powerpc/perf: Pass the struct perf_events down to compute_mmcr()
[deliverable/linux.git] / arch / powerpc / perf / core-book3s.c
CommitLineData
4574910e 1/*
cdd6c482 2 * Performance event support - powerpc architecture code
4574910e
PM
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
cdd6c482 13#include <linux/perf_event.h>
4574910e
PM
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
69123184 16#include <linux/uaccess.h>
4574910e
PM
17#include <asm/reg.h>
18#include <asm/pmc.h>
01d0287f 19#include <asm/machdep.h>
0475f9ea 20#include <asm/firmware.h>
0bbd0d4b 21#include <asm/ptrace.h>
69123184 22#include <asm/code-patching.h>
4574910e 23
3925f46b
AK
24#define BHRB_MAX_ENTRIES 32
25#define BHRB_TARGET 0x0000000000000002
26#define BHRB_PREDICTION 0x0000000000000001
b0d436c7 27#define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
3925f46b 28
cdd6c482
IM
29struct cpu_hw_events {
30 int n_events;
4574910e
PM
31 int n_percpu;
32 int disabled;
33 int n_added;
ab7ef2e5
PM
34 int n_limited;
35 u8 pmcs_enabled;
cdd6c482
IM
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
448d64f8 39 unsigned long mmcr[3];
a8f90e90
PM
40 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
41 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
cdd6c482
IM
42 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
43 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
8e6d5573
LM
45
46 unsigned int group_flag;
47 int n_txn_start;
3925f46b
AK
48
49 /* BHRB bits */
50 u64 bhrb_filter; /* BHRB HW branch filter */
51 int bhrb_users;
52 void *bhrb_context;
53 struct perf_branch_stack bhrb_stack;
54 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
4574910e 55};
3925f46b 56
cdd6c482 57DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
4574910e
PM
58
59struct power_pmu *ppmu;
60
d095cd46 61/*
57c0c15b 62 * Normally, to ignore kernel events we set the FCS (freeze counters
d095cd46
PM
63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
64 * hypervisor bit set in the MSR, or if we are running on a processor
65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
66 * then we need to use the FCHV bit to ignore kernel events.
67 */
cdd6c482 68static unsigned int freeze_events_kernel = MMCR0_FCS;
d095cd46 69
98fb1807
PM
70/*
71 * 32-bit doesn't have MMCRA but does have an MMCR2,
72 * and a few other names are different.
73 */
74#ifdef CONFIG_PPC32
75
76#define MMCR0_FCHV 0
77#define MMCR0_PMCjCE MMCR0_PMCnCE
7a7a41f9 78#define MMCR0_FC56 0
378a6ee9 79#define MMCR0_PMAO 0
330a1eb7 80#define MMCR0_EBE 0
76cb8a78 81#define MMCR0_BHRBA 0
330a1eb7
ME
82#define MMCR0_PMCC 0
83#define MMCR0_PMCC_U6 0
98fb1807
PM
84
85#define SPRN_MMCRA SPRN_MMCR2
86#define MMCRA_SAMPLE_ENABLE 0
87
88static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
89{
90 return 0;
91}
98fb1807
PM
92static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
93static inline u32 perf_get_misc_flags(struct pt_regs *regs)
94{
95 return 0;
96}
75382aa7
AB
97static inline void perf_read_regs(struct pt_regs *regs)
98{
99 regs->result = 0;
100}
98fb1807
PM
101static inline int perf_intr_is_nmi(struct pt_regs *regs)
102{
103 return 0;
104}
105
e6878835 106static inline int siar_valid(struct pt_regs *regs)
107{
108 return 1;
109}
110
330a1eb7
ME
111static bool is_ebb_event(struct perf_event *event) { return false; }
112static int ebb_event_check(struct perf_event *event) { return 0; }
113static void ebb_event_add(struct perf_event *event) { }
114static void ebb_switch_out(unsigned long mmcr0) { }
115static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
116{
117 return mmcr0;
118}
119
d52f2dc4
MN
120static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
121static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
122void power_pmu_flush_branch_stack(void) {}
123static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
c2e37a26 124static void pmao_restore_workaround(bool ebb) { }
98fb1807
PM
125#endif /* CONFIG_PPC32 */
126
33904054
ME
127static bool regs_use_siar(struct pt_regs *regs)
128{
cbda6aa1 129 return !!regs->result;
33904054
ME
130}
131
98fb1807
PM
132/*
133 * Things that are specific to 64-bit implementations.
134 */
135#ifdef CONFIG_PPC64
136
137static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
138{
139 unsigned long mmcra = regs->dsisr;
140
7a786832 141 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
98fb1807
PM
142 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
143 if (slot > 1)
144 return 4 * (slot - 1);
145 }
7a786832 146
98fb1807
PM
147 return 0;
148}
149
98fb1807
PM
150/*
151 * The user wants a data address recorded.
152 * If we're not doing instruction sampling, give them the SDAR
153 * (sampled data address). If we are doing instruction sampling, then
154 * only give them the SDAR if it corresponds to the instruction
58a032c3
ME
155 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
156 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
98fb1807
PM
157 */
158static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
159{
160 unsigned long mmcra = regs->dsisr;
58a032c3 161 bool sdar_valid;
e6878835 162
58a032c3
ME
163 if (ppmu->flags & PPMU_HAS_SIER)
164 sdar_valid = regs->dar & SIER_SDAR_VALID;
165 else {
166 unsigned long sdsync;
167
168 if (ppmu->flags & PPMU_SIAR_VALID)
169 sdsync = POWER7P_MMCRA_SDAR_VALID;
170 else if (ppmu->flags & PPMU_ALT_SIPR)
171 sdsync = POWER6_MMCRA_SDSYNC;
172 else
173 sdsync = MMCRA_SDSYNC;
174
175 sdar_valid = mmcra & sdsync;
176 }
98fb1807 177
58a032c3 178 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
98fb1807
PM
179 *addrp = mfspr(SPRN_SDAR);
180}
181
5682c460 182static bool regs_sihv(struct pt_regs *regs)
68b30bb9
AB
183{
184 unsigned long sihv = MMCRA_SIHV;
185
8f61aa32
ME
186 if (ppmu->flags & PPMU_HAS_SIER)
187 return !!(regs->dar & SIER_SIHV);
188
68b30bb9
AB
189 if (ppmu->flags & PPMU_ALT_SIPR)
190 sihv = POWER6_MMCRA_SIHV;
191
5682c460 192 return !!(regs->dsisr & sihv);
68b30bb9
AB
193}
194
5682c460 195static bool regs_sipr(struct pt_regs *regs)
68b30bb9
AB
196{
197 unsigned long sipr = MMCRA_SIPR;
198
8f61aa32
ME
199 if (ppmu->flags & PPMU_HAS_SIER)
200 return !!(regs->dar & SIER_SIPR);
201
68b30bb9
AB
202 if (ppmu->flags & PPMU_ALT_SIPR)
203 sipr = POWER6_MMCRA_SIPR;
204
5682c460 205 return !!(regs->dsisr & sipr);
68b30bb9
AB
206}
207
1ce447b9
BH
208static inline u32 perf_flags_from_msr(struct pt_regs *regs)
209{
210 if (regs->msr & MSR_PR)
211 return PERF_RECORD_MISC_USER;
212 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
213 return PERF_RECORD_MISC_HYPERVISOR;
214 return PERF_RECORD_MISC_KERNEL;
215}
216
98fb1807
PM
217static inline u32 perf_get_misc_flags(struct pt_regs *regs)
218{
33904054 219 bool use_siar = regs_use_siar(regs);
98fb1807 220
75382aa7 221 if (!use_siar)
1ce447b9
BH
222 return perf_flags_from_msr(regs);
223
224 /*
225 * If we don't have flags in MMCRA, rather than using
226 * the MSR, we intuit the flags from the address in
227 * SIAR which should give slightly more reliable
228 * results
229 */
cbda6aa1 230 if (ppmu->flags & PPMU_NO_SIPR) {
1ce447b9
BH
231 unsigned long siar = mfspr(SPRN_SIAR);
232 if (siar >= PAGE_OFFSET)
233 return PERF_RECORD_MISC_KERNEL;
234 return PERF_RECORD_MISC_USER;
235 }
98fb1807 236
7abb840b 237 /* PR has priority over HV, so order below is important */
5682c460 238 if (regs_sipr(regs))
7abb840b 239 return PERF_RECORD_MISC_USER;
5682c460
ME
240
241 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
cdd6c482 242 return PERF_RECORD_MISC_HYPERVISOR;
5682c460 243
7abb840b 244 return PERF_RECORD_MISC_KERNEL;
98fb1807
PM
245}
246
247/*
248 * Overload regs->dsisr to store MMCRA so we only need to read it once
249 * on each interrupt.
8f61aa32 250 * Overload regs->dar to store SIER if we have it.
75382aa7
AB
251 * Overload regs->result to specify whether we should use the MSR (result
252 * is zero) or the SIAR (result is non zero).
98fb1807
PM
253 */
254static inline void perf_read_regs(struct pt_regs *regs)
255{
75382aa7
AB
256 unsigned long mmcra = mfspr(SPRN_MMCRA);
257 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
258 int use_siar;
259
5682c460 260 regs->dsisr = mmcra;
8f61aa32 261
cbda6aa1
ME
262 if (ppmu->flags & PPMU_HAS_SIER)
263 regs->dar = mfspr(SPRN_SIER);
8f61aa32 264
5c093efa
AB
265 /*
266 * If this isn't a PMU exception (eg a software event) the SIAR is
267 * not valid. Use pt_regs.
268 *
269 * If it is a marked event use the SIAR.
270 *
271 * If the PMU doesn't update the SIAR for non marked events use
272 * pt_regs.
273 *
274 * If the PMU has HV/PR flags then check to see if they
275 * place the exception in userspace. If so, use pt_regs. In
276 * continuous sampling mode the SIAR and the PMU exception are
277 * not synchronised, so they may be many instructions apart.
278 * This can result in confusing backtraces. We still want
279 * hypervisor samples as well as samples in the kernel with
280 * interrupts off hence the userspace check.
