7a786832 131
98fb1807
PM
132 return 0;
133}
134
98fb1807
PM
135/*
136 * The user wants a data address recorded.
137 * If we're not doing instruction sampling, give them the SDAR
138 * (sampled data address). If we are doing instruction sampling, then
139 * only give them the SDAR if it corresponds to the instruction
58a032c3
ME
140 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
141 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
98fb1807
PM
142 */
143static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
144{
145 unsigned long mmcra = regs->dsisr;
58a032c3 146 bool sdar_valid;
e6878835 147
58a032c3
ME
148 if (ppmu->flags & PPMU_HAS_SIER)
149 sdar_valid = regs->dar & SIER_SDAR_VALID;
150 else {
151 unsigned long sdsync;
152
153 if (ppmu->flags & PPMU_SIAR_VALID)
154 sdsync = POWER7P_MMCRA_SDAR_VALID;
155 else if (ppmu->flags & PPMU_ALT_SIPR)
156 sdsync = POWER6_MMCRA_SDSYNC;
157 else
158 sdsync = MMCRA_SDSYNC;
159
160 sdar_valid = mmcra & sdsync;
161 }
98fb1807 162
58a032c3 163 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
98fb1807
PM
164 *addrp = mfspr(SPRN_SDAR);
165}
166
5682c460 167static bool regs_sihv(struct pt_regs *regs)
68b30bb9
AB
168{
169 unsigned long sihv = MMCRA_SIHV;
170
8f61aa32
ME
171 if (ppmu->flags & PPMU_HAS_SIER)
172 return !!(regs->dar & SIER_SIHV);
173
68b30bb9
AB
174 if (ppmu->flags & PPMU_ALT_SIPR)
175 sihv = POWER6_MMCRA_SIHV;
176
5682c460 177 return !!(regs->dsisr & sihv);
68b30bb9
AB
178}
179
5682c460 180static bool regs_sipr(struct pt_regs *regs)
68b30bb9
AB
181{
182 unsigned long sipr = MMCRA_SIPR;
183
8f61aa32
ME
184 if (ppmu->flags & PPMU_HAS_SIER)
185 return !!(regs->dar & SIER_SIPR);
186
68b30bb9
AB
187 if (ppmu->flags & PPMU_ALT_SIPR)
188 sipr = POWER6_MMCRA_SIPR;
189
5682c460 190 return !!(regs->dsisr & sipr);
68b30bb9
AB
191}
192
1ce447b9
BH
193static inline u32 perf_flags_from_msr(struct pt_regs *regs)
194{
195 if (regs->msr & MSR_PR)
196 return PERF_RECORD_MISC_USER;
197 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
198 return PERF_RECORD_MISC_HYPERVISOR;
199 return PERF_RECORD_MISC_KERNEL;
200}
201
98fb1807
PM
202static inline u32 perf_get_misc_flags(struct pt_regs *regs)
203{
33904054 204 bool use_siar = regs_use_siar(regs);
98fb1807 205
75382aa7 206 if (!use_siar)
1ce447b9
BH
207 return perf_flags_from_msr(regs);
208
209 /*
210 * If we don't have flags in MMCRA, rather than using
211 * the MSR, we intuit the flags from the address in
212 * SIAR which should give slightly more reliable
213 * results
214 */
cbda6aa1 215 if (ppmu->flags & PPMU_NO_SIPR) {
1ce447b9
BH
216 unsigned long siar = mfspr(SPRN_SIAR);
217 if (siar >= PAGE_OFFSET)
218 return PERF_RECORD_MISC_KERNEL;
219 return PERF_RECORD_MISC_USER;
220 }
98fb1807 221
7abb840b 222 /* PR has priority over HV, so order below is important */
5682c460 223 if (regs_sipr(regs))
7abb840b 224 return PERF_RECORD_MISC_USER;
5682c460
ME
225
226 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
cdd6c482 227 return PERF_RECORD_MISC_HYPERVISOR;
5682c460 228
7abb840b 229 return PERF_RECORD_MISC_KERNEL;
98fb1807
PM
230}
231
232/*
233 * Overload regs->dsisr to store MMCRA so we only need to read it once
234 * on each interrupt.
8f61aa32 235 * Overload regs->dar to store SIER if we have it.
75382aa7
AB
236 * Overload regs->result to specify whether we should use the MSR (result
237 * is zero) or the SIAR (result is non zero).
98fb1807
PM
238 */
239static inline void perf_read_regs(struct pt_regs *regs)
240{
75382aa7
AB
241 unsigned long mmcra = mfspr(SPRN_MMCRA);
242 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
243 int use_siar;
244
5682c460 245 regs->dsisr = mmcra;
8f61aa32 246
cbda6aa1
ME
247 if (ppmu->flags & PPMU_HAS_SIER)
248 regs->dar = mfspr(SPRN_SIER);
8f61aa32 249
5c093efa
AB
250 /*
251 * If this isn't a PMU exception (eg a software event) the SIAR is
252 * not valid. Use pt_regs.
253 *
254 * If it is a marked event use the SIAR.
255 *
256 * If the PMU doesn't update the SIAR for non marked events use
257 * pt_regs.
258 *
259 * If the PMU has HV/PR flags then check to see if they
260 * place the exception in userspace. If so, use pt_regs. In
261 * continuous sampling mode the SIAR and the PMU exception are
262 * not synchronised, so they may be many instructions apart.
263 * This can result in confusing backtraces. We still want
264 * hypervisor samples as well as samples in the kernel with
265 * interrupts off hence the userspace check.
266 */
75382aa7
AB
267 if (TRAP(regs) != 0xf00)
268 use_siar = 0;
5c093efa
AB
269 else if (marked)
270 use_siar = 1;
271 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
272 use_siar = 0;
cbda6aa1 273 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
75382aa7
AB
274 use_siar = 0;
275 else
276 use_siar = 1;
277
cbda6aa1 278 regs->result = use_siar;
98fb1807
PM
279}
280
281/*
282 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
283 * it as an NMI.
284 */
285static inline int perf_intr_is_nmi(struct pt_regs *regs)
286{
287 return !regs->softe;
288}
289
e6878835 290/*
291 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
292 * must be sampled only if the SIAR-valid bit is set.
293 *
294 * For unmarked instructions and for processors that don't have the SIAR-Valid
295 * bit, assume that SIAR is valid.
296 */
297static inline int siar_valid(struct pt_regs *regs)
298{
299 unsigned long mmcra = regs->dsisr;
300 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
301
58a032c3
ME
302 if (marked) {
303 if (ppmu->flags & PPMU_HAS_SIER)
304 return regs->dar & SIER_SIAR_VALID;
305
306 if (ppmu->flags & PPMU_SIAR_VALID)
307 return mmcra & POWER7P_MMCRA_SIAR_VALID;
308 }
e6878835 309
310 return 1;
311}
312
d52f2dc4
MN
313
314/* Reset all possible BHRB entries */
315static void power_pmu_bhrb_reset(void)
316{
317 asm volatile(PPC_CLRBHRB);
318}
319
320static void power_pmu_bhrb_enable(struct perf_event *event)
321{
322 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
323
324 if (!ppmu->bhrb_nr)
325 return;
326
327 /* Clear BHRB if we changed task context to avoid data leaks */
328 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
329 power_pmu_bhrb_reset();
330 cpuhw->bhrb_context = event->ctx;
331 }
332 cpuhw->bhrb_users++;
333}
334
335static void power_pmu_bhrb_disable(struct perf_event *event)
336{
337 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
338
339 if (!ppmu->bhrb_nr)
340 return;
341
342 cpuhw->bhrb_users--;
343 WARN_ON_ONCE(cpuhw->bhrb_users < 0);
344
345 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
346 /* BHRB cannot be turned off when other
347 * events are active on the PMU.
348 */
349
350 /* avoid stale pointer */
351 cpuhw->bhrb_context = NULL;
352 }
353}
354
355/* Called from ctxsw to prevent one process's branch entries to
356 * mingle with the other process's entries during context switch.
