selftests/powerpc: Add test of per-event excludes
[deliverable/linux.git] / arch / powerpc / perf / core-book3s.c
CommitLineData
4574910e 1/*
cdd6c482 2 * Performance event support - powerpc architecture code
4574910e
PM
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/kernel.h>
12#include <linux/sched.h>
cdd6c482 13#include <linux/perf_event.h>
4574910e
PM
14#include <linux/percpu.h>
15#include <linux/hardirq.h>
69123184 16#include <linux/uaccess.h>
4574910e
PM
17#include <asm/reg.h>
18#include <asm/pmc.h>
01d0287f 19#include <asm/machdep.h>
0475f9ea 20#include <asm/firmware.h>
0bbd0d4b 21#include <asm/ptrace.h>
69123184 22#include <asm/code-patching.h>
4574910e 23
3925f46b
AK
24#define BHRB_MAX_ENTRIES 32
25#define BHRB_TARGET 0x0000000000000002
26#define BHRB_PREDICTION 0x0000000000000001
b0d436c7 27#define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
3925f46b 28
cdd6c482
IM
29struct cpu_hw_events {
30 int n_events;
4574910e
PM
31 int n_percpu;
32 int disabled;
33 int n_added;
ab7ef2e5
PM
34 int n_limited;
35 u8 pmcs_enabled;
cdd6c482
IM
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
448d64f8 39 unsigned long mmcr[3];
a8f90e90
PM
40 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
41 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
cdd6c482
IM
42 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
43 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
44 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
8e6d5573
LM
45
46 unsigned int group_flag;
47 int n_txn_start;
3925f46b
AK
48
49 /* BHRB bits */
50 u64 bhrb_filter; /* BHRB HW branch filter */
51 int bhrb_users;
52 void *bhrb_context;
53 struct perf_branch_stack bhrb_stack;
54 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
4574910e 55};
3925f46b 56
cdd6c482 57DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
4574910e
PM
58
59struct power_pmu *ppmu;
60
d095cd46 61/*
57c0c15b 62 * Normally, to ignore kernel events we set the FCS (freeze counters
d095cd46
PM
63 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
64 * hypervisor bit set in the MSR, or if we are running on a processor
65 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
66 * then we need to use the FCHV bit to ignore kernel events.
67 */
cdd6c482 68static unsigned int freeze_events_kernel = MMCR0_FCS;
d095cd46 69
98fb1807
PM
70/*
71 * 32-bit doesn't have MMCRA but does have an MMCR2,
72 * and a few other names are different.
73 */
74#ifdef CONFIG_PPC32
75
76#define MMCR0_FCHV 0
77#define MMCR0_PMCjCE MMCR0_PMCnCE
7a7a41f9 78#define MMCR0_FC56 0
378a6ee9 79#define MMCR0_PMAO 0
330a1eb7 80#define MMCR0_EBE 0
76cb8a78 81#define MMCR0_BHRBA 0
330a1eb7
ME
82#define MMCR0_PMCC 0
83#define MMCR0_PMCC_U6 0
98fb1807
PM
84
85#define SPRN_MMCRA SPRN_MMCR2
86#define MMCRA_SAMPLE_ENABLE 0
87
88static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
89{
90 return 0;
91}
98fb1807
PM
92static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
93static inline u32 perf_get_misc_flags(struct pt_regs *regs)
94{
95 return 0;
96}
75382aa7
AB
97static inline void perf_read_regs(struct pt_regs *regs)
98{
99 regs->result = 0;
100}
98fb1807
PM
101static inline int perf_intr_is_nmi(struct pt_regs *regs)
102{
103 return 0;
104}
105
e6878835 106static inline int siar_valid(struct pt_regs *regs)
107{
108 return 1;
109}
110
330a1eb7
ME
111static bool is_ebb_event(struct perf_event *event) { return false; }
112static int ebb_event_check(struct perf_event *event) { return 0; }
113static void ebb_event_add(struct perf_event *event) { }
114static void ebb_switch_out(unsigned long mmcr0) { }
115static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
116{
117 return mmcr0;
118}
119
d52f2dc4
MN
120static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
121static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
122void power_pmu_flush_branch_stack(void) {}
123static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
c2e37a26 124static void pmao_restore_workaround(bool ebb) { }
98fb1807
PM
125#endif /* CONFIG_PPC32 */
126
33904054
ME
127static bool regs_use_siar(struct pt_regs *regs)
128{
cbda6aa1 129 return !!regs->result;
33904054
ME
130}
131
98fb1807
PM
132/*
133 * Things that are specific to 64-bit implementations.