281 */
75382aa7
AB
282 if (TRAP(regs) != 0xf00)
283 use_siar = 0;
5c093efa
AB
284 else if (marked)
285 use_siar = 1;
286 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
287 use_siar = 0;
cbda6aa1 288 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
75382aa7
AB
289 use_siar = 0;
290 else
291 use_siar = 1;
292
cbda6aa1 293 regs->result = use_siar;
98fb1807
PM
294}
295
296/*
297 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
298 * it as an NMI.
299 */
300static inline int perf_intr_is_nmi(struct pt_regs *regs)
301{
302 return !regs->softe;
303}
304
e6878835 305/*
306 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
307 * must be sampled only if the SIAR-valid bit is set.
308 *
309 * For unmarked instructions and for processors that don't have the SIAR-Valid
310 * bit, assume that SIAR is valid.
311 */
312static inline int siar_valid(struct pt_regs *regs)
313{
314 unsigned long mmcra = regs->dsisr;
315 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
316
58a032c3
ME
317 if (marked) {
318 if (ppmu->flags & PPMU_HAS_SIER)
319 return regs->dar & SIER_SIAR_VALID;
320
321 if (ppmu->flags & PPMU_SIAR_VALID)
322 return mmcra & POWER7P_MMCRA_SIAR_VALID;
323 }
e6878835 324
325 return 1;
326}
327
d52f2dc4
MN
328
329/* Reset all possible BHRB entries */
330static void power_pmu_bhrb_reset(void)
331{
332 asm volatile(PPC_CLRBHRB);
333}
334
335static void power_pmu_bhrb_enable(struct perf_event *event)
336{
337 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
338
339 if (!ppmu->bhrb_nr)
340 return;
341
342 /* Clear BHRB if we changed task context to avoid data leaks */
343 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
344 power_pmu_bhrb_reset();
345 cpuhw->bhrb_context = event->ctx;
346 }
347 cpuhw->bhrb_users++;
348}
349
350static void power_pmu_bhrb_disable(struct perf_event *event)
351{
352 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
353
354 if (!ppmu->bhrb_nr)
355 return;
356
357 cpuhw->bhrb_users--;
358 WARN_ON_ONCE(cpuhw->bhrb_users < 0);
359
360 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
361 /* BHRB cannot be turned off when other
362 * events are active on the PMU.
363 */
364
365 /* avoid stale pointer */
366 cpuhw->bhrb_context = NULL;
367 }
368}
369
370/* Called from ctxsw to prevent one process's branch entries to
371 * mingle with the other process's entries during context switch.
372 */
373void power_pmu_flush_branch_stack(void)
374{
375 if (ppmu->bhrb_nr)
376 power_pmu_bhrb_reset();
377}
69123184
MN
378/* Calculate the to address for a branch */
379static __u64 power_pmu_bhrb_to(u64 addr)
380{
381 unsigned int instr;
382 int ret;
383 __u64 target;
384
385 if (is_kernel_addr(addr))
386 return branch_target((unsigned int *)addr);
387
388 /* Userspace: need copy instruction here then translate it */
389 pagefault_disable();
390 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
391 if (ret) {
392 pagefault_enable();
393 return 0;
394 }
395 pagefault_enable();
396
397 target = branch_target(&instr);
398 if ((!target) || (instr & BRANCH_ABSOLUTE))
399 return target;
400
401 /* Translate relative branch target from kernel to user address */
402 return target - (unsigned long)&instr + addr;
403}
d52f2dc4 404
d52f2dc4 405/* Processing BHRB entries */
506e70d1 406void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
d52f2dc4
MN
407{
408 u64 val;
409 u64 addr;
506e70d1 410 int r_index, u_index, pred;
d52f2dc4
MN
411
412 r_index = 0;
413 u_index = 0;
414 while (r_index < ppmu->bhrb_nr) {
415 /* Assembly read function */
506e70d1
MN
416 val = read_bhrb(r_index++);
417 if (!val)
418 /* Terminal marker: End of valid BHRB entries */
d52f2dc4 419 break;
506e70d1 420 else {
d52f2dc4
MN
421 addr = val & BHRB_EA;
422 pred = val & BHRB_PREDICTION;
d52f2dc4 423
506e70d1
MN
424 if (!addr)
425 /* invalid entry */
d52f2dc4 426 continue;
d52f2dc4 427
506e70d1
MN
428 /* Branches are read most recent first (ie. mfbhrb 0 is
429 * the most recent branch).
430 * There are two types of valid entries:
431 * 1) a target entry which is the to address of a
432 * computed goto like a blr,bctr,btar. The next
433 * entry read from the bhrb will be branch
434 * corresponding to this target (ie. the actual
435 * blr/bctr/btar instruction).
436 * 2) a from address which is an actual branch. If a
437 * target entry proceeds this, then this is the
438 * matching branch for that target. If this is not
439 * following a target entry, then this is a branch
440 * where the target is given as an immediate field
441 * in the instruction (ie. an i or b form branch).
442 * In this case we need to read the instruction from
443 * memory to determine the target/to address.
444 */
d52f2dc4 445
d52f2dc4 446 if (val & BHRB_TARGET) {
506e70d1
MN
447 /* Target branches use two entries
448 * (ie. computed gotos/XL form)
449 */
450 cpuhw->bhrb_entries[u_index].to = addr;
451 cpuhw->bhrb_entries[u_index].mispred = pred;
452 cpuhw->bhrb_entries[u_index].predicted = ~pred;
d52f2dc4 453
506e70d1
MN
454 /* Get from address in next entry */
455 val = read_bhrb(r_index++);
456 addr = val & BHRB_EA;
457 if (val & BHRB_TARGET) {
458 /* Shouldn't have two targets in a
459 row.. Reset index and try again */
460 r_index--;
461 addr = 0;
462 }
463 cpuhw->bhrb_entries[u_index].from = addr;
d52f2dc4 464 } else {
506e70d1
MN
465 /* Branches to immediate field
466 (ie I or B form) */
d52f2dc4 467 cpuhw->bhrb_entries[u_index].from = addr;
69123184
MN
468 cpuhw->bhrb_entries[u_index].to =
469 power_pmu_bhrb_to(addr);
d52f2dc4
MN
470 cpuhw->bhrb_entries[u_index].mispred = pred;
471 cpuhw->bhrb_entries[u_index].predicted = ~pred;
d52f2dc4 472 }
506e70d1
MN
473 u_index++;
474
d52f2dc4
MN
475 }
476 }
477 cpuhw->bhrb_stack.nr = u_index;
478 return;
479}
480
330a1eb7
ME
481static bool is_ebb_event(struct perf_event *event)
482{
483 /*
484 * This could be a per-PMU callback, but we'd rather avoid the cost. We
485 * check that the PMU supports EBB, meaning those that don't can still
486 * use bit 63 of the event code for something else if they wish.
487 */
4d9690dd 488 return (ppmu->flags & PPMU_ARCH_207S) &&
8d7c55d0 489 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
330a1eb7
ME
490}
491
492static int ebb_event_check(struct perf_event *event)
493{
494 struct perf_event *leader = event->group_leader;
495
496 /* Event and group leader must agree on EBB */
497 if (is_ebb_event(leader) != is_ebb_event(event))
498 return -EINVAL;
499
500 if (is_ebb_event(event)) {
501 if (!(event->attach_state & PERF_ATTACH_TASK))
502 return -EINVAL;
503
504 if (!leader->attr.pinned || !leader->attr.exclusive)
505 return -EINVAL;
506
58b5fb00
ME
507 if (event->attr.freq ||
508 event->attr.inherit ||
509 event->attr.sample_type ||
510 event->attr.sample_period ||
511 event->attr.enable_on_exec)
330a1eb7
ME
512 return -EINVAL;
513 }
514
515 return 0;
516}
517
518static void ebb_event_add(struct perf_event *event)
519{
520 if (!is_ebb_event(event) || current->thread.used_ebb)
521 return;
522
523 /*
524 * IFF this is the first time we've added an EBB event, set
525 * PMXE in the user MMCR0 so we can detect when it's cleared by
526 * userspace. We need this so that we can context switch while
527 * userspace is in the EBB handler (where PMXE is 0).
528 */
529 current->thread.used_ebb = 1;
530 current->thread.mmcr0 |= MMCR0_PMXE;
531}
532
533static void ebb_switch_out(unsigned long mmcr0)
534{
535 if (!(mmcr0 & MMCR0_EBE))
536 return;
537
538 current->thread.siar = mfspr(SPRN_SIAR);
539 current->thread.sier = mfspr(SPRN_SIER);
540 current->thread.sdar = mfspr(SPRN_SDAR);
541 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
542 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
543}
544
545static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
546{
547 if (!ebb)
548 goto out;
549
76cb8a78
ME
550 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
551 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
330a1eb7 552
c2e37a26
ME
553 /*
554 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
555 * with pmao_restore_workaround() because we may add PMAO but we never
556 * clear it here.
557 */
330a1eb7
ME
558 mmcr0 |= current->thread.mmcr0;
559
c2e37a26
ME
560 /*
561 * Be careful not to set PMXE if userspace had it cleared. This is also
562 * compatible with pmao_restore_workaround() because it has already
563 * cleared PMXE and we leave PMAO alone.
564 */
330a1eb7
ME
565 if (!(current->thread.mmcr0 & MMCR0_PMXE))
566 mmcr0 &= ~MMCR0_PMXE;
567
568 mtspr(SPRN_SIAR, current->thread.siar);
569 mtspr(SPRN_SIER, current->thread.sier);
570 mtspr(SPRN_SDAR, current->thread.sdar);
571 mtspr(SPRN_MMCR2, current->thread.mmcr2);
572out:
573 return mmcr0;
574}
c2e37a26
ME
575
576static void pmao_restore_workaround(bool ebb)
577{
578 unsigned pmcs[6];
579
580 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
581 return;
582
583 /*
584 * On POWER8E there is a hardware defect which affects the PMU context
585 * switch logic, ie. power_pmu_disable/enable().