357 */
358void power_pmu_flush_branch_stack(void)
359{
360 if (ppmu->bhrb_nr)
361 power_pmu_bhrb_reset();
362}
69123184
MN
363/* Calculate the to address for a branch */
364static __u64 power_pmu_bhrb_to(u64 addr)
365{
366 unsigned int instr;
367 int ret;
368 __u64 target;
369
370 if (is_kernel_addr(addr))
371 return branch_target((unsigned int *)addr);
372
373 /* Userspace: need copy instruction here then translate it */
374 pagefault_disable();
375 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
376 if (ret) {
377 pagefault_enable();
378 return 0;
379 }
380 pagefault_enable();
381
382 target = branch_target(&instr);
383 if ((!target) || (instr & BRANCH_ABSOLUTE))
384 return target;
385
386 /* Translate relative branch target from kernel to user address */
387 return target - (unsigned long)&instr + addr;
388}
d52f2dc4 389
d52f2dc4 390/* Processing BHRB entries */
506e70d1 391void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
d52f2dc4
MN
392{
393 u64 val;
394 u64 addr;
506e70d1 395 int r_index, u_index, pred;
d52f2dc4
MN
396
397 r_index = 0;
398 u_index = 0;
399 while (r_index < ppmu->bhrb_nr) {
400 /* Assembly read function */
506e70d1
MN
401 val = read_bhrb(r_index++);
402 if (!val)
403 /* Terminal marker: End of valid BHRB entries */
d52f2dc4 404 break;
506e70d1 405 else {
d52f2dc4
MN
406 addr = val & BHRB_EA;
407 pred = val & BHRB_PREDICTION;
d52f2dc4 408
506e70d1
MN
409 if (!addr)
410 /* invalid entry */
d52f2dc4 411 continue;
d52f2dc4 412
506e70d1
MN
413 /* Branches are read most recent first (ie. mfbhrb 0 is
414 * the most recent branch).
415 * There are two types of valid entries:
416 * 1) a target entry which is the to address of a
417 * computed goto like a blr,bctr,btar. The next
418 * entry read from the bhrb will be branch
419 * corresponding to this target (ie. the actual
420 * blr/bctr/btar instruction).
421 * 2) a from address which is an actual branch. If a
422 * target entry proceeds this, then this is the
423 * matching branch for that target. If this is not
424 * following a target entry, then this is a branch
425 * where the target is given as an immediate field
426 * in the instruction (ie. an i or b form branch).
427 * In this case we need to read the instruction from
428 * memory to determine the target/to address.
429 */
d52f2dc4 430
d52f2dc4 431 if (val & BHRB_TARGET) {
506e70d1
MN
432 /* Target branches use two entries
433 * (ie. computed gotos/XL form)
434 */
435 cpuhw->bhrb_entries[u_index].to = addr;
436 cpuhw->bhrb_entries[u_index].mispred = pred;
437 cpuhw->bhrb_entries[u_index].predicted = ~pred;
d52f2dc4 438
506e70d1
MN
439 /* Get from address in next entry */
440 val = read_bhrb(r_index++);
441 addr = val & BHRB_EA;
442 if (val & BHRB_TARGET) {
443 /* Shouldn't have two targets in a
444 row.. Reset index and try again */
445 r_index--;
446 addr = 0;
447 }
448 cpuhw->bhrb_entries[u_index].from = addr;
d52f2dc4 449 } else {
506e70d1
MN
450 /* Branches to immediate field
451 (ie I or B form) */
d52f2dc4 452 cpuhw->bhrb_entries[u_index].from = addr;
69123184
MN
453 cpuhw->bhrb_entries[u_index].to =
454 power_pmu_bhrb_to(addr);
d52f2dc4
MN
455 cpuhw->bhrb_entries[u_index].mispred = pred;
456 cpuhw->bhrb_entries[u_index].predicted = ~pred;
d52f2dc4 457 }
506e70d1
MN
458 u_index++;
459
d52f2dc4
MN
460 }
461 }
462 cpuhw->bhrb_stack.nr = u_index;
463 return;
464}
465
98fb1807
PM
466#endif /* CONFIG_PPC64 */
467
cdd6c482 468static void perf_event_interrupt(struct pt_regs *regs);
7595d63b 469
cdd6c482 470void perf_event_print_debug(void)
4574910e
PM
471{
472}
473
4574910e 474/*
57c0c15b 475 * Read one performance monitor counter (PMC).
4574910e
PM
476 */
477static unsigned long read_pmc(int idx)
478{
479 unsigned long val;
480
481 switch (idx) {
482 case 1:
483 val = mfspr(SPRN_PMC1);
484 break;
485 case 2:
486 val = mfspr(SPRN_PMC2);
487 break;
488 case 3:
489 val = mfspr(SPRN_PMC3);
490 break;
491 case 4:
492 val = mfspr(SPRN_PMC4);
493 break;
494 case 5:
495 val = mfspr(SPRN_PMC5);
496 break;
497 case 6:
498 val = mfspr(SPRN_PMC6);
499 break;
98fb1807 500#ifdef CONFIG_PPC64
4574910e
PM
501 case 7:
502 val = mfspr(SPRN_PMC7);
503 break;
504 case 8:
505 val = mfspr(SPRN_PMC8);
506 break;
98fb1807 507#endif /* CONFIG_PPC64 */
4574910e
PM
508 default:
509 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
510 val = 0;
511 }
512 return val;
513}
514
515/*
516 * Write one PMC.
517 */
518static void write_pmc(int idx, unsigned long val)
519{
520 switch (idx) {
521 case 1:
522 mtspr(SPRN_PMC1, val);
523 break;
524 case 2:
525 mtspr(SPRN_PMC2, val);
526 break;
527 case 3:
528 mtspr(SPRN_PMC3, val);
529 break;
530 case 4:
531 mtspr(SPRN_PMC4, val);
532 break;
533 case 5:
534 mtspr(SPRN_PMC5, val);
535 break;
536 case 6:
537 mtspr(SPRN_PMC6, val);
538 break;
98fb1807 539#ifdef CONFIG_PPC64
4574910e
PM
540 case 7:
541 mtspr(SPRN_PMC7, val);
542 break;
543 case 8:
544 mtspr(SPRN_PMC8, val);
545 break;
98fb1807 546#endif /* CONFIG_PPC64 */
4574910e
PM
547 default:
548 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
549 }
550}
551
552/*
553 * Check if a set of events can all go on the PMU at once.
554 * If they can't, this will look at alternative codes for the events
555 * and see if any combination of alternative codes is feasible.
cdd6c482 556 * The feasible set is returned in event_id[].
4574910e 557 */
cdd6c482
IM
558static int power_check_constraints(struct cpu_hw_events *cpuhw,
559 u64 event_id[], unsigned int cflags[],
ab7ef2e5 560 int n_ev)
4574910e 561{
448d64f8 562 unsigned long mask, value, nv;
cdd6c482
IM
563 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
564 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
4574910e 565 int i, j;
448d64f8
PM
566 unsigned long addf = ppmu->add_fields;
567 unsigned long tadd = ppmu->test_adder;
4574910e 568
a8f90e90 569 if (n_ev > ppmu->n_counter)
4574910e
PM
570 return -1;
571
572 /* First see if the events will go on as-is */
573 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 574 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
cdd6c482
IM
575 && !ppmu->limited_pmc_event(event_id[i])) {
576 ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 577 cpuhw->alternatives[i]);
cdd6c482 578 event_id[i] = cpuhw->alternatives[i][0];
ab7ef2e5 579 }
cdd6c482 580 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
e51ee31e 581 &cpuhw->avalues[i][0]))
4574910e 582 return -1;
4574910e
PM
583 }
584 value = mask = 0;
585 for (i = 0; i < n_ev; ++i) {
e51ee31e
PM
586 nv = (value | cpuhw->avalues[i][0]) +
587 (value & cpuhw->avalues[i][0] & addf);
4574910e 588 if ((((nv + tadd) ^ value) & mask) != 0 ||
e51ee31e
PM
589 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
590 cpuhw->amasks[i][0]) != 0)
4574910e
PM
591 break;
592 value = nv;
e51ee31e 593 mask |= cpuhw->amasks[i][0];
4574910e
PM
594 }
595 if (i == n_ev)
596 return 0; /* all OK */
597
598 /* doesn't work, gather alternatives... */
599 if (!ppmu->get_alternatives)
600 return -1;
601 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 602 choice[i] = 0;
cdd6c482 603 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 604 cpuhw->alternatives[i]);
4574910e 605 for (j = 1; j < n_alt[i]; ++j)
e51ee31e
PM
606 ppmu->get_constraint(cpuhw->alternatives[i][j],
607 &cpuhw->amasks[i][j],
608 &cpuhw->avalues[i][j]);
4574910e
PM
609 }
610
611 /* enumerate all possibilities and see if any will work */
612 i = 0;
613 j = -1;
614 value = mask = nv = 0;
615 while (i < n_ev) {
616 if (j >= 0) {
617 /* we're backtracking, restore context */
618 value = svalues[i];
619 mask = smasks[i];
620 j = choice[i];
621 }
622 /*
cdd6c482 623 * See if any alternative k for event_id i,
4574910e
PM
624 * where k > j, will satisfy the constraints.