134 */
135#ifdef CONFIG_PPC64
136
137static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
138{
139 unsigned long mmcra = regs->dsisr;
140
7a786832 141 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
98fb1807
PM
142 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
143 if (slot > 1)
144 return 4 * (slot - 1);
145 }
7a786832 146
98fb1807
PM
147 return 0;
148}
149
98fb1807
PM
150/*
151 * The user wants a data address recorded.
152 * If we're not doing instruction sampling, give them the SDAR
153 * (sampled data address). If we are doing instruction sampling, then
154 * only give them the SDAR if it corresponds to the instruction
58a032c3
ME
155 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
156 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
98fb1807
PM
157 */
158static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
159{
160 unsigned long mmcra = regs->dsisr;
58a032c3 161 bool sdar_valid;
e6878835 162
58a032c3
ME
163 if (ppmu->flags & PPMU_HAS_SIER)
164 sdar_valid = regs->dar & SIER_SDAR_VALID;
165 else {
166 unsigned long sdsync;
167
168 if (ppmu->flags & PPMU_SIAR_VALID)
169 sdsync = POWER7P_MMCRA_SDAR_VALID;
170 else if (ppmu->flags & PPMU_ALT_SIPR)
171 sdsync = POWER6_MMCRA_SDSYNC;
172 else
173 sdsync = MMCRA_SDSYNC;
174
175 sdar_valid = mmcra & sdsync;
176 }
98fb1807 177
58a032c3 178 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
98fb1807
PM
179 *addrp = mfspr(SPRN_SDAR);
180}
181
5682c460 182static bool regs_sihv(struct pt_regs *regs)
68b30bb9
AB
183{
184 unsigned long sihv = MMCRA_SIHV;
185
8f61aa32
ME
186 if (ppmu->flags & PPMU_HAS_SIER)
187 return !!(regs->dar & SIER_SIHV);
188
68b30bb9
AB
189 if (ppmu->flags & PPMU_ALT_SIPR)
190 sihv = POWER6_MMCRA_SIHV;
191
5682c460 192 return !!(regs->dsisr & sihv);
68b30bb9
AB
193}
194
5682c460 195static bool regs_sipr(struct pt_regs *regs)
68b30bb9
AB
196{
197 unsigned long sipr = MMCRA_SIPR;
198
8f61aa32
ME
199 if (ppmu->flags & PPMU_HAS_SIER)
200 return !!(regs->dar & SIER_SIPR);
201
68b30bb9
AB
202 if (ppmu->flags & PPMU_ALT_SIPR)
203 sipr = POWER6_MMCRA_SIPR;
204
5682c460 205 return !!(regs->dsisr & sipr);
68b30bb9
AB
206}
207
1ce447b9
BH
208static inline u32 perf_flags_from_msr(struct pt_regs *regs)
209{
210 if (regs->msr & MSR_PR)
211 return PERF_RECORD_MISC_USER;
212 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
213 return PERF_RECORD_MISC_HYPERVISOR;
214 return PERF_RECORD_MISC_KERNEL;
215}
216
98fb1807
PM
217static inline u32 perf_get_misc_flags(struct pt_regs *regs)
218{
33904054 219 bool use_siar = regs_use_siar(regs);
98fb1807 220
75382aa7 221 if (!use_siar)
1ce447b9
BH
222 return perf_flags_from_msr(regs);
223
224 /*
225 * If we don't have flags in MMCRA, rather than using
226 * the MSR, we intuit the flags from the address in
227 * SIAR which should give slightly more reliable
228 * results
229 */
cbda6aa1 230 if (ppmu->flags & PPMU_NO_SIPR) {
1ce447b9
BH
231 unsigned long siar = mfspr(SPRN_SIAR);
232 if (siar >= PAGE_OFFSET)
233 return PERF_RECORD_MISC_KERNEL;
234 return PERF_RECORD_MISC_USER;
235 }
98fb1807 236
7abb840b 237 /* PR has priority over HV, so order below is important */
5682c460 238 if (regs_sipr(regs))
7abb840b 239 return PERF_RECORD_MISC_USER;
5682c460
ME
240
241 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
cdd6c482 242 return PERF_RECORD_MISC_HYPERVISOR;
5682c460 243
7abb840b 244 return PERF_RECORD_MISC_KERNEL;
98fb1807
PM
245}
246
247/*
248 * Overload regs->dsisr to store MMCRA so we only need to read it once
249 * on each interrupt.