586 *
587 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
588 * by the hardware. Sometime later the actual PMU exception is
589 * delivered.
590 *
591 * If we context switch, or simply disable/enable, the PMU prior to the
592 * exception arriving, the exception will be lost when we clear PMAO.
593 *
594 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
595 * set, and this _should_ generate an exception. However because of the
596 * defect no exception is generated when we write PMAO, and we get
597 * stuck with no counters counting but no exception delivered.
598 *
599 * The workaround is to detect this case and tweak the hardware to
600 * create another pending PMU exception.
601 *
602 * We do that by setting up PMC6 (cycles) for an imminent overflow and
603 * enabling the PMU. That causes a new exception to be generated in the
604 * chip, but we don't take it yet because we have interrupts hard
605 * disabled. We then write back the PMU state as we want it to be seen
606 * by the exception handler. When we reenable interrupts the exception
607 * handler will be called and see the correct state.
608 *
609 * The logic is the same for EBB, except that the exception is gated by
610 * us having interrupts hard disabled as well as the fact that we are
611 * not in userspace. The exception is finally delivered when we return
612 * to userspace.
613 */
614
615 /* Only if PMAO is set and PMAO_SYNC is clear */
616 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
617 return;
618
619 /* If we're doing EBB, only if BESCR[GE] is set */
620 if (ebb && !(current->thread.bescr & BESCR_GE))
621 return;
622
623 /*
624 * We are already soft-disabled in power_pmu_enable(). We need to hard
625 * enable to actually prevent the PMU exception from firing.
626 */
627 hard_irq_disable();
628
629 /*
630 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
631 * Using read/write_pmc() in a for loop adds 12 function calls and
632 * almost doubles our code size.
633 */
634 pmcs[0] = mfspr(SPRN_PMC1);
635 pmcs[1] = mfspr(SPRN_PMC2);
636 pmcs[2] = mfspr(SPRN_PMC3);
637 pmcs[3] = mfspr(SPRN_PMC4);
638 pmcs[4] = mfspr(SPRN_PMC5);
639 pmcs[5] = mfspr(SPRN_PMC6);
640
641 /* Ensure all freeze bits are unset */
642 mtspr(SPRN_MMCR2, 0);
643
644 /* Set up PMC6 to overflow in one cycle */
645 mtspr(SPRN_PMC6, 0x7FFFFFFE);
646
647 /* Enable exceptions and unfreeze PMC6 */
648 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
649
650 /* Now we need to refreeze and restore the PMCs */
651 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
652
653 mtspr(SPRN_PMC1, pmcs[0]);
654 mtspr(SPRN_PMC2, pmcs[1]);
655 mtspr(SPRN_PMC3, pmcs[2]);
656 mtspr(SPRN_PMC4, pmcs[3]);
657 mtspr(SPRN_PMC5, pmcs[4]);
658 mtspr(SPRN_PMC6, pmcs[5]);
659}
98fb1807
PM
660#endif /* CONFIG_PPC64 */
661
cdd6c482 662static void perf_event_interrupt(struct pt_regs *regs);
7595d63b 663
4574910e 664/*
57c0c15b 665 * Read one performance monitor counter (PMC).
4574910e
PM
666 */
667static unsigned long read_pmc(int idx)
668{
669 unsigned long val;
670
671 switch (idx) {
672 case 1:
673 val = mfspr(SPRN_PMC1);
674 break;
675 case 2:
676 val = mfspr(SPRN_PMC2);
677 break;
678 case 3:
679 val = mfspr(SPRN_PMC3);
680 break;
681 case 4:
682 val = mfspr(SPRN_PMC4);
683 break;
684 case 5:
685 val = mfspr(SPRN_PMC5);
686 break;
687 case 6:
688 val = mfspr(SPRN_PMC6);
689 break;
98fb1807 690#ifdef CONFIG_PPC64
4574910e
PM
691 case 7:
692 val = mfspr(SPRN_PMC7);
693 break;
694 case 8:
695 val = mfspr(SPRN_PMC8);
696 break;
98fb1807 697#endif /* CONFIG_PPC64 */
4574910e
PM
698 default:
699 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
700 val = 0;
701 }
702 return val;
703}
704
705/*
706 * Write one PMC.
707 */
708static void write_pmc(int idx, unsigned long val)
709{
710 switch (idx) {
711 case 1:
712 mtspr(SPRN_PMC1, val);
713 break;
714 case 2:
715 mtspr(SPRN_PMC2, val);
716 break;
717 case 3:
718 mtspr(SPRN_PMC3, val);
719 break;
720 case 4:
721 mtspr(SPRN_PMC4, val);
722 break;
723 case 5:
724 mtspr(SPRN_PMC5, val);
725 break;
726 case 6:
727 mtspr(SPRN_PMC6, val);
728 break;
98fb1807 729#ifdef CONFIG_PPC64
4574910e
PM
730 case 7:
731 mtspr(SPRN_PMC7, val);
732 break;
733 case 8:
734 mtspr(SPRN_PMC8, val);
735 break;
98fb1807 736#endif /* CONFIG_PPC64 */
4574910e
PM
737 default:
738 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
739 }
740}
741
5f6d0380
AK
742/* Called from sysrq_handle_showregs() */
743void perf_event_print_debug(void)
744{
745 unsigned long sdar, sier, flags;
746 u32 pmcs[MAX_HWEVENTS];
747 int i;
748
749 if (!ppmu->n_counter)
750 return;
751
752 local_irq_save(flags);
753
754 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
755 smp_processor_id(), ppmu->name, ppmu->n_counter);
756
757 for (i = 0; i < ppmu->n_counter; i++)
758 pmcs[i] = read_pmc(i + 1);
759
760 for (; i < MAX_HWEVENTS; i++)
761 pmcs[i] = 0xdeadbeef;
762
763 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
764 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
765
766 if (ppmu->n_counter > 4)
767 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
768 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
769
770 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
771 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
772
773 sdar = sier = 0;
774#ifdef CONFIG_PPC64
775 sdar = mfspr(SPRN_SDAR);
776
777 if (ppmu->flags & PPMU_HAS_SIER)
778 sier = mfspr(SPRN_SIER);
779
4d9690dd 780 if (ppmu->flags & PPMU_ARCH_207S) {
5f6d0380
AK
781 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
782 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
783 pr_info("EBBRR: %016lx BESCR: %016lx\n",
784 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
785 }
786#endif
787 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
788 mfspr(SPRN_SIAR), sdar, sier);
789
790 local_irq_restore(flags);
791}
792
4574910e
PM
793/*
794 * Check if a set of events can all go on the PMU at once.
795 * If they can't, this will look at alternative codes for the events
796 * and see if any combination of alternative codes is feasible.
cdd6c482 797 * The feasible set is returned in event_id[].
4574910e 798 */
cdd6c482
IM
799static int power_check_constraints(struct cpu_hw_events *cpuhw,
800 u64 event_id[], unsigned int cflags[],
ab7ef2e5 801 int n_ev)
4574910e 802{
448d64f8 803 unsigned long mask, value, nv;
cdd6c482
IM
804 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
805 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
4574910e 806 int i, j;
448d64f8
PM
807 unsigned long addf = ppmu->add_fields;
808 unsigned long tadd = ppmu->test_adder;
4574910e 809
a8f90e90 810 if (n_ev > ppmu->n_counter)
4574910e
PM
811 return -1;
812
813 /* First see if the events will go on as-is */
814 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 815 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
cdd6c482
IM
816 && !ppmu->limited_pmc_event(event_id[i])) {
817 ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 818 cpuhw->alternatives[i]);
cdd6c482 819 event_id[i] = cpuhw->alternatives[i][0];
ab7ef2e5 820 }
cdd6c482 821 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
e51ee31e 822 &cpuhw->avalues[i][0]))
4574910e 823 return -1;
4574910e
PM
824 }
825 value = mask = 0;
826 for (i = 0; i < n_ev; ++i) {
e51ee31e
PM
827 nv = (value | cpuhw->avalues[i][0]) +
828 (value & cpuhw->avalues[i][0] & addf);
4574910e 829 if ((((nv + tadd) ^ value) & mask) != 0 ||
e51ee31e
PM
830 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
831 cpuhw->amasks[i][0]) != 0)
4574910e
PM
832 break;
833 value = nv;
e51ee31e 834 mask |= cpuhw->amasks[i][0];
4574910e
PM
835 }
836 if (i == n_ev)
837 return 0; /* all OK */
838
839 /* doesn't work, gather alternatives... */
840 if (!ppmu->get_alternatives)
841 return -1;
842 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 843 choice[i] = 0;
cdd6c482 844 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 845 cpuhw->alternatives[i]);
4574910e 846 for (j = 1; j < n_alt[i]; ++j)
e51ee31e
PM
847 ppmu->get_constraint(cpuhw->alternatives[i][j],
848 &cpuhw->amasks[i][j],
849 &cpuhw->avalues[i][j]);
4574910e
PM
850 }
851
852 /* enumerate all possibilities and see if any will work */
853 i = 0;
854 j = -1;
855 value = mask = nv = 0;
856 while (i < n_ev) {
857 if (j >= 0) {
858 /* we're backtracking, restore context */
859 value = svalues[i];
860 mask = smasks[i];
861 j = choice[i];
862 }
863 /*
cdd6c482 864 * See if any alternative k for event_id i,
4574910e
PM
865 * where k > j, will satisfy the constraints.
866 */
867 while (++j < n_alt[i]) {
e51ee31e
PM
868 nv = (value | cpuhw->avalues[i][j]) +
869 (value & cpuhw->avalues[i][j] & addf);
4574910e 870 if ((((nv + tadd) ^ value) & mask) == 0 &&
e51ee31e
PM
871 (((nv + tadd) ^ cpuhw->avalues[i][j])
872 & cpuhw->amasks[i][j]) == 0)
4574910e
PM
873 break;
874 }
875 if (j >= n_alt[i]) {
876 /*
877 * No feasible alternative, backtrack
cdd6c482 878 * to event_id i-1 and continue enumerating its
4574910e
PM
879 * alternatives from where we got up to.