625 */
626 while (++j < n_alt[i]) {
e51ee31e
PM
627 nv = (value | cpuhw->avalues[i][j]) +
628 (value & cpuhw->avalues[i][j] & addf);
4574910e 629 if ((((nv + tadd) ^ value) & mask) == 0 &&
e51ee31e
PM
630 (((nv + tadd) ^ cpuhw->avalues[i][j])
631 & cpuhw->amasks[i][j]) == 0)
4574910e
PM
632 break;
633 }
634 if (j >= n_alt[i]) {
635 /*
636 * No feasible alternative, backtrack
cdd6c482 637 * to event_id i-1 and continue enumerating its
4574910e
PM
638 * alternatives from where we got up to.
639 */
640 if (--i < 0)
641 return -1;
642 } else {
643 /*
cdd6c482
IM
644 * Found a feasible alternative for event_id i,
645 * remember where we got up to with this event_id,
646 * go on to the next event_id, and start with
4574910e
PM
647 * the first alternative for it.
648 */
649 choice[i] = j;
650 svalues[i] = value;
651 smasks[i] = mask;
652 value = nv;
e51ee31e 653 mask |= cpuhw->amasks[i][j];
4574910e
PM
654 ++i;
655 j = -1;
656 }
657 }
658
659 /* OK, we have a feasible combination, tell the caller the solution */
660 for (i = 0; i < n_ev; ++i)
cdd6c482 661 event_id[i] = cpuhw->alternatives[i][choice[i]];
4574910e
PM
662 return 0;
663}
664
0475f9ea 665/*
cdd6c482 666 * Check if newly-added events have consistent settings for
0475f9ea 667 * exclude_{user,kernel,hv} with each other and any previously
cdd6c482 668 * added events.
0475f9ea 669 */
cdd6c482 670static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
ab7ef2e5 671 int n_prev, int n_new)
0475f9ea 672{
ab7ef2e5
PM
673 int eu = 0, ek = 0, eh = 0;
674 int i, n, first;
cdd6c482 675 struct perf_event *event;
0475f9ea
PM
676
677 n = n_prev + n_new;
678 if (n <= 1)
679 return 0;
680
ab7ef2e5
PM
681 first = 1;
682 for (i = 0; i < n; ++i) {
683 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
684 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
685 continue;
686 }
cdd6c482 687 event = ctrs[i];
ab7ef2e5 688 if (first) {
cdd6c482
IM
689 eu = event->attr.exclude_user;
690 ek = event->attr.exclude_kernel;
691 eh = event->attr.exclude_hv;
ab7ef2e5 692 first = 0;
cdd6c482
IM
693 } else if (event->attr.exclude_user != eu ||
694 event->attr.exclude_kernel != ek ||
695 event->attr.exclude_hv != eh) {
0475f9ea 696 return -EAGAIN;
ab7ef2e5 697 }
0475f9ea 698 }
ab7ef2e5
PM
699
700 if (eu || ek || eh)
701 for (i = 0; i < n; ++i)
702 if (cflags[i] & PPMU_LIMITED_PMC_OK)
703 cflags[i] |= PPMU_LIMITED_PMC_REQD;
704
0475f9ea
PM
705 return 0;
706}
707
86c74ab3
EM
708static u64 check_and_compute_delta(u64 prev, u64 val)
709{
710 u64 delta = (val - prev) & 0xfffffffful;
711
712 /*
713 * POWER7 can roll back counter values, if the new value is smaller
714 * than the previous value it will cause the delta and the counter to
715 * have bogus values unless we rolled a counter over. If a coutner is
716 * rolled back, it will be smaller, but within 256, which is the maximum
717 * number of events to rollback at once. If we dectect a rollback
718 * return 0. This can lead to a small lack of precision in the
719 * counters.
720 */
721 if (prev > val && (prev - val) < 256)
722 delta = 0;
723
724 return delta;
725}
726
cdd6c482 727static void power_pmu_read(struct perf_event *event)
4574910e 728{
98fb1807 729 s64 val, delta, prev;
4574910e 730
a4eaf7f1
PZ
731 if (event->hw.state & PERF_HES_STOPPED)
732 return;
733
cdd6c482 734 if (!event->hw.idx)
4574910e
PM
735 return;
736 /*
737 * Performance monitor interrupts come even when interrupts
738 * are soft-disabled, as long as interrupts are hard-enabled.
739 * Therefore we treat them like NMIs.
740 */
741 do {
e7850595 742 prev = local64_read(&event->hw.prev_count);
4574910e 743 barrier();
cdd6c482 744 val = read_pmc(event->hw.idx);
86c74ab3
EM
745 delta = check_and_compute_delta(prev, val);
746 if (!delta)
747 return;
e7850595 748 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
4574910e 749
e7850595
PZ
750 local64_add(delta, &event->count);
751 local64_sub(delta, &event->hw.period_left);
4574910e
PM
752}
753
ab7ef2e5
PM
754/*
755 * On some machines, PMC5 and PMC6 can't be written, don't respect
756 * the freeze conditions, and don't generate interrupts. This tells
cdd6c482 757 * us if `event' is using such a PMC.
ab7ef2e5
PM
758 */
759static int is_limited_pmc(int pmcnum)
760{
0bbd0d4b
PM
761 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
762 && (pmcnum == 5 || pmcnum == 6);
ab7ef2e5
PM
763}
764
a8f90e90 765static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
766 unsigned long pmc5, unsigned long pmc6)
767{
cdd6c482 768 struct perf_event *event;
ab7ef2e5
PM
769 u64 val, prev, delta;
770 int i;
771
772 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 773 event = cpuhw->limited_counter[i];
cdd6c482 774 if (!event->hw.idx)
ab7ef2e5 775 continue;
cdd6c482 776 val = (event->hw.idx == 5) ? pmc5 : pmc6;
e7850595 777 prev = local64_read(&event->hw.prev_count);
cdd6c482 778 event->hw.idx = 0;
86c74ab3
EM
779 delta = check_and_compute_delta(prev, val);
780 if (delta)
781 local64_add(delta, &event->count);
ab7ef2e5
PM
782 }
783}
784
a8f90e90 785static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
786 unsigned long pmc5, unsigned long pmc6)
787{
cdd6c482 788 struct perf_event *event;
86c74ab3 789 u64 val, prev;
ab7ef2e5
PM
790 int i;
791
792 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 793 event = cpuhw->limited_counter[i];
cdd6c482
IM
794 event->hw.idx = cpuhw->limited_hwidx[i];
795 val = (event->hw.idx == 5) ? pmc5 : pmc6;
86c74ab3
EM
796 prev = local64_read(&event->hw.prev_count);
797 if (check_and_compute_delta(prev, val))
798 local64_set(&event->hw.prev_count, val);
cdd6c482 799 perf_event_update_userpage(event);
ab7ef2e5
PM
800 }
801}
802
803/*
cdd6c482 804 * Since limited events don't respect the freeze conditions, we
ab7ef2e5 805 * have to read them immediately after freezing or unfreezing the
cdd6c482
IM
806 * other events. We try to keep the values from the limited
807 * events as consistent as possible by keeping the delay (in
ab7ef2e5 808 * cycles and instructions) between freezing/unfreezing and reading
cdd6c482
IM
809 * the limited events as small and consistent as possible.