8f61aa32 250 * Overload regs->dar to store SIER if we have it.
75382aa7
AB
251 * Overload regs->result to specify whether we should use the MSR (result
252 * is zero) or the SIAR (result is non zero).
98fb1807
PM
253 */
254static inline void perf_read_regs(struct pt_regs *regs)
255{
75382aa7
AB
256 unsigned long mmcra = mfspr(SPRN_MMCRA);
257 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
258 int use_siar;
259
5682c460 260 regs->dsisr = mmcra;
8f61aa32 261
cbda6aa1
ME
262 if (ppmu->flags & PPMU_HAS_SIER)
263 regs->dar = mfspr(SPRN_SIER);
8f61aa32 264
5c093efa
AB
265 /*
266 * If this isn't a PMU exception (eg a software event) the SIAR is
267 * not valid. Use pt_regs.
268 *
269 * If it is a marked event use the SIAR.
270 *
271 * If the PMU doesn't update the SIAR for non marked events use
272 * pt_regs.
273 *
274 * If the PMU has HV/PR flags then check to see if they
275 * place the exception in userspace. If so, use pt_regs. In
276 * continuous sampling mode the SIAR and the PMU exception are
277 * not synchronised, so they may be many instructions apart.
278 * This can result in confusing backtraces. We still want
279 * hypervisor samples as well as samples in the kernel with
280 * interrupts off hence the userspace check.
281 */
75382aa7
AB
282 if (TRAP(regs) != 0xf00)
283 use_siar = 0;
5c093efa
AB
284 else if (marked)
285 use_siar = 1;
286 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
287 use_siar = 0;
cbda6aa1 288 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
75382aa7
AB
289 use_siar = 0;
290 else
291 use_siar = 1;
292
cbda6aa1 293 regs->result = use_siar;
98fb1807
PM
294}
295
296/*
297 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
298 * it as an NMI.
299 */
300static inline int perf_intr_is_nmi(struct pt_regs *regs)
301{
302 return !regs->softe;
303}
304
e6878835 305/*
306 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
307 * must be sampled only if the SIAR-valid bit is set.
308 *
309 * For unmarked instructions and for processors that don't have the SIAR-Valid
310 * bit, assume that SIAR is valid.
311 */
312static inline int siar_valid(struct pt_regs *regs)
313{
314 unsigned long mmcra = regs->dsisr;
315 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
316
58a032c3
ME
317 if (marked) {
318 if (ppmu->flags & PPMU_HAS_SIER)
319 return regs->dar & SIER_SIAR_VALID;
320
321 if (ppmu->flags & PPMU_SIAR_VALID)
322 return mmcra & POWER7P_MMCRA_SIAR_VALID;
323 }
e6878835 324
325 return 1;
326}
327
d52f2dc4
MN
328
329/* Reset all possible BHRB entries */
330static void power_pmu_bhrb_reset(void)
331{
332 asm volatile(PPC_CLRBHRB);
333}
334
335static void power_pmu_bhrb_enable(struct perf_event *event)
336{
337 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
338
339 if (!ppmu->bhrb_nr)
340 return;
341
342 /* Clear BHRB if we changed task context to avoid data leaks */
343 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
344 power_pmu_bhrb_reset();
345 cpuhw->bhrb_context = event->ctx;
346 }
347 cpuhw->bhrb_users++;
348}
349
350static void power_pmu_bhrb_disable(struct perf_event *event)
351{
352 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
353
354 if (!ppmu->bhrb_nr)
355 return;
356
357 cpuhw->bhrb_users--;
358 WARN_ON_ONCE(cpuhw->bhrb_users < 0);
359
360 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
361 /* BHRB cannot be turned off when other
362 * events are active on the PMU.