880 */
881 if (--i < 0)
882 return -1;
883 } else {
884 /*
cdd6c482
IM
885 * Found a feasible alternative for event_id i,
886 * remember where we got up to with this event_id,
887 * go on to the next event_id, and start with
4574910e
PM
888 * the first alternative for it.
889 */
890 choice[i] = j;
891 svalues[i] = value;
892 smasks[i] = mask;
893 value = nv;
e51ee31e 894 mask |= cpuhw->amasks[i][j];
4574910e
PM
895 ++i;
896 j = -1;
897 }
898 }
899
900 /* OK, we have a feasible combination, tell the caller the solution */
901 for (i = 0; i < n_ev; ++i)
cdd6c482 902 event_id[i] = cpuhw->alternatives[i][choice[i]];
4574910e
PM
903 return 0;
904}
905
0475f9ea 906/*
cdd6c482 907 * Check if newly-added events have consistent settings for
0475f9ea 908 * exclude_{user,kernel,hv} with each other and any previously
cdd6c482 909 * added events.
0475f9ea 910 */
cdd6c482 911static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
ab7ef2e5 912 int n_prev, int n_new)
0475f9ea 913{
ab7ef2e5
PM
914 int eu = 0, ek = 0, eh = 0;
915 int i, n, first;
cdd6c482 916 struct perf_event *event;
0475f9ea
PM
917
918 n = n_prev + n_new;
919 if (n <= 1)
920 return 0;
921
ab7ef2e5
PM
922 first = 1;
923 for (i = 0; i < n; ++i) {
924 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
925 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
926 continue;
927 }
cdd6c482 928 event = ctrs[i];
ab7ef2e5 929 if (first) {
cdd6c482
IM
930 eu = event->attr.exclude_user;
931 ek = event->attr.exclude_kernel;
932 eh = event->attr.exclude_hv;
ab7ef2e5 933 first = 0;
cdd6c482
IM
934 } else if (event->attr.exclude_user != eu ||
935 event->attr.exclude_kernel != ek ||
936 event->attr.exclude_hv != eh) {
0475f9ea 937 return -EAGAIN;
ab7ef2e5 938 }
0475f9ea 939 }
ab7ef2e5
PM
940
941 if (eu || ek || eh)
942 for (i = 0; i < n; ++i)
943 if (cflags[i] & PPMU_LIMITED_PMC_OK)
944 cflags[i] |= PPMU_LIMITED_PMC_REQD;
945
0475f9ea
PM
946 return 0;
947}
948
86c74ab3
EM
949static u64 check_and_compute_delta(u64 prev, u64 val)
950{
951 u64 delta = (val - prev) & 0xfffffffful;
952
953 /*
954 * POWER7 can roll back counter values, if the new value is smaller
955 * than the previous value it will cause the delta and the counter to
956 * have bogus values unless we rolled a counter over. If a coutner is
957 * rolled back, it will be smaller, but within 256, which is the maximum
958 * number of events to rollback at once. If we dectect a rollback
959 * return 0. This can lead to a small lack of precision in the
960 * counters.
961 */
962 if (prev > val && (prev - val) < 256)
963 delta = 0;
964
965 return delta;
966}
967
cdd6c482 968static void power_pmu_read(struct perf_event *event)
4574910e 969{
98fb1807 970 s64 val, delta, prev;
4574910e 971
a4eaf7f1
PZ
972 if (event->hw.state & PERF_HES_STOPPED)
973 return;
974
cdd6c482 975 if (!event->hw.idx)
4574910e 976 return;
330a1eb7
ME
977
978 if (is_ebb_event(event)) {
979 val = read_pmc(event->hw.idx);
980 local64_set(&event->hw.prev_count, val);
981 return;
982 }
983
4574910e
PM
984 /*
985 * Performance monitor interrupts come even when interrupts
986 * are soft-disabled, as long as interrupts are hard-enabled.
987 * Therefore we treat them like NMIs.
988 */
989 do {
e7850595 990 prev = local64_read(&event->hw.prev_count);
4574910e 991 barrier();
cdd6c482 992 val = read_pmc(event->hw.idx);
86c74ab3
EM
993 delta = check_and_compute_delta(prev, val);
994 if (!delta)
995 return;
e7850595 996 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
4574910e 997
e7850595 998 local64_add(delta, &event->count);
f5602941
AB
999
1000 /*
1001 * A number of places program the PMC with (0x80000000 - period_left).
1002 * We never want period_left to be less than 1 because we will program
1003 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1004 * roll around to 0 before taking an exception. We have seen this
1005 * on POWER8.
1006 *
1007 * To fix this, clamp the minimum value of period_left to 1.
1008 */
1009 do {
1010 prev = local64_read(&event->hw.period_left);
1011 val = prev - delta;
1012 if (val < 1)
1013 val = 1;
1014 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
4574910e
PM
1015}
1016
ab7ef2e5
PM
1017/*
1018 * On some machines, PMC5 and PMC6 can't be written, don't respect
1019 * the freeze conditions, and don't generate interrupts. This tells
cdd6c482 1020 * us if `event' is using such a PMC.
ab7ef2e5
PM
1021 */
1022static int is_limited_pmc(int pmcnum)
1023{
0bbd0d4b
PM
1024 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1025 && (pmcnum == 5 || pmcnum == 6);
ab7ef2e5
PM
1026}
1027
a8f90e90 1028static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
1029 unsigned long pmc5, unsigned long pmc6)
1030{
cdd6c482 1031 struct perf_event *event;
ab7ef2e5
PM
1032 u64 val, prev, delta;
1033 int i;
1034
1035 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 1036 event = cpuhw->limited_counter[i];
cdd6c482 1037 if (!event->hw.idx)
ab7ef2e5 1038 continue;
cdd6c482 1039 val = (event->hw.idx == 5) ? pmc5 : pmc6;
e7850595 1040 prev = local64_read(&event->hw.prev_count);
cdd6c482 1041 event->hw.idx = 0;
86c74ab3
EM
1042 delta = check_and_compute_delta(prev, val);
1043 if (delta)
1044 local64_add(delta, &event->count);
ab7ef2e5
PM
1045 }
1046}
1047
a8f90e90 1048static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
1049 unsigned long pmc5, unsigned long pmc6)
1050{
cdd6c482 1051 struct perf_event *event;
86c74ab3 1052 u64 val, prev;
ab7ef2e5
PM
1053 int i;
1054
1055 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 1056 event = cpuhw->limited_counter[i];
cdd6c482
IM
1057 event->hw.idx = cpuhw->limited_hwidx[i];
1058 val = (event->hw.idx == 5) ? pmc5 : pmc6;
86c74ab3
EM
1059 prev = local64_read(&event->hw.prev_count);
1060 if (check_and_compute_delta(prev, val))
1061 local64_set(&event->hw.prev_count, val);
cdd6c482 1062 perf_event_update_userpage(event);
ab7ef2e5
PM
1063 }
1064}
1065
1066/*
cdd6c482 1067 * Since limited events don't respect the freeze conditions, we
ab7ef2e5 1068 * have to read them immediately after freezing or unfreezing the
cdd6c482
IM
1069 * other events. We try to keep the values from the limited
1070 * events as consistent as possible by keeping the delay (in
ab7ef2e5 1071 * cycles and instructions) between freezing/unfreezing and reading
cdd6c482
IM
1072 * the limited events as small and consistent as possible.
1073 * Therefore, if any limited events are in use, we read them
ab7ef2e5
PM
1074 * both, and always in the same order, to minimize variability,
1075 * and do it inside the same asm that writes MMCR0.
1076 */
cdd6c482 1077static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
ab7ef2e5
PM
1078{
1079 unsigned long pmc5, pmc6;
1080
1081 if (!cpuhw->n_limited) {
1082 mtspr(SPRN_MMCR0, mmcr0);
1083 return;
1084 }
1085
1086 /*
1087 * Write MMCR0, then read PMC5 and PMC6 immediately.
dcd945e0
PM
1088 * To ensure we don't get a performance monitor interrupt
1089 * between writing MMCR0 and freezing/thawing the limited
cdd6c482 1090 * events, we first write MMCR0 with the event overflow
dcd945e0 1091 * interrupt enable bits turned off.
ab7ef2e5
PM
1092 */
1093 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1094 : "=&r" (pmc5), "=&r" (pmc6)
dcd945e0
PM
1095 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1096 "i" (SPRN_MMCR0),
ab7ef2e5
PM
1097 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1098
1099 if (mmcr0 & MMCR0_FC)
a8f90e90 1100 freeze_limited_counters(cpuhw, pmc5, pmc6);
ab7ef2e5 1101 else
a8f90e90 1102 thaw_limited_counters(cpuhw, pmc5, pmc6);
dcd945e0
PM
1103
1104 /*
cdd6c482 1105 * Write the full MMCR0 including the event overflow interrupt
dcd945e0
PM
1106 * enable bits, if necessary.
1107 */
1108 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1109 mtspr(SPRN_MMCR0, mmcr0);
ab7ef2e5
PM
1110}
1111
4574910e 1112/*
cdd6c482
IM
1113 * Disable all events to prevent PMU interrupts and to allow
1114 * events to be added or removed.
4574910e 1115 */
a4eaf7f1 1116static void power_pmu_disable(struct pmu *pmu)
4574910e 1117{
cdd6c482 1118 struct cpu_hw_events *cpuhw;
330a1eb7 1119 unsigned long flags, mmcr0, val;
4574910e 1120
f36a1a13
PM
1121 if (!ppmu)
1122 return;
4574910e 1123 local_irq_save(flags);
cdd6c482 1124 cpuhw = &__get_cpu_var(cpu_hw_events);
4574910e 1125
448d64f8 1126 if (!cpuhw->disabled) {
01d0287f
PM
1127 /*
1128 * Check if we ever enabled the PMU on this cpu.