810 * Therefore, if any limited events are in use, we read them
ab7ef2e5
PM
811 * both, and always in the same order, to minimize variability,
812 * and do it inside the same asm that writes MMCR0.
813 */
cdd6c482 814static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
ab7ef2e5
PM
815{
816 unsigned long pmc5, pmc6;
817
818 if (!cpuhw->n_limited) {
819 mtspr(SPRN_MMCR0, mmcr0);
820 return;
821 }
822
823 /*
824 * Write MMCR0, then read PMC5 and PMC6 immediately.
dcd945e0
PM
825 * To ensure we don't get a performance monitor interrupt
826 * between writing MMCR0 and freezing/thawing the limited
cdd6c482 827 * events, we first write MMCR0 with the event overflow
dcd945e0 828 * interrupt enable bits turned off.
ab7ef2e5
PM
829 */
830 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
831 : "=&r" (pmc5), "=&r" (pmc6)
dcd945e0
PM
832 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
833 "i" (SPRN_MMCR0),
ab7ef2e5
PM
834 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
835
836 if (mmcr0 & MMCR0_FC)
a8f90e90 837 freeze_limited_counters(cpuhw, pmc5, pmc6);
ab7ef2e5 838 else
a8f90e90 839 thaw_limited_counters(cpuhw, pmc5, pmc6);
dcd945e0
PM
840
841 /*
cdd6c482 842 * Write the full MMCR0 including the event overflow interrupt
dcd945e0
PM
843 * enable bits, if necessary.
844 */
845 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
846 mtspr(SPRN_MMCR0, mmcr0);
ab7ef2e5
PM
847}
848
4574910e 849/*
cdd6c482
IM
850 * Disable all events to prevent PMU interrupts and to allow
851 * events to be added or removed.
4574910e 852 */
a4eaf7f1 853static void power_pmu_disable(struct pmu *pmu)
4574910e 854{
cdd6c482 855 struct cpu_hw_events *cpuhw;
378a6ee9 856 unsigned long flags, val;
4574910e 857
f36a1a13
PM
858 if (!ppmu)
859 return;
4574910e 860 local_irq_save(flags);
cdd6c482 861 cpuhw = &__get_cpu_var(cpu_hw_events);
4574910e 862
448d64f8 863 if (!cpuhw->disabled) {
01d0287f
PM
864 /*
865 * Check if we ever enabled the PMU on this cpu.
866 */
867 if (!cpuhw->pmcs_enabled) {
a6dbf93a 868 ppc_enable_pmcs();
01d0287f
PM
869 cpuhw->pmcs_enabled = 1;
870 }
871
378a6ee9
ME
872 /*
873 * Set the 'freeze counters' bit, clear PMAO.
874 */
875 val = mfspr(SPRN_MMCR0);
876 val |= MMCR0_FC;
877 val &= ~MMCR0_PMAO;
878
879 /*
880 * The barrier is to make sure the mtspr has been
881 * executed and the PMU has frozen the events etc.
882 * before we return.
883 */
884 write_mmcr0(cpuhw, val);
885 mb();
886
f708223d
PM
887 /*
888 * Disable instruction sampling if it was enabled
889 */
890 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
891 mtspr(SPRN_MMCRA,
892 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
893 mb();
894 }
895
378a6ee9
ME
896 cpuhw->disabled = 1;
897 cpuhw->n_added = 0;
4574910e
PM
898 }
899 local_irq_restore(flags);
4574910e
PM
900}
901
902/*
cdd6c482
IM
903 * Re-enable all events if disable == 0.
904 * If we were previously disabled and events were added, then
4574910e
PM
905 * put the new config on the PMU.
906 */
a4eaf7f1 907static void power_pmu_enable(struct pmu *pmu)
4574910e 908{
cdd6c482
IM
909 struct perf_event *event;
910 struct cpu_hw_events *cpuhw;
4574910e
PM
911 unsigned long flags;
912 long i;
913 unsigned long val;
914 s64 left;
cdd6c482 915 unsigned int hwc_index[MAX_HWEVENTS];
ab7ef2e5
PM
916 int n_lim;
917 int idx;
4574910e 918
f36a1a13
PM
919 if (!ppmu)
920 return;
4574910e 921 local_irq_save(flags);
cdd6c482 922 cpuhw = &__get_cpu_var(cpu_hw_events);
9e35ad38
PZ
923 if (!cpuhw->disabled) {
924 local_irq_restore(flags);
925 return;
926 }
4574910e
PM
927 cpuhw->disabled = 0;
928
929 /*
cdd6c482 930 * If we didn't change anything, or only removed events,
4574910e
PM
931 * no need to recalculate MMCR* settings and reset the PMCs.
932 * Just reenable the PMU with the current MMCR* settings
cdd6c482 933 * (possibly updated for removal of events).
4574910e
PM
934 */
935 if (!cpuhw->n_added) {
f708223d 936 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e 937 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
cdd6c482 938 if (cpuhw->n_events == 0)
a6dbf93a 939 ppc_set_pmu_inuse(0);
f708223d 940 goto out_enable;
4574910e
PM
941 }
942
943 /*
cdd6c482 944 * Compute MMCR* values for the new set of events
4574910e 945 */
cdd6c482 946 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
4574910e
PM
947 cpuhw->mmcr)) {
948 /* shouldn't ever get here */
949 printk(KERN_ERR "oops compute_mmcr failed\n");
950 goto out;
951 }
952
0475f9ea
PM
953 /*
954 * Add in MMCR0 freeze bits corresponding to the
cdd6c482
IM
955 * attr.exclude_* bits for the first event.
956 * We have already checked that all events have the
957 * same values for these bits as the first event.
0475f9ea 958 */
cdd6c482
IM
959 event = cpuhw->event[0];
960 if (event->attr.exclude_user)
0475f9ea 961 cpuhw->mmcr[0] |= MMCR0_FCP;
cdd6c482
IM
962 if (event->attr.exclude_kernel)
963 cpuhw->mmcr[0] |= freeze_events_kernel;
964 if (event->attr.exclude_hv)
0475f9ea
PM
965 cpuhw->mmcr[0] |= MMCR0_FCHV;
966
4574910e
PM
967 /*
968 * Write the new configuration to MMCR* with the freeze
cdd6c482
IM
969 * bit set and set the hardware events to their initial values.
970 * Then unfreeze the events.
4574910e 971 */
a6dbf93a 972 ppc_set_pmu_inuse(1);
f708223d 973 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e
PM
974 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
975 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
976 | MMCR0_FC);
977
978 /*
cdd6c482 979 * Read off any pre-existing events that need to move
4574910e
PM
980 * to another PMC.
981 */
cdd6c482
IM
982 for (i = 0; i < cpuhw->n_events; ++i) {
983 event = cpuhw->event[i];
984 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
985 power_pmu_read(event);
986 write_pmc(event->hw.idx, 0);
987 event->hw.idx = 0;
4574910e
PM
988 }
989 }
990
991 /*
cdd6c482 992 * Initialize the PMCs for all the new and moved events.