1129 */
1130 if (!cpuhw->pmcs_enabled) {
a6dbf93a 1131 ppc_enable_pmcs();
01d0287f
PM
1132 cpuhw->pmcs_enabled = 1;
1133 }
1134
378a6ee9 1135 /*
76cb8a78 1136 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
378a6ee9 1137 */
330a1eb7 1138 val = mmcr0 = mfspr(SPRN_MMCR0);
378a6ee9 1139 val |= MMCR0_FC;
76cb8a78
ME
1140 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1141 MMCR0_FC56);
378a6ee9
ME
1142
1143 /*
1144 * The barrier is to make sure the mtspr has been
1145 * executed and the PMU has frozen the events etc.
1146 * before we return.
1147 */
1148 write_mmcr0(cpuhw, val);
1149 mb();
1150
f708223d
PM
1151 /*
1152 * Disable instruction sampling if it was enabled
1153 */
1154 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1155 mtspr(SPRN_MMCRA,
1156 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1157 mb();
1158 }
1159
378a6ee9
ME
1160 cpuhw->disabled = 1;
1161 cpuhw->n_added = 0;
330a1eb7
ME
1162
1163 ebb_switch_out(mmcr0);
4574910e 1164 }
330a1eb7 1165
4574910e 1166 local_irq_restore(flags);
4574910e
PM
1167}
1168
1169/*
cdd6c482
IM
1170 * Re-enable all events if disable == 0.
1171 * If we were previously disabled and events were added, then
4574910e
PM
1172 * put the new config on the PMU.
1173 */
a4eaf7f1 1174static void power_pmu_enable(struct pmu *pmu)
4574910e 1175{
cdd6c482
IM
1176 struct perf_event *event;
1177 struct cpu_hw_events *cpuhw;
4574910e
PM
1178 unsigned long flags;
1179 long i;
330a1eb7 1180 unsigned long val, mmcr0;
4574910e 1181 s64 left;
cdd6c482 1182 unsigned int hwc_index[MAX_HWEVENTS];
ab7ef2e5
PM
1183 int n_lim;
1184 int idx;
330a1eb7 1185 bool ebb;
4574910e 1186
f36a1a13
PM
1187 if (!ppmu)
1188 return;
4574910e 1189 local_irq_save(flags);
0a48843d 1190
cdd6c482 1191 cpuhw = &__get_cpu_var(cpu_hw_events);
0a48843d
ME
1192 if (!cpuhw->disabled)
1193 goto out;
1194
4ea355b5
ME
1195 if (cpuhw->n_events == 0) {
1196 ppc_set_pmu_inuse(0);
1197 goto out;
1198 }
1199
4574910e
PM
1200 cpuhw->disabled = 0;
1201
330a1eb7
ME
1202 /*
1203 * EBB requires an exclusive group and all events must have the EBB
1204 * flag set, or not set, so we can just check a single event. Also we
1205 * know we have at least one event.
1206 */
1207 ebb = is_ebb_event(cpuhw->event[0]);
1208
4574910e 1209 /*
cdd6c482 1210 * If we didn't change anything, or only removed events,
4574910e
PM
1211 * no need to recalculate MMCR* settings and reset the PMCs.
1212 * Just reenable the PMU with the current MMCR* settings
cdd6c482 1213 * (possibly updated for removal of events).
4574910e
PM
1214 */
1215 if (!cpuhw->n_added) {
f708223d 1216 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e 1217 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
f708223d 1218 goto out_enable;
4574910e
PM
1219 }
1220
1221 /*
79a4cb28 1222 * Clear all MMCR settings and recompute them for the new set of events.
4574910e 1223 */
79a4cb28
ME
1224 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1225
cdd6c482 1226 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
8abd818f 1227 cpuhw->mmcr, cpuhw->event)) {
4574910e
PM
1228 /* shouldn't ever get here */
1229 printk(KERN_ERR "oops compute_mmcr failed\n");
1230 goto out;
1231 }
1232
0475f9ea
PM
1233 /*
1234 * Add in MMCR0 freeze bits corresponding to the
cdd6c482
IM
1235 * attr.exclude_* bits for the first event.
1236 * We have already checked that all events have the
1237 * same values for these bits as the first event.
0475f9ea 1238 */
cdd6c482
IM
1239 event = cpuhw->event[0];
1240 if (event->attr.exclude_user)
0475f9ea 1241 cpuhw->mmcr[0] |= MMCR0_FCP;
cdd6c482
IM
1242 if (event->attr.exclude_kernel)
1243 cpuhw->mmcr[0] |= freeze_events_kernel;
1244 if (event->attr.exclude_hv)
0475f9ea
PM
1245 cpuhw->mmcr[0] |= MMCR0_FCHV;
1246
4574910e
PM
1247 /*
1248 * Write the new configuration to MMCR* with the freeze
cdd6c482
IM
1249 * bit set and set the hardware events to their initial values.
1250 * Then unfreeze the events.
4574910e 1251 */
a6dbf93a 1252 ppc_set_pmu_inuse(1);
f708223d 1253 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e
PM
1254 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1255 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1256 | MMCR0_FC);
1257
1258 /*
cdd6c482 1259 * Read off any pre-existing events that need to move
4574910e
PM
1260 * to another PMC.
1261 */
cdd6c482
IM
1262 for (i = 0; i < cpuhw->n_events; ++i) {
1263 event = cpuhw->event[i];
1264 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1265 power_pmu_read(event);
1266 write_pmc(event->hw.idx, 0);
1267 event->hw.idx = 0;
4574910e
PM
1268 }
1269 }
1270
1271 /*
cdd6c482 1272 * Initialize the PMCs for all the new and moved events.
4574910e 1273 */
ab7ef2e5 1274 cpuhw->n_limited = n_lim = 0;
cdd6c482
IM
1275 for (i = 0; i < cpuhw->n_events; ++i) {
1276 event = cpuhw->event[i];
1277 if (event->hw.idx)
4574910e 1278 continue;
ab7ef2e5
PM
1279 idx = hwc_index[i] + 1;
1280 if (is_limited_pmc(idx)) {
a8f90e90 1281 cpuhw->limited_counter[n_lim] = event;
ab7ef2e5
PM
1282 cpuhw->limited_hwidx[n_lim] = idx;
1283 ++n_lim;
1284 continue;
1285 }
330a1eb7
ME
1286
1287 if (ebb)
1288 val = local64_read(&event->hw.prev_count);
1289 else {
1290 val = 0;
1291 if (event->hw.sample_period) {
1292 left = local64_read(&event->hw.period_left);
1293 if (left < 0x80000000L)
1294 val = 0x80000000L - left;
1295 }
1296 local64_set(&event->hw.prev_count, val);
4574910e 1297 }
330a1eb7 1298
cdd6c482 1299 event->hw.idx = idx;
a4eaf7f1
PZ
1300 if (event->hw.state & PERF_HES_STOPPED)
1301 val = 0;
ab7ef2e5 1302 write_pmc(idx, val);
330a1eb7 1303
cdd6c482 1304 perf_event_update_userpage(event);
4574910e 1305 }
ab7ef2e5 1306 cpuhw->n_limited = n_lim;
4574910e 1307 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
f708223d
PM
1308
1309 out_enable:
c2e37a26
ME
1310 pmao_restore_workaround(ebb);
1311
8903461c
ME
1312 if (ppmu->flags & PPMU_ARCH_207S)
1313 mtspr(SPRN_MMCR2, 0);
1314
330a1eb7
ME
1315 mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);
1316
f708223d 1317 mb();
b4d6c06c
AK
1318 if (cpuhw->bhrb_users)
1319 ppmu->config_bhrb(cpuhw->bhrb_filter);
1320
330a1eb7 1321 write_mmcr0(cpuhw, mmcr0);
4574910e 1322
f708223d
PM
1323 /*
1324 * Enable instruction sampling if necessary
1325 */
1326 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1327 mb();
1328 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1329 }
1330
4574910e 1331 out:
3925f46b 1332
4574910e
PM
1333 local_irq_restore(flags);
1334}
1335
cdd6c482
IM
1336static int collect_events(struct perf_event *group, int max_count,
1337 struct perf_event *ctrs[], u64 *events,
ab7ef2e5 1338 unsigned int *flags)
4574910e
PM
1339{
1340 int n = 0;
cdd6c482 1341 struct perf_event *event;
4574910e 1342
cdd6c482 1343 if (!is_software_event(group)) {
4574910e
PM
1344 if (n >= max_count)
1345 return -1;
1346 ctrs[n] = group;
cdd6c482 1347 flags[n] = group->hw.event_base;
4574910e
PM
1348 events[n++] = group->hw.config;
1349 }
a8f90e90 1350 list_for_each_entry(event, &group->sibling_list, group_entry) {
cdd6c482
IM
1351 if (!is_software_event(event) &&
1352 event->state != PERF_EVENT_STATE_OFF) {
4574910e
PM
1353 if (n >= max_count)
1354 return -1;
cdd6c482
IM
1355 ctrs[n] = event;
1356 flags[n] = event->hw.event_base;
1357 events[n++] = event->hw.config;
4574910e
PM
1358 }
1359 }
1360 return n;
1361}
1362
4574910e 1363/*
cdd6c482
IM
1364 * Add a event to the PMU.
1365 * If all events are not already frozen, then we disable and
9e35ad38 1366 * re-enable the PMU in order to get hw_perf_enable to do the
4574910e
PM
1367 * actual work of reconfiguring the PMU.
1368 */
a4eaf7f1 1369static int power_pmu_add(struct perf_event *event, int ef_flags)
4574910e 1370{
cdd6c482 1371 struct cpu_hw_events *cpuhw;
4574910e 1372 unsigned long flags;
4574910e
PM
1373 int n0;
1374 int ret = -EAGAIN;
1375
1376 local_irq_save(flags);
33696fc0 1377 perf_pmu_disable(event->pmu);
4574910e
PM
1378
1379 /*
cdd6c482 1380 * Add the event to the list (if there is room)
4574910e
PM
1381 * and check whether the total set is still feasible.