4574910e 993 */
ab7ef2e5 994 cpuhw->n_limited = n_lim = 0;
cdd6c482
IM
995 for (i = 0; i < cpuhw->n_events; ++i) {
996 event = cpuhw->event[i];
997 if (event->hw.idx)
4574910e 998 continue;
ab7ef2e5
PM
999 idx = hwc_index[i] + 1;
1000 if (is_limited_pmc(idx)) {
a8f90e90 1001 cpuhw->limited_counter[n_lim] = event;
ab7ef2e5
PM
1002 cpuhw->limited_hwidx[n_lim] = idx;
1003 ++n_lim;
1004 continue;
1005 }
4574910e 1006 val = 0;
cdd6c482 1007 if (event->hw.sample_period) {
e7850595 1008 left = local64_read(&event->hw.period_left);
4574910e
PM
1009 if (left < 0x80000000L)
1010 val = 0x80000000L - left;
1011 }
e7850595 1012 local64_set(&event->hw.prev_count, val);
cdd6c482 1013 event->hw.idx = idx;
a4eaf7f1
PZ
1014 if (event->hw.state & PERF_HES_STOPPED)
1015 val = 0;
ab7ef2e5 1016 write_pmc(idx, val);
cdd6c482 1017 perf_event_update_userpage(event);
4574910e 1018 }
ab7ef2e5 1019 cpuhw->n_limited = n_lim;
4574910e 1020 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
f708223d
PM
1021
1022 out_enable:
1023 mb();
ab7ef2e5 1024 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 1025
f708223d
PM
1026 /*
1027 * Enable instruction sampling if necessary
1028 */
1029 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1030 mb();
1031 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1032 }
1033
4574910e 1034 out:
3925f46b
AK
1035 if (cpuhw->bhrb_users)
1036 ppmu->config_bhrb(cpuhw->bhrb_filter);
1037
4574910e
PM
1038 local_irq_restore(flags);
1039}
1040
cdd6c482
IM
1041static int collect_events(struct perf_event *group, int max_count,
1042 struct perf_event *ctrs[], u64 *events,
ab7ef2e5 1043 unsigned int *flags)
4574910e
PM
1044{
1045 int n = 0;
cdd6c482 1046 struct perf_event *event;
4574910e 1047
cdd6c482 1048 if (!is_software_event(group)) {
4574910e
PM
1049 if (n >= max_count)
1050 return -1;
1051 ctrs[n] = group;
cdd6c482 1052 flags[n] = group->hw.event_base;
4574910e
PM
1053 events[n++] = group->hw.config;
1054 }
a8f90e90 1055 list_for_each_entry(event, &group->sibling_list, group_entry) {
cdd6c482
IM
1056 if (!is_software_event(event) &&
1057 event->state != PERF_EVENT_STATE_OFF) {
4574910e
PM
1058 if (n >= max_count)
1059 return -1;
cdd6c482
IM
1060 ctrs[n] = event;
1061 flags[n] = event->hw.event_base;
1062 events[n++] = event->hw.config;
4574910e
PM
1063 }
1064 }
1065 return n;
1066}
1067
4574910e 1068/*
cdd6c482
IM
1069 * Add a event to the PMU.
1070 * If all events are not already frozen, then we disable and
9e35ad38 1071 * re-enable the PMU in order to get hw_perf_enable to do the
4574910e
PM
1072 * actual work of reconfiguring the PMU.
1073 */
a4eaf7f1 1074static int power_pmu_add(struct perf_event *event, int ef_flags)
4574910e 1075{
cdd6c482 1076 struct cpu_hw_events *cpuhw;
4574910e 1077 unsigned long flags;
4574910e
PM
1078 int n0;
1079 int ret = -EAGAIN;
1080
1081 local_irq_save(flags);
33696fc0 1082 perf_pmu_disable(event->pmu);
4574910e
PM
1083
1084 /*
cdd6c482 1085 * Add the event to the list (if there is room)
4574910e
PM
1086 * and check whether the total set is still feasible.
1087 */
cdd6c482
IM
1088 cpuhw = &__get_cpu_var(cpu_hw_events);
1089 n0 = cpuhw->n_events;
a8f90e90 1090 if (n0 >= ppmu->n_counter)
4574910e 1091 goto out;
cdd6c482
IM
1092 cpuhw->event[n0] = event;
1093 cpuhw->events[n0] = event->hw.config;
1094 cpuhw->flags[n0] = event->hw.event_base;
8e6d5573 1095
f53d168c 1096 /*
1097 * This event may have been disabled/stopped in record_and_restart()
1098 * because we exceeded the ->event_limit. If re-starting the event,
1099 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1100 * notification is re-enabled.
1101 */
a4eaf7f1
PZ
1102 if (!(ef_flags & PERF_EF_START))
1103 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
f53d168c 1104 else
1105 event->hw.state = 0;
a4eaf7f1 1106
8e6d5573
LM
1107 /*
1108 * If group events scheduling transaction was started,
25985edc 1109 * skip the schedulability test here, it will be performed
8e6d5573
LM
1110 * at commit time(->commit_txn) as a whole
1111 */
8d2cacbb 1112 if (cpuhw->group_flag & PERF_EVENT_TXN)
8e6d5573
LM
1113 goto nocheck;
1114
cdd6c482 1115 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
0475f9ea 1116 goto out;
e51ee31e 1117 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
4574910e 1118 goto out;
cdd6c482 1119 event->hw.config = cpuhw->events[n0];
8e6d5573
LM
1120
1121nocheck:
cdd6c482 1122 ++cpuhw->n_events;
4574910e
PM
1123 ++cpuhw->n_added;
1124
1125 ret = 0;
1126 out:
3925f46b
AK
1127 if (has_branch_stack(event))
1128 power_pmu_bhrb_enable(event);
1129
33696fc0 1130 perf_pmu_enable(event->pmu);
4574910e
PM
1131 local_irq_restore(flags);
1132 return ret;
1133}
1134
1135/*
cdd6c482 1136 * Remove a event from the PMU.
4574910e 1137 */
a4eaf7f1 1138static void power_pmu_del(struct perf_event *event, int ef_flags)
4574910e 1139{
cdd6c482 1140 struct cpu_hw_events *cpuhw;
4574910e 1141 long i;
4574910e
PM
1142 unsigned long flags;
1143
1144 local_irq_save(flags);
33696fc0 1145 perf_pmu_disable(event->pmu);
4574910e 1146
cdd6c482
IM
1147 power_pmu_read(event);
1148
1149 cpuhw = &__get_cpu_var(cpu_hw_events);
1150 for (i = 0; i < cpuhw->n_events; ++i) {
1151 if (event == cpuhw->event[i]) {
219a92a4 1152 while (++i < cpuhw->n_events) {
cdd6c482 1153 cpuhw->event[i-1] = cpuhw->event[i];
219a92a4
ME
1154 cpuhw->events[i-1] = cpuhw->events[i];
1155 cpuhw->flags[i-1] = cpuhw->flags[i];
1156 }
cdd6c482
IM
1157 --cpuhw->n_events;
1158 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1159 if (event->hw.idx) {
1160 write_pmc(event->hw.idx, 0);
1161 event->hw.idx = 0;
ab7ef2e5 1162 }
cdd6c482 1163 perf_event_update_userpage(event);
4574910e
PM
1164 break;
1165 }
1166 }
ab7ef2e5 1167 for (i = 0; i < cpuhw->n_limited; ++i)
a8f90e90 1168 if (event == cpuhw->limited_counter[i])
ab7ef2e5
PM
1169 break;
1170 if (i < cpuhw->n_limited) {
1171 while (++i < cpuhw->n_limited) {
a8f90e90 1172 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
ab7ef2e5
PM
1173 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1174 }
1175 --cpuhw->n_limited;
1176 }
cdd6c482
IM
1177 if (cpuhw->n_events == 0) {
1178 /* disable exceptions if no events are running */
4574910e
PM
1179 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1180 }
1181
3925f46b
AK
1182 if (has_branch_stack(event))
1183 power_pmu_bhrb_disable(event);
1184
33696fc0 1185 perf_pmu_enable(event->pmu);
4574910e
PM
1186 local_irq_restore(flags);
1187}
1188
8a7b8cb9 1189/*
a4eaf7f1
PZ
1190 * POWER-PMU does not support disabling individual counters, hence
1191 * program their cycle counter to their max value and ignore the interrupts.