1382 */
cdd6c482
IM
1383 cpuhw = &__get_cpu_var(cpu_hw_events);
1384 n0 = cpuhw->n_events;
a8f90e90 1385 if (n0 >= ppmu->n_counter)
4574910e 1386 goto out;
cdd6c482
IM
1387 cpuhw->event[n0] = event;
1388 cpuhw->events[n0] = event->hw.config;
1389 cpuhw->flags[n0] = event->hw.event_base;
8e6d5573 1390
f53d168c 1391 /*
1392 * This event may have been disabled/stopped in record_and_restart()
1393 * because we exceeded the ->event_limit. If re-starting the event,
1394 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1395 * notification is re-enabled.
1396 */
a4eaf7f1
PZ
1397 if (!(ef_flags & PERF_EF_START))
1398 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
f53d168c 1399 else
1400 event->hw.state = 0;
a4eaf7f1 1401
8e6d5573
LM
1402 /*
1403 * If group events scheduling transaction was started,
25985edc 1404 * skip the schedulability test here, it will be performed
8e6d5573
LM
1405 * at commit time(->commit_txn) as a whole
1406 */
8d2cacbb 1407 if (cpuhw->group_flag & PERF_EVENT_TXN)
8e6d5573
LM
1408 goto nocheck;
1409
cdd6c482 1410 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
0475f9ea 1411 goto out;
e51ee31e 1412 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
4574910e 1413 goto out;
cdd6c482 1414 event->hw.config = cpuhw->events[n0];
8e6d5573
LM
1415
1416nocheck:
330a1eb7
ME
1417 ebb_event_add(event);
1418
cdd6c482 1419 ++cpuhw->n_events;
4574910e
PM
1420 ++cpuhw->n_added;
1421
1422 ret = 0;
1423 out:
ff3d79dc 1424 if (has_branch_stack(event)) {
3925f46b 1425 power_pmu_bhrb_enable(event);
ff3d79dc
AK
1426 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1427 event->attr.branch_sample_type);
1428 }
3925f46b 1429
33696fc0 1430 perf_pmu_enable(event->pmu);
4574910e
PM
1431 local_irq_restore(flags);
1432 return ret;
1433}
1434
1435/*
cdd6c482 1436 * Remove a event from the PMU.
4574910e 1437 */
a4eaf7f1 1438static void power_pmu_del(struct perf_event *event, int ef_flags)
4574910e 1439{
cdd6c482 1440 struct cpu_hw_events *cpuhw;
4574910e 1441 long i;
4574910e
PM
1442 unsigned long flags;
1443
1444 local_irq_save(flags);
33696fc0 1445 perf_pmu_disable(event->pmu);
4574910e 1446
cdd6c482
IM
1447 power_pmu_read(event);
1448
1449 cpuhw = &__get_cpu_var(cpu_hw_events);
1450 for (i = 0; i < cpuhw->n_events; ++i) {
1451 if (event == cpuhw->event[i]) {
219a92a4 1452 while (++i < cpuhw->n_events) {
cdd6c482 1453 cpuhw->event[i-1] = cpuhw->event[i];
219a92a4
ME
1454 cpuhw->events[i-1] = cpuhw->events[i];
1455 cpuhw->flags[i-1] = cpuhw->flags[i];
1456 }
cdd6c482
IM
1457 --cpuhw->n_events;
1458 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1459 if (event->hw.idx) {
1460 write_pmc(event->hw.idx, 0);
1461 event->hw.idx = 0;
ab7ef2e5 1462 }
cdd6c482 1463 perf_event_update_userpage(event);
4574910e
PM
1464 break;
1465 }
1466 }
ab7ef2e5 1467 for (i = 0; i < cpuhw->n_limited; ++i)
a8f90e90 1468 if (event == cpuhw->limited_counter[i])
ab7ef2e5
PM
1469 break;
1470 if (i < cpuhw->n_limited) {
1471 while (++i < cpuhw->n_limited) {
a8f90e90 1472 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
ab7ef2e5
PM
1473 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1474 }
1475 --cpuhw->n_limited;
1476 }
cdd6c482
IM
1477 if (cpuhw->n_events == 0) {
1478 /* disable exceptions if no events are running */
4574910e
PM
1479 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1480 }
1481
3925f46b
AK
1482 if (has_branch_stack(event))
1483 power_pmu_bhrb_disable(event);
1484
33696fc0 1485 perf_pmu_enable(event->pmu);
4574910e
PM
1486 local_irq_restore(flags);
1487}
1488
8a7b8cb9 1489/*
a4eaf7f1
PZ
1490 * POWER-PMU does not support disabling individual counters, hence
1491 * program their cycle counter to their max value and ignore the interrupts.
8a7b8cb9 1492 */
a4eaf7f1
PZ
1493
1494static void power_pmu_start(struct perf_event *event, int ef_flags)
8a7b8cb9 1495{
8a7b8cb9 1496 unsigned long flags;
a4eaf7f1 1497 s64 left;
9a45a940 1498 unsigned long val;
8a7b8cb9 1499
cdd6c482 1500 if (!event->hw.idx || !event->hw.sample_period)
8a7b8cb9 1501 return;
a4eaf7f1
PZ
1502
1503 if (!(event->hw.state & PERF_HES_STOPPED))
1504 return;
1505
1506 if (ef_flags & PERF_EF_RELOAD)
1507 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1508
1509 local_irq_save(flags);
1510 perf_pmu_disable(event->pmu);
1511
1512 event->hw.state = 0;
1513 left = local64_read(&event->hw.period_left);
9a45a940
AB
1514
1515 val = 0;
1516 if (left < 0x80000000L)
1517 val = 0x80000000L - left;
1518
1519 write_pmc(event->hw.idx, val);
a4eaf7f1
PZ
1520
1521 perf_event_update_userpage(event);
1522 perf_pmu_enable(event->pmu);
1523 local_irq_restore(flags);
1524}
1525
1526static void power_pmu_stop(struct perf_event *event, int ef_flags)
1527{
1528 unsigned long flags;
1529
1530 if (!event->hw.idx || !event->hw.sample_period)
1531 return;
1532
1533 if (event->hw.state & PERF_HES_STOPPED)
1534 return;
1535
8a7b8cb9 1536 local_irq_save(flags);
33696fc0 1537 perf_pmu_disable(event->pmu);
a4eaf7f1 1538
cdd6c482 1539 power_pmu_read(event);
a4eaf7f1
PZ
1540 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1541 write_pmc(event->hw.idx, 0);
1542
cdd6c482 1543 perf_event_update_userpage(event);
33696fc0 1544 perf_pmu_enable(event->pmu);
8a7b8cb9
PM
1545 local_irq_restore(flags);
1546}
1547
8e6d5573
LM
1548/*
1549 * Start group events scheduling transaction
1550 * Set the flag to make pmu::enable() not perform the
1551 * schedulability test, it will be performed at commit time
1552 */
51b0fe39 1553void power_pmu_start_txn(struct pmu *pmu)
8e6d5573
LM
1554{
1555 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1556
33696fc0 1557 perf_pmu_disable(pmu);
8d2cacbb 1558 cpuhw->group_flag |= PERF_EVENT_TXN;
8e6d5573
LM
1559 cpuhw->n_txn_start = cpuhw->n_events;
1560}
1561
1562/*
1563 * Stop group events scheduling transaction
1564 * Clear the flag and pmu::enable() will perform the
1565 * schedulability test.
1566 */
51b0fe39 1567void power_pmu_cancel_txn(struct pmu *pmu)
8e6d5573
LM
1568{
1569 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1570
8d2cacbb 1571 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1572 perf_pmu_enable(pmu);
8e6d5573
LM
1573}
1574
1575/*
1576 * Commit group events scheduling transaction
1577 * Perform the group schedulability test as a whole
1578 * Return 0 if success
1579 */
51b0fe39 1580int power_pmu_commit_txn(struct pmu *pmu)
8e6d5573
LM
1581{
1582 struct cpu_hw_events *cpuhw;
1583 long i, n;
1584
1585 if (!ppmu)
1586 return -EAGAIN;
1587 cpuhw = &__get_cpu_var(cpu_hw_events);
1588 n = cpuhw->n_events;
1589 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1590 return -EAGAIN;
1591 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1592 if (i < 0)
1593 return -EAGAIN;
1594
1595 for (i = cpuhw->n_txn_start; i < n; ++i)
1596 cpuhw->event[i]->hw.config = cpuhw->events[i];
1597
8d2cacbb 1598 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1599 perf_pmu_enable(pmu);
8e6d5573
LM
1600 return 0;
1601}
1602
ab7ef2e5 1603/*
cdd6c482 1604 * Return 1 if we might be able to put event on a limited PMC,
ab7ef2e5 1605 * or 0 if not.
cdd6c482 1606 * A event can only go on a limited PMC if it counts something
ab7ef2e5
PM
1607 * that a limited PMC can count, doesn't require interrupts, and
1608 * doesn't exclude any processor mode.
1609 */
cdd6c482 1610static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
ab7ef2e5
PM
1611 unsigned int flags)
1612{
1613 int n;
ef923214 1614 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5 1615
cdd6c482
IM
1616 if (event->attr.exclude_user
1617 || event->attr.exclude_kernel
1618 || event->attr.exclude_hv
1619 || event->attr.sample_period)
ab7ef2e5
PM
1620 return 0;
1621
1622 if (ppmu->limited_pmc_event(ev))
1623 return 1;
1624
1625 /*
cdd6c482 1626 * The requested event_id isn't on a limited PMC already;
ab7ef2e5
PM
1627 * see if any alternative code goes on a limited PMC.
1628 */
1629 if (!ppmu->get_alternatives)
1630 return 0;
1631
1632 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1633 n = ppmu->get_alternatives(ev, flags, alt);
ab7ef2e5 1634
ef923214 1635 return n > 0;
ab7ef2e5
PM
1636}
1637
1638/*
cdd6c482
IM
1639 * Find an alternative event_id that goes on a normal PMC, if possible,
1640 * and return the event_id code, or 0 if there is no such alternative.