8a7b8cb9 1192 */
a4eaf7f1
PZ
1193
1194static void power_pmu_start(struct perf_event *event, int ef_flags)
8a7b8cb9 1195{
8a7b8cb9 1196 unsigned long flags;
a4eaf7f1 1197 s64 left;
9a45a940 1198 unsigned long val;
8a7b8cb9 1199
cdd6c482 1200 if (!event->hw.idx || !event->hw.sample_period)
8a7b8cb9 1201 return;
a4eaf7f1
PZ
1202
1203 if (!(event->hw.state & PERF_HES_STOPPED))
1204 return;
1205
1206 if (ef_flags & PERF_EF_RELOAD)
1207 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1208
1209 local_irq_save(flags);
1210 perf_pmu_disable(event->pmu);
1211
1212 event->hw.state = 0;
1213 left = local64_read(&event->hw.period_left);
9a45a940
AB
1214
1215 val = 0;
1216 if (left < 0x80000000L)
1217 val = 0x80000000L - left;
1218
1219 write_pmc(event->hw.idx, val);
a4eaf7f1
PZ
1220
1221 perf_event_update_userpage(event);
1222 perf_pmu_enable(event->pmu);
1223 local_irq_restore(flags);
1224}
1225
1226static void power_pmu_stop(struct perf_event *event, int ef_flags)
1227{
1228 unsigned long flags;
1229
1230 if (!event->hw.idx || !event->hw.sample_period)
1231 return;
1232
1233 if (event->hw.state & PERF_HES_STOPPED)
1234 return;
1235
8a7b8cb9 1236 local_irq_save(flags);
33696fc0 1237 perf_pmu_disable(event->pmu);
a4eaf7f1 1238
cdd6c482 1239 power_pmu_read(event);
a4eaf7f1
PZ
1240 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1241 write_pmc(event->hw.idx, 0);
1242
cdd6c482 1243 perf_event_update_userpage(event);
33696fc0 1244 perf_pmu_enable(event->pmu);
8a7b8cb9
PM
1245 local_irq_restore(flags);
1246}
1247
8e6d5573
LM
1248/*
1249 * Start group events scheduling transaction
1250 * Set the flag to make pmu::enable() not perform the
1251 * schedulability test, it will be performed at commit time
1252 */
51b0fe39 1253void power_pmu_start_txn(struct pmu *pmu)
8e6d5573
LM
1254{
1255 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1256
33696fc0 1257 perf_pmu_disable(pmu);
8d2cacbb 1258 cpuhw->group_flag |= PERF_EVENT_TXN;
8e6d5573
LM
1259 cpuhw->n_txn_start = cpuhw->n_events;
1260}
1261
1262/*
1263 * Stop group events scheduling transaction
1264 * Clear the flag and pmu::enable() will perform the
1265 * schedulability test.
1266 */
51b0fe39 1267void power_pmu_cancel_txn(struct pmu *pmu)
8e6d5573
LM
1268{
1269 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1270
8d2cacbb 1271 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1272 perf_pmu_enable(pmu);
8e6d5573
LM
1273}
1274
1275/*
1276 * Commit group events scheduling transaction
1277 * Perform the group schedulability test as a whole
1278 * Return 0 if success
1279 */
51b0fe39 1280int power_pmu_commit_txn(struct pmu *pmu)
8e6d5573
LM
1281{
1282 struct cpu_hw_events *cpuhw;
1283 long i, n;
1284
1285 if (!ppmu)
1286 return -EAGAIN;
1287 cpuhw = &__get_cpu_var(cpu_hw_events);
1288 n = cpuhw->n_events;
1289 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1290 return -EAGAIN;
1291 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1292 if (i < 0)
1293 return -EAGAIN;
1294
1295 for (i = cpuhw->n_txn_start; i < n; ++i)
1296 cpuhw->event[i]->hw.config = cpuhw->events[i];
1297
8d2cacbb 1298 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1299 perf_pmu_enable(pmu);
8e6d5573
LM
1300 return 0;
1301}
1302
ab7ef2e5 1303/*
cdd6c482 1304 * Return 1 if we might be able to put event on a limited PMC,
ab7ef2e5 1305 * or 0 if not.
cdd6c482 1306 * A event can only go on a limited PMC if it counts something
ab7ef2e5
PM
1307 * that a limited PMC can count, doesn't require interrupts, and
1308 * doesn't exclude any processor mode.
1309 */
cdd6c482 1310static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
ab7ef2e5
PM
1311 unsigned int flags)
1312{
1313 int n;
ef923214 1314 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5 1315
cdd6c482
IM
1316 if (event->attr.exclude_user
1317 || event->attr.exclude_kernel
1318 || event->attr.exclude_hv
1319 || event->attr.sample_period)
ab7ef2e5
PM
1320 return 0;
1321
1322 if (ppmu->limited_pmc_event(ev))
1323 return 1;
1324
1325 /*
cdd6c482 1326 * The requested event_id isn't on a limited PMC already;
ab7ef2e5
PM
1327 * see if any alternative code goes on a limited PMC.
1328 */
1329 if (!ppmu->get_alternatives)
1330 return 0;
1331
1332 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1333 n = ppmu->get_alternatives(ev, flags, alt);
ab7ef2e5 1334
ef923214 1335 return n > 0;
ab7ef2e5
PM
1336}
1337
1338/*
cdd6c482
IM
1339 * Find an alternative event_id that goes on a normal PMC, if possible,
1340 * and return the event_id code, or 0 if there is no such alternative.
1341 * (Note: event_id code 0 is "don't count" on all machines.)
ab7ef2e5 1342 */
ef923214 1343static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
ab7ef2e5 1344{
ef923214 1345 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5
PM
1346 int n;
1347
1348 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1349 n = ppmu->get_alternatives(ev, flags, alt);
1350 if (!n)
1351 return 0;
1352 return alt[0];
1353}
1354
cdd6c482
IM
1355/* Number of perf_events counting hardware events */
1356static atomic_t num_events;
7595d63b
PM
1357/* Used to avoid races in calling reserve/release_pmc_hardware */
1358static DEFINE_MUTEX(pmc_reserve_mutex);
1359
1360/*
cdd6c482 1361 * Release the PMU if this is the last perf_event.
7595d63b 1362 */
cdd6c482 1363static void hw_perf_event_destroy(struct perf_event *event)
7595d63b 1364{
cdd6c482 1365 if (!atomic_add_unless(&num_events, -1, 1)) {
7595d63b 1366 mutex_lock(&pmc_reserve_mutex);
cdd6c482 1367 if (atomic_dec_return(&num_events) == 0)
7595d63b
PM
1368 release_pmc_hardware();
1369 mutex_unlock(&pmc_reserve_mutex);
1370 }
1371}
1372
106b506c 1373/*
cdd6c482 1374 * Translate a generic cache event_id config to a raw event_id code.
106b506c
PM
1375 */
1376static int hw_perf_cache_event(u64 config, u64 *eventp)
1377{
1378 unsigned long type, op, result;
1379 int ev;
1380
1381 if (!ppmu->cache_events)
1382 return -EINVAL;
1383
1384 /* unpack config */
1385 type = config & 0xff;
1386 op = (config >> 8) & 0xff;
1387 result = (config >> 16) & 0xff;
1388
1389 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1390 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1391 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1392 return -EINVAL;
1393
1394 ev = (*ppmu->cache_events)[type][op][result];
1395 if (ev == 0)
1396 return -EOPNOTSUPP;
1397 if (ev == -1)
1398 return -EINVAL;
1399 *eventp = ev;
1400 return 0;
1401}
1402
b0a873eb 1403static int power_pmu_event_init(struct perf_event *event)
4574910e 1404{
ef923214
PM
1405 u64 ev;
1406 unsigned long flags;
cdd6c482
IM
1407 struct perf_event *ctrs[MAX_HWEVENTS];
1408 u64 events[MAX_HWEVENTS];
1409 unsigned int cflags[MAX_HWEVENTS];
4574910e 1410 int n;
7595d63b 1411 int err;
cdd6c482 1412 struct cpu_hw_events *cpuhw;
4574910e
PM
1413
1414 if (!ppmu)
b0a873eb
PZ
1415 return -ENOENT;
1416
3925f46b
AK
1417 if (has_branch_stack(event)) {
1418 /* PMU has BHRB enabled */
1419 if (!(ppmu->flags & PPMU_BHRB))
1420 return -EOPNOTSUPP;
1421 }
2481c5fa 1422
cdd6c482 1423 switch (event->attr.type) {
106b506c 1424 case PERF_TYPE_HARDWARE:
cdd6c482 1425 ev = event->attr.config;
9aaa131a 1426 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
b0a873eb 1427 return -EOPNOTSUPP;
4574910e 1428 ev = ppmu->generic_events[ev];
106b506c
PM
1429 break;
1430 case PERF_TYPE_HW_CACHE:
cdd6c482 1431 err = hw_perf_cache_event(event->attr.config, &ev);
106b506c 1432 if (err)
b0a873eb 1433 return err;
106b506c
PM
1434 break;
1435 case PERF_TYPE_RAW:
cdd6c482 1436 ev = event->attr.config;
106b506c 1437 break;
90c8f954 1438 default:
b0a873eb 1439 return -ENOENT;
4574910e 1440 }
b0a873eb 1441
cdd6c482
IM
1442 event->hw.config_base = ev;
1443 event->hw.idx = 0;
4574910e 1444
0475f9ea
PM
1445 /*
1446 * If we are not running on a hypervisor, force the
1447 * exclude_hv bit to 0 so that we don't care what
d095cd46 1448 * the user set it to.
0475f9ea
PM
1449 */
1450 if (!firmware_has_feature(FW_FEATURE_LPAR))
cdd6c482 1451 event->attr.exclude_hv = 0;
ab7ef2e5
PM
1452
1453 /*
cdd6c482 1454 * If this is a per-task event, then we can use
ab7ef2e5
PM
1455 * PM_RUN_* events interchangeably with their non RUN_*
1456 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1457 * XXX we should check if the task is an idle task.
1458 */
1459 flags = 0;
57fa7214 1460 if (event->attach_state & PERF_ATTACH_TASK)
ab7ef2e5
PM
1461 flags |= PPMU_ONLY_COUNT_RUN;
1462
1463 /*
cdd6c482
IM
1464 * If this machine has limited events, check whether this
1465 * event_id could go on a limited event.
ab7ef2e5 1466 */
0bbd0d4b 1467 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
cdd6c482 1468 if (can_go_on_limited_pmc(event, ev, flags)) {
ab7ef2e5
PM
1469 flags |= PPMU_LIMITED_PMC_OK;
1470 } else if (ppmu->limited_pmc_event(ev)) {
1471 /*
cdd6c482 1472 * The requested event_id is on a limited PMC,
ab7ef2e5
PM
1473 * but we can't use a limited PMC; see if any
1474 * alternative goes on a normal PMC.
1475 */
1476 ev = normal_pmc_alternative(ev, flags);
1477 if (!ev)
b0a873eb 1478 return -EINVAL;
ab7ef2e5
PM
1479 }
1480 }
1481
4574910e
PM
1482 /*
1483 * If this is in a group, check if it can go on with all the
cdd6c482 1484 * other hardware events in the group. We assume the event
4574910e
PM
1485 * hasn't been linked into its leader's sibling list at this point.
1486 */
1487 n = 0;
cdd6c482 1488 if (event->group_leader != event) {
a8f90e90 1489 n = collect_events(event->group_leader, ppmu->n_counter - 1,
ab7ef2e5 1490 ctrs, events, cflags);
4574910e 1491 if (n < 0)
b0a873eb 1492 return -EINVAL;
4574910e 1493 }
0475f9ea 1494 events[n] = ev;
cdd6c482 1495 ctrs[n] = event;
ab7ef2e5
PM
1496 cflags[n] = flags;
1497 if (check_excludes(ctrs, cflags, n, 1))
b0a873eb 1498 return -EINVAL;
e51ee31e 1499
cdd6c482 1500 cpuhw = &get_cpu_var(cpu_hw_events);
e51ee31e 1501 err = power_check_constraints(cpuhw, events, cflags, n + 1);
3925f46b
AK
1502
1503 if (has_branch_stack(event)) {
1504 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1505 event->attr.branch_sample_type);
1506
1507 if(cpuhw->bhrb_filter == -1)
1508 return -EOPNOTSUPP;
1509 }
1510
cdd6c482 1511 put_cpu_var(cpu_hw_events);
e51ee31e 1512 if (err)
b0a873eb 1513 return -EINVAL;
4574910e 1514
cdd6c482
IM
1515 event->hw.config = events[n];
1516 event->hw.event_base = cflags[n];
1517 event->hw.last_period = event->hw.sample_period;
e7850595 1518 local64_set(&event->hw.period_left, event->hw.last_period);
7595d63b
PM
1519
1520 /*
1521 * See if we need to reserve the PMU.
cdd6c482 1522 * If no events are currently in use, then we have to take a
7595d63b
PM
1523 * mutex to ensure that we don't race with another task doing
1524 * reserve_pmc_hardware or release_pmc_hardware.
1525 */
1526 err = 0;
cdd6c482 1527 if (!atomic_inc_not_zero(&num_events)) {
7595d63b 1528 mutex_lock(&pmc_reserve_mutex);
cdd6c482
IM
1529 if (atomic_read(&num_events) == 0 &&
1530 reserve_pmc_hardware(perf_event_interrupt))
7595d63b
PM
1531 err = -EBUSY;
1532 else
cdd6c482 1533 atomic_inc(&num_events);
7595d63b
PM
1534 mutex_unlock(&pmc_reserve_mutex);
1535 }
cdd6c482 1536 event->destroy = hw_perf_event_destroy;
7595d63b 1537
b0a873eb 1538 return err;
4574910e
PM
1539}
1540
35edc2a5
PZ
1541static int power_pmu_event_idx(struct perf_event *event)
1542{
1543 return event->hw.idx;
1544}
1545
1c53a270
SB
1546ssize_t power_events_sysfs_show(struct device *dev,
1547 struct device_attribute *attr, char *page)
1548{
1549 struct perf_pmu_events_attr *pmu_attr;
1550
1551 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1552
1553 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1554}
1555
b0a873eb 1556struct pmu power_pmu = {
a4eaf7f1
PZ
1557 .pmu_enable = power_pmu_enable,
1558 .pmu_disable = power_pmu_disable,
b0a873eb 1559 .event_init = power_pmu_event_init,
a4eaf7f1
PZ
1560 .add = power_pmu_add,
1561 .del = power_pmu_del,
1562 .start = power_pmu_start,
1563 .stop = power_pmu_stop,
b0a873eb 1564 .read = power_pmu_read,
b0a873eb
PZ
1565 .start_txn = power_pmu_start_txn,
1566 .cancel_txn = power_pmu_cancel_txn,
1567 .commit_txn = power_pmu_commit_txn,
35edc2a5 1568 .event_idx = power_pmu_event_idx,
3925f46b 1569 .flush_branch_stack = power_pmu_flush_branch_stack,
b0a873eb
PZ
1570};
1571
4574910e 1572/*
57c0c15b 1573 * A counter has overflowed; update its count and record
4574910e
PM
1574 * things if requested. Note that interrupts are hard-disabled
1575 * here so there is no possibility of being interrupted.
1576 */
cdd6c482 1577static void record_and_restart(struct perf_event *event, unsigned long val,
a8b0ca17 1578 struct pt_regs *regs)
4574910e 1579{
cdd6c482 1580 u64 period = event->hw.sample_period;
4574910e
PM
1581 s64 prev, delta, left;
1582 int record = 0;
1583
a4eaf7f1
PZ
1584 if (event->hw.state & PERF_HES_STOPPED) {
1585 write_pmc(event->hw.idx, 0);
1586 return;
1587 }
1588
4574910e 1589 /* we don't have to worry about interrupts here */
e7850595 1590 prev = local64_read(&event->hw.prev_count);
86c74ab3 1591 delta = check_and_compute_delta(prev, val);
e7850595 1592 local64_add(delta, &event->count);
4574910e
PM
1593
1594 /*
cdd6c482 1595 * See if the total period for this event has expired,
4574910e
PM
1596 * and update for the next period.
1597 */
1598 val = 0;
e7850595 1599 left = local64_read(&event->hw.period_left) - delta;
e13e895f
MN
1600 if (delta == 0)
1601 left++;
60db5e09 1602 if (period) {
4574910e 1603 if (left <= 0) {
60db5e09 1604 left += period;
4574910e 1605 if (left <= 0)
60db5e09 1606 left = period;
e6878835 1607 record = siar_valid(regs);
4bca770e 1608 event->hw.last_period = event->hw.sample_period;
4574910e 1609 }
98fb1807
PM
1610 if (left < 0x80000000LL)
1611 val = 0x80000000LL - left;
4574910e 1612 }
4574910e 1613
a4eaf7f1
PZ
1614 write_pmc(event->hw.idx, val);
1615 local64_set(&event->hw.prev_count, val);
1616 local64_set(&event->hw.period_left, left);
1617 perf_event_update_userpage(event);
1618
4574910e
PM
1619 /*
1620 * Finally record data if requested.