1641 * (Note: event_id code 0 is "don't count" on all machines.)
ab7ef2e5 1642 */
ef923214 1643static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
ab7ef2e5 1644{
ef923214 1645 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5
PM
1646 int n;
1647
1648 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1649 n = ppmu->get_alternatives(ev, flags, alt);
1650 if (!n)
1651 return 0;
1652 return alt[0];
1653}
1654
cdd6c482
IM
1655/* Number of perf_events counting hardware events */
1656static atomic_t num_events;
7595d63b
PM
1657/* Used to avoid races in calling reserve/release_pmc_hardware */
1658static DEFINE_MUTEX(pmc_reserve_mutex);
1659
1660/*
cdd6c482 1661 * Release the PMU if this is the last perf_event.
7595d63b 1662 */
cdd6c482 1663static void hw_perf_event_destroy(struct perf_event *event)
7595d63b 1664{
cdd6c482 1665 if (!atomic_add_unless(&num_events, -1, 1)) {
7595d63b 1666 mutex_lock(&pmc_reserve_mutex);
cdd6c482 1667 if (atomic_dec_return(&num_events) == 0)
7595d63b
PM
1668 release_pmc_hardware();
1669 mutex_unlock(&pmc_reserve_mutex);
1670 }
1671}
1672
106b506c 1673/*
cdd6c482 1674 * Translate a generic cache event_id config to a raw event_id code.
106b506c
PM
1675 */
1676static int hw_perf_cache_event(u64 config, u64 *eventp)
1677{
1678 unsigned long type, op, result;
1679 int ev;
1680
1681 if (!ppmu->cache_events)
1682 return -EINVAL;
1683
1684 /* unpack config */
1685 type = config & 0xff;
1686 op = (config >> 8) & 0xff;
1687 result = (config >> 16) & 0xff;
1688
1689 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1690 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1691 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1692 return -EINVAL;
1693
1694 ev = (*ppmu->cache_events)[type][op][result];
1695 if (ev == 0)
1696 return -EOPNOTSUPP;
1697 if (ev == -1)
1698 return -EINVAL;
1699 *eventp = ev;
1700 return 0;
1701}
1702
b0a873eb 1703static int power_pmu_event_init(struct perf_event *event)
4574910e 1704{
ef923214
PM
1705 u64 ev;
1706 unsigned long flags;
cdd6c482
IM
1707 struct perf_event *ctrs[MAX_HWEVENTS];
1708 u64 events[MAX_HWEVENTS];
1709 unsigned int cflags[MAX_HWEVENTS];
4574910e 1710 int n;
7595d63b 1711 int err;
cdd6c482 1712 struct cpu_hw_events *cpuhw;
4574910e
PM
1713
1714 if (!ppmu)
b0a873eb
PZ
1715 return -ENOENT;
1716
3925f46b
AK
1717 if (has_branch_stack(event)) {
1718 /* PMU has BHRB enabled */
4d9690dd 1719 if (!(ppmu->flags & PPMU_ARCH_207S))
3925f46b
AK
1720 return -EOPNOTSUPP;
1721 }
2481c5fa 1722
cdd6c482 1723 switch (event->attr.type) {
106b506c 1724 case PERF_TYPE_HARDWARE:
cdd6c482 1725 ev = event->attr.config;
9aaa131a 1726 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
b0a873eb 1727 return -EOPNOTSUPP;
4574910e 1728 ev = ppmu->generic_events[ev];
106b506c
PM
1729 break;
1730 case PERF_TYPE_HW_CACHE:
cdd6c482 1731 err = hw_perf_cache_event(event->attr.config, &ev);
106b506c 1732 if (err)
b0a873eb 1733 return err;
106b506c
PM
1734 break;
1735 case PERF_TYPE_RAW:
cdd6c482 1736 ev = event->attr.config;
106b506c 1737 break;
90c8f954 1738 default:
b0a873eb 1739 return -ENOENT;
4574910e 1740 }
b0a873eb 1741
cdd6c482
IM
1742 event->hw.config_base = ev;
1743 event->hw.idx = 0;
4574910e 1744
0475f9ea
PM
1745 /*
1746 * If we are not running on a hypervisor, force the
1747 * exclude_hv bit to 0 so that we don't care what
d095cd46 1748 * the user set it to.
0475f9ea
PM
1749 */
1750 if (!firmware_has_feature(FW_FEATURE_LPAR))
cdd6c482 1751 event->attr.exclude_hv = 0;
ab7ef2e5
PM
1752
1753 /*
cdd6c482 1754 * If this is a per-task event, then we can use
ab7ef2e5
PM
1755 * PM_RUN_* events interchangeably with their non RUN_*
1756 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1757 * XXX we should check if the task is an idle task.
1758 */
1759 flags = 0;
57fa7214 1760 if (event->attach_state & PERF_ATTACH_TASK)
ab7ef2e5
PM
1761 flags |= PPMU_ONLY_COUNT_RUN;
1762
1763 /*
cdd6c482
IM
1764 * If this machine has limited events, check whether this
1765 * event_id could go on a limited event.
ab7ef2e5 1766 */
0bbd0d4b 1767 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
cdd6c482 1768 if (can_go_on_limited_pmc(event, ev, flags)) {
ab7ef2e5
PM
1769 flags |= PPMU_LIMITED_PMC_OK;
1770 } else if (ppmu->limited_pmc_event(ev)) {
1771 /*
cdd6c482 1772 * The requested event_id is on a limited PMC,
ab7ef2e5
PM
1773 * but we can't use a limited PMC; see if any
1774 * alternative goes on a normal PMC.
1775 */
1776 ev = normal_pmc_alternative(ev, flags);
1777 if (!ev)
b0a873eb 1778 return -EINVAL;
ab7ef2e5
PM
1779 }
1780 }
1781
330a1eb7
ME
1782 /* Extra checks for EBB */
1783 err = ebb_event_check(event);
1784 if (err)
1785 return err;
1786
4574910e
PM
1787 /*
1788 * If this is in a group, check if it can go on with all the
cdd6c482 1789 * other hardware events in the group. We assume the event
4574910e
PM
1790 * hasn't been linked into its leader's sibling list at this point.
1791 */
1792 n = 0;
cdd6c482 1793 if (event->group_leader != event) {
a8f90e90 1794 n = collect_events(event->group_leader, ppmu->n_counter - 1,
ab7ef2e5 1795 ctrs, events, cflags);
4574910e 1796 if (n < 0)
b0a873eb 1797 return -EINVAL;
4574910e 1798 }
0475f9ea 1799 events[n] = ev;
cdd6c482 1800 ctrs[n] = event;
ab7ef2e5
PM
1801 cflags[n] = flags;
1802 if (check_excludes(ctrs, cflags, n, 1))
b0a873eb 1803 return -EINVAL;
e51ee31e 1804
cdd6c482 1805 cpuhw = &get_cpu_var(cpu_hw_events);
e51ee31e 1806 err = power_check_constraints(cpuhw, events, cflags, n + 1);
3925f46b
AK
1807
1808 if (has_branch_stack(event)) {
1809 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1810 event->attr.branch_sample_type);
1811
1812 if(cpuhw->bhrb_filter == -1)
1813 return -EOPNOTSUPP;
1814 }
1815
cdd6c482 1816 put_cpu_var(cpu_hw_events);
e51ee31e 1817 if (err)
b0a873eb 1818 return -EINVAL;
4574910e 1819
cdd6c482
IM
1820 event->hw.config = events[n];
1821 event->hw.event_base = cflags[n];
1822 event->hw.last_period = event->hw.sample_period;
e7850595 1823 local64_set(&event->hw.period_left, event->hw.last_period);
7595d63b 1824
330a1eb7
ME
1825 /*
1826 * For EBB events we just context switch the PMC value, we don't do any
1827 * of the sample_period logic. We use hw.prev_count for this.
1828 */
1829 if (is_ebb_event(event))
1830 local64_set(&event->hw.prev_count, 0);
1831
7595d63b
PM
1832 /*
1833 * See if we need to reserve the PMU.
cdd6c482 1834 * If no events are currently in use, then we have to take a
7595d63b
PM
1835 * mutex to ensure that we don't race with another task doing
1836 * reserve_pmc_hardware or release_pmc_hardware.
1837 */
1838 err = 0;
cdd6c482 1839 if (!atomic_inc_not_zero(&num_events)) {
7595d63b 1840 mutex_lock(&pmc_reserve_mutex);
cdd6c482
IM
1841 if (atomic_read(&num_events) == 0 &&
1842 reserve_pmc_hardware(perf_event_interrupt))
7595d63b
PM
1843 err = -EBUSY;
1844 else
cdd6c482 1845 atomic_inc(&num_events);
7595d63b
PM
1846 mutex_unlock(&pmc_reserve_mutex);
1847 }
cdd6c482 1848 event->destroy = hw_perf_event_destroy;
7595d63b 1849
b0a873eb 1850 return err;
4574910e
PM
1851}
1852
35edc2a5
PZ
1853static int power_pmu_event_idx(struct perf_event *event)
1854{
1855 return event->hw.idx;
1856}
1857
1c53a270
SB
1858ssize_t power_events_sysfs_show(struct device *dev,
1859 struct device_attribute *attr, char *page)
1860{
1861 struct perf_pmu_events_attr *pmu_attr;
1862
1863 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1864
1865 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1866}
1867
b0a873eb 1868struct pmu power_pmu = {
a4eaf7f1
PZ
1869 .pmu_enable = power_pmu_enable,
1870 .pmu_disable = power_pmu_disable,
b0a873eb 1871 .event_init = power_pmu_event_init,
a4eaf7f1
PZ
1872 .add = power_pmu_add,
1873 .del = power_pmu_del,
1874 .start = power_pmu_start,
1875 .stop = power_pmu_stop,
b0a873eb 1876 .read = power_pmu_read,
b0a873eb
PZ
1877 .start_txn = power_pmu_start_txn,
1878 .cancel_txn = power_pmu_cancel_txn,
1879 .commit_txn = power_pmu_commit_txn,
35edc2a5 1880 .event_idx = power_pmu_event_idx,
3925f46b 1881 .flush_branch_stack = power_pmu_flush_branch_stack,
b0a873eb
PZ
1882};
1883
4574910e 1884/*
57c0c15b 1885 * A counter has overflowed; update its count and record
4574910e
PM
1886 * things if requested. Note that interrupts are hard-disabled
1887 * here so there is no possibility of being interrupted.