1621 */
0bbd0d4b 1622 if (record) {
dc1d628a
PZ
1623 struct perf_sample_data data;
1624
fd0d000b 1625 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
df1a132b 1626
cdd6c482 1627 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
98fb1807
PM
1628 perf_get_data_addr(regs, &data.addr);
1629
3925f46b
AK
1630 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1631 struct cpu_hw_events *cpuhw;
1632 cpuhw = &__get_cpu_var(cpu_hw_events);
1633 power_pmu_bhrb_read(cpuhw);
1634 data.br_stack = &cpuhw->bhrb_stack;
1635 }
1636
a8b0ca17 1637 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1638 power_pmu_stop(event, 0);
0bbd0d4b
PM
1639 }
1640}
1641
1642/*
1643 * Called from generic code to get the misc flags (i.e. processor mode)
cdd6c482 1644 * for an event_id.
0bbd0d4b
PM
1645 */
1646unsigned long perf_misc_flags(struct pt_regs *regs)
1647{
98fb1807 1648 u32 flags = perf_get_misc_flags(regs);
0bbd0d4b 1649
98fb1807
PM
1650 if (flags)
1651 return flags;
cdd6c482
IM
1652 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1653 PERF_RECORD_MISC_KERNEL;
0bbd0d4b
PM
1654}
1655
1656/*
1657 * Called from generic code to get the instruction pointer
cdd6c482 1658 * for an event_id.
0bbd0d4b
PM
1659 */
1660unsigned long perf_instruction_pointer(struct pt_regs *regs)
1661{
33904054 1662 bool use_siar = regs_use_siar(regs);
0bbd0d4b 1663
e6878835 1664 if (use_siar && siar_valid(regs))
75382aa7 1665 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
e6878835 1666 else if (use_siar)
1667 return 0; // no valid instruction pointer
75382aa7 1668 else
1ce447b9 1669 return regs->nip;
4574910e
PM
1670}
1671
bc09c219 1672static bool pmc_overflow_power7(unsigned long val)
0837e324 1673{
0837e324
AB
1674 /*
1675 * Events on POWER7 can roll back if a speculative event doesn't
1676 * eventually complete. Unfortunately in some rare cases they will
1677 * raise a performance monitor exception. We need to catch this to
1678 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1679 * cycles from overflow.
1680 *
1681 * We only do this if the first pass fails to find any overflowing
1682 * PMCs because a user might set a period of less than 256 and we
1683 * don't want to mistakenly reset them.
1684 */
bc09c219
MN
1685 if ((0x80000000 - val) <= 256)
1686 return true;
1687
1688 return false;
1689}
1690
1691static bool pmc_overflow(unsigned long val)
1692{
1693 if ((int)val < 0)
0837e324
AB
1694 return true;
1695
1696 return false;
1697}
1698
4574910e
PM
1699/*
1700 * Performance monitor interrupt stuff
1701 */
cdd6c482 1702static void perf_event_interrupt(struct pt_regs *regs)
4574910e 1703{
bc09c219 1704 int i, j;
cdd6c482
IM
1705 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1706 struct perf_event *event;
bc09c219
MN
1707 unsigned long val[8];
1708 int found, active;
ca8f2d7f
PM
1709 int nmi;
1710
ab7ef2e5 1711 if (cpuhw->n_limited)
a8f90e90 1712 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
ab7ef2e5
PM
1713 mfspr(SPRN_PMC6));
1714
98fb1807 1715 perf_read_regs(regs);
0bbd0d4b 1716
98fb1807 1717 nmi = perf_intr_is_nmi(regs);
ca8f2d7f
PM
1718 if (nmi)
1719 nmi_enter();
1720 else
1721 irq_enter();
4574910e 1722
bc09c219
MN
1723 /* Read all the PMCs since we'll need them a bunch of times */
1724 for (i = 0; i < ppmu->n_counter; ++i)
1725 val[i] = read_pmc(i + 1);
1726
1727 /* Try to find what caused the IRQ */
1728 found = 0;
1729 for (i = 0; i < ppmu->n_counter; ++i) {
1730 if (!pmc_overflow(val[i]))
ab7ef2e5 1731 continue;
bc09c219
MN
1732 if (is_limited_pmc(i + 1))
1733 continue; /* these won't generate IRQs */
1734 /*
1735 * We've found one that's overflowed. For active
1736 * counters we need to log this. For inactive
1737 * counters, we need to reset it anyway
1738 */
1739 found = 1;
1740 active = 0;
1741 for (j = 0; j < cpuhw->n_events; ++j) {
1742 event = cpuhw->event[j];
1743 if (event->hw.idx == (i + 1)) {
1744 active = 1;
1745 record_and_restart(event, val[i], regs);
1746 break;
1747 }
4574910e 1748 }
bc09c219
MN
1749 if (!active)
1750 /* reset non active counters that have overflowed */
1751 write_pmc(i + 1, 0);
4574910e 1752 }
bc09c219
MN
1753 if (!found && pvr_version_is(PVR_POWER7)) {
1754 /* check active counters for special buggy p7 overflow */
1755 for (i = 0; i < cpuhw->n_events; ++i) {
1756 event = cpuhw->event[i];
1757 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
ab7ef2e5 1758 continue;
bc09c219
MN
1759 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
1760 /* event has overflowed in a buggy way*/
1761 found = 1;
1762 record_and_restart(event,
1763 val[event->hw.idx - 1],
1764 regs);
1765 }
4574910e
PM
1766 }
1767 }
6772faa1 1768 if (!found && !nmi && printk_ratelimit())
bc09c219 1769 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
4574910e
PM
1770
1771 /*
1772 * Reset MMCR0 to its normal value. This will set PMXE and
57c0c15b 1773 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
4574910e 1774 * and thus allow interrupts to occur again.
cdd6c482 1775 * XXX might want to use MSR.PM to keep the events frozen until
4574910e
PM
1776 * we get back out of this interrupt.
1777 */
ab7ef2e5 1778 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 1779
ca8f2d7f
PM
1780 if (nmi)
1781 nmi_exit();
1782 else
db4fb5ac 1783 irq_exit();
4574910e
PM
1784}
1785
3f6da390 1786static void power_pmu_setup(int cpu)
01d0287f 1787{
cdd6c482 1788 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
01d0287f 1789
f36a1a13
PM
1790 if (!ppmu)
1791 return;
01d0287f
PM
1792 memset(cpuhw, 0, sizeof(*cpuhw));
1793 cpuhw->mmcr[0] = MMCR0_FC;
1794}
1795
061d19f2 1796static int
85cfabbc 1797power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
3f6da390
PZ
1798{
1799 unsigned int cpu = (long)hcpu;
1800
1801 switch (action & ~CPU_TASKS_FROZEN) {
1802 case CPU_UP_PREPARE:
1803 power_pmu_setup(cpu);
1804 break;
1805
1806 default:
1807 break;
1808 }
1809
1810 return NOTIFY_OK;
1811}
1812
061d19f2 1813int register_power_pmu(struct power_pmu *pmu)
4574910e 1814{
079b3c56
PM
1815 if (ppmu)
1816 return -EBUSY; /* something's already registered */
1817
1818 ppmu = pmu;
1819 pr_info("%s performance monitor hardware support registered\n",
1820 pmu->name);
d095cd46 1821
1c53a270
SB
1822 power_pmu.attr_groups = ppmu->attr_groups;
1823
98fb1807 1824#ifdef MSR_HV
d095cd46
PM
1825 /*
1826 * Use FCHV to ignore kernel events if MSR.HV is set.
1827 */
1828 if (mfmsr() & MSR_HV)
cdd6c482 1829 freeze_events_kernel = MMCR0_FCHV;
98fb1807 1830#endif /* CONFIG_PPC64 */
d095cd46 1831
2e80a82a 1832 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
3f6da390
PZ
1833 perf_cpu_notifier(power_pmu_notifier);
1834
4574910e
PM
1835 return 0;
1836}
This page took 0.300788 seconds and 5 git commands to generate.