1888 */
cdd6c482 1889static void record_and_restart(struct perf_event *event, unsigned long val,
a8b0ca17 1890 struct pt_regs *regs)
4574910e 1891{
cdd6c482 1892 u64 period = event->hw.sample_period;
4574910e
PM
1893 s64 prev, delta, left;
1894 int record = 0;
1895
a4eaf7f1
PZ
1896 if (event->hw.state & PERF_HES_STOPPED) {
1897 write_pmc(event->hw.idx, 0);
1898 return;
1899 }
1900
4574910e 1901 /* we don't have to worry about interrupts here */
e7850595 1902 prev = local64_read(&event->hw.prev_count);
86c74ab3 1903 delta = check_and_compute_delta(prev, val);
e7850595 1904 local64_add(delta, &event->count);
4574910e
PM
1905
1906 /*
cdd6c482 1907 * See if the total period for this event has expired,
4574910e
PM
1908 * and update for the next period.
1909 */
1910 val = 0;
e7850595 1911 left = local64_read(&event->hw.period_left) - delta;
e13e895f
MN
1912 if (delta == 0)
1913 left++;
60db5e09 1914 if (period) {
4574910e 1915 if (left <= 0) {
60db5e09 1916 left += period;
4574910e 1917 if (left <= 0)
60db5e09 1918 left = period;
e6878835 1919 record = siar_valid(regs);
4bca770e 1920 event->hw.last_period = event->hw.sample_period;
4574910e 1921 }
98fb1807
PM
1922 if (left < 0x80000000LL)
1923 val = 0x80000000LL - left;
4574910e 1924 }
4574910e 1925
a4eaf7f1
PZ
1926 write_pmc(event->hw.idx, val);
1927 local64_set(&event->hw.prev_count, val);
1928 local64_set(&event->hw.period_left, left);
1929 perf_event_update_userpage(event);
1930
4574910e
PM
1931 /*
1932 * Finally record data if requested.
1933 */
0bbd0d4b 1934 if (record) {
dc1d628a
PZ
1935 struct perf_sample_data data;
1936
fd0d000b 1937 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
df1a132b 1938
cdd6c482 1939 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
98fb1807
PM
1940 perf_get_data_addr(regs, &data.addr);
1941
3925f46b
AK
1942 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1943 struct cpu_hw_events *cpuhw;
1944 cpuhw = &__get_cpu_var(cpu_hw_events);
1945 power_pmu_bhrb_read(cpuhw);
1946 data.br_stack = &cpuhw->bhrb_stack;
1947 }
1948
a8b0ca17 1949 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1950 power_pmu_stop(event, 0);
0bbd0d4b
PM
1951 }
1952}
1953
1954/*
1955 * Called from generic code to get the misc flags (i.e. processor mode)
cdd6c482 1956 * for an event_id.
0bbd0d4b
PM
1957 */
1958unsigned long perf_misc_flags(struct pt_regs *regs)
1959{
98fb1807 1960 u32 flags = perf_get_misc_flags(regs);
0bbd0d4b 1961
98fb1807
PM
1962 if (flags)
1963 return flags;
cdd6c482
IM
1964 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1965 PERF_RECORD_MISC_KERNEL;
0bbd0d4b
PM
1966}
1967
1968/*
1969 * Called from generic code to get the instruction pointer
cdd6c482 1970 * for an event_id.
0bbd0d4b
PM
1971 */
1972unsigned long perf_instruction_pointer(struct pt_regs *regs)
1973{
33904054 1974 bool use_siar = regs_use_siar(regs);
0bbd0d4b 1975
e6878835 1976 if (use_siar && siar_valid(regs))
75382aa7 1977 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
e6878835 1978 else if (use_siar)
1979 return 0; // no valid instruction pointer
75382aa7 1980 else
1ce447b9 1981 return regs->nip;
4574910e
PM
1982}
1983
bc09c219 1984static bool pmc_overflow_power7(unsigned long val)
0837e324 1985{
0837e324
AB
1986 /*
1987 * Events on POWER7 can roll back if a speculative event doesn't
1988 * eventually complete. Unfortunately in some rare cases they will
1989 * raise a performance monitor exception. We need to catch this to
1990 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1991 * cycles from overflow.
1992 *
1993 * We only do this if the first pass fails to find any overflowing
1994 * PMCs because a user might set a period of less than 256 and we
1995 * don't want to mistakenly reset them.
1996 */
bc09c219
MN
1997 if ((0x80000000 - val) <= 256)
1998 return true;
1999
2000 return false;
2001}
2002
2003static bool pmc_overflow(unsigned long val)
2004{
2005 if ((int)val < 0)
0837e324
AB
2006 return true;
2007
2008 return false;
2009}
2010
4574910e
PM
2011/*
2012 * Performance monitor interrupt stuff
2013 */
cdd6c482 2014static void perf_event_interrupt(struct pt_regs *regs)
4574910e 2015{
bc09c219 2016 int i, j;
cdd6c482
IM
2017 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
2018 struct perf_event *event;
bc09c219
MN
2019 unsigned long val[8];
2020 int found, active;
ca8f2d7f
PM
2021 int nmi;
2022
ab7ef2e5 2023 if (cpuhw->n_limited)
a8f90e90 2024 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
ab7ef2e5
PM
2025 mfspr(SPRN_PMC6));
2026
98fb1807 2027 perf_read_regs(regs);
0bbd0d4b 2028
98fb1807 2029 nmi = perf_intr_is_nmi(regs);
ca8f2d7f
PM
2030 if (nmi)
2031 nmi_enter();
2032 else
2033 irq_enter();
4574910e 2034
bc09c219
MN
2035 /* Read all the PMCs since we'll need them a bunch of times */
2036 for (i = 0; i < ppmu->n_counter; ++i)
2037 val[i] = read_pmc(i + 1);
2038
2039 /* Try to find what caused the IRQ */
2040 found = 0;
2041 for (i = 0; i < ppmu->n_counter; ++i) {
2042 if (!pmc_overflow(val[i]))
ab7ef2e5 2043 continue;
bc09c219
MN
2044 if (is_limited_pmc(i + 1))
2045 continue; /* these won't generate IRQs */
2046 /*
2047 * We've found one that's overflowed. For active
2048 * counters we need to log this. For inactive
2049 * counters, we need to reset it anyway
2050 */
2051 found = 1;
2052 active = 0;
2053 for (j = 0; j < cpuhw->n_events; ++j) {
2054 event = cpuhw->event[j];
2055 if (event->hw.idx == (i + 1)) {
2056 active = 1;
2057 record_and_restart(event, val[i], regs);
2058 break;
2059 }
4574910e 2060 }
bc09c219
MN
2061 if (!active)
2062 /* reset non active counters that have overflowed */
2063 write_pmc(i + 1, 0);
4574910e 2064 }
bc09c219
MN
2065 if (!found && pvr_version_is(PVR_POWER7)) {
2066 /* check active counters for special buggy p7 overflow */
2067 for (i = 0; i < cpuhw->n_events; ++i) {
2068 event = cpuhw->event[i];
2069 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
ab7ef2e5 2070 continue;
bc09c219
MN
2071 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2072 /* event has overflowed in a buggy way*/
2073 found = 1;
2074 record_and_restart(event,
2075 val[event->hw.idx - 1],
2076 regs);
2077 }
4574910e
PM
2078 }
2079 }
6772faa1 2080 if (!found && !nmi && printk_ratelimit())
bc09c219 2081 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
4574910e
PM
2082
2083 /*
2084 * Reset MMCR0 to its normal value. This will set PMXE and
57c0c15b 2085 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
4574910e 2086 * and thus allow interrupts to occur again.
cdd6c482 2087 * XXX might want to use MSR.PM to keep the events frozen until
4574910e
PM
2088 * we get back out of this interrupt.
2089 */
ab7ef2e5 2090 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 2091
ca8f2d7f
PM
2092 if (nmi)
2093 nmi_exit();
2094 else
db4fb5ac 2095 irq_exit();
4574910e
PM
2096}
2097
3f6da390 2098static void power_pmu_setup(int cpu)
01d0287f 2099{
cdd6c482 2100 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
01d0287f 2101
f36a1a13
PM
2102 if (!ppmu)
2103 return;
01d0287f
PM
2104 memset(cpuhw, 0, sizeof(*cpuhw));
2105 cpuhw->mmcr[0] = MMCR0_FC;
2106}
2107
061d19f2 2108static int
85cfabbc 2109power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
3f6da390
PZ
2110{
2111 unsigned int cpu = (long)hcpu;
2112
2113 switch (action & ~CPU_TASKS_FROZEN) {
2114 case CPU_UP_PREPARE:
2115 power_pmu_setup(cpu);
2116 break;
2117
2118 default:
2119 break;
2120 }
2121
2122 return NOTIFY_OK;
2123}
2124
061d19f2 2125int register_power_pmu(struct power_pmu *pmu)
4574910e 2126{
079b3c56
PM
2127 if (ppmu)
2128 return -EBUSY; /* something's already registered */
2129
2130 ppmu = pmu;
2131 pr_info("%s performance monitor hardware support registered\n",
2132 pmu->name);
d095cd46 2133
1c53a270
SB
2134 power_pmu.attr_groups = ppmu->attr_groups;
2135
98fb1807 2136#ifdef MSR_HV
d095cd46
PM
2137 /*
2138 * Use FCHV to ignore kernel events if MSR.HV is set.
2139 */
2140 if (mfmsr() & MSR_HV)
cdd6c482 2141 freeze_events_kernel = MMCR0_FCHV;
98fb1807 2142#endif /* CONFIG_PPC64 */
d095cd46 2143
2e80a82a 2144 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
3f6da390
PZ
2145 perf_cpu_notifier(power_pmu_notifier);
2146
4574910e
PM
2147 return 0;
2148}
This page took 0.376117 seconds and 5 git commands to generate.