363 */
364
365 /* avoid stale pointer */
366 cpuhw->bhrb_context = NULL;
367 }
368}
369
370/* Called from ctxsw to prevent one process's branch entries to
371 * mingle with the other process's entries during context switch.
372 */
373void power_pmu_flush_branch_stack(void)
374{
375 if (ppmu->bhrb_nr)
376 power_pmu_bhrb_reset();
377}
69123184
MN
378/* Calculate the to address for a branch */
379static __u64 power_pmu_bhrb_to(u64 addr)
380{
381 unsigned int instr;
382 int ret;
383 __u64 target;
384
385 if (is_kernel_addr(addr))
386 return branch_target((unsigned int *)addr);
387
388 /* Userspace: need copy instruction here then translate it */
389 pagefault_disable();
390 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
391 if (ret) {
392 pagefault_enable();
393 return 0;
394 }
395 pagefault_enable();
396
397 target = branch_target(&instr);
398 if ((!target) || (instr & BRANCH_ABSOLUTE))
399 return target;
400
401 /* Translate relative branch target from kernel to user address */
402 return target - (unsigned long)&instr + addr;
403}
d52f2dc4 404
d52f2dc4 405/* Processing BHRB entries */
506e70d1 406void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
d52f2dc4
MN
407{
408 u64 val;
409 u64 addr;
506e70d1 410 int r_index, u_index, pred;
d52f2dc4
MN
411
412 r_index = 0;
413 u_index = 0;
414 while (r_index < ppmu->bhrb_nr) {
415 /* Assembly read function */
506e70d1
MN
416 val = read_bhrb(r_index++);
417 if (!val)
418 /* Terminal marker: End of valid BHRB entries */
d52f2dc4 419 break;
506e70d1 420 else {
d52f2dc4
MN
421 addr = val & BHRB_EA;
422 pred = val & BHRB_PREDICTION;
d52f2dc4 423
506e70d1
MN
424 if (!addr)
425 /* invalid entry */
d52f2dc4 426 continue;
d52f2dc4 427
506e70d1
MN
428 /* Branches are read most recent first (ie. mfbhrb 0 is
429 * the most recent branch).
430 * There are two types of valid entries:
431 * 1) a target entry which is the to address of a
432 * computed goto like a blr,bctr,btar. The next
433 * entry read from the bhrb will be branch
434 * corresponding to this target (ie. the actual
435 * blr/bctr/btar instruction).
436 * 2) a from address which is an actual branch. If a
437 * target entry proceeds this, then this is the
438 * matching branch for that target. If this is not
439 * following a target entry, then this is a branch
440 * where the target is given as an immediate field
441 * in the instruction (ie. an i or b form branch).
442 * In this case we need to read the instruction from
443 * memory to determine the target/to address.
444 */
d52f2dc4 445
d52f2dc4 446 if (val & BHRB_TARGET) {
506e70d1
MN
447 /* Target branches use two entries
448 * (ie. computed gotos/XL form)
449 */
450 cpuhw->bhrb_entries[u_index].to = addr;
451 cpuhw->bhrb_entries[u_index].mispred = pred;
452 cpuhw->bhrb_entries[u_index].predicted = ~pred;
d52f2dc4 453
506e70d1
MN
454 /* Get from address in next entry */
455 val = read_bhrb(r_index++);
456 addr = val & BHRB_EA;
457 if (val & BHRB_TARGET) {
458 /* Shouldn't have two targets in a
459 row.. Reset index and try again */
460 r_index--;
461 addr = 0;
462 }
463 cpuhw->bhrb_entries[u_index].from = addr;
d52f2dc4 464 } else {
506e70d1
MN
465 /* Branches to immediate field
466 (ie I or B form) */
d52f2dc4 467 cpuhw->bhrb_entries[u_index].from = addr;
69123184
MN
468 cpuhw->bhrb_entries[u_index].to =
469 power_pmu_bhrb_to(addr);
d52f2dc4
MN
470 cpuhw->bhrb_entries[u_index].mispred = pred;
471 cpuhw->bhrb_entries[u_index].predicted = ~pred;
d52f2dc4 472 }
506e70d1
MN
473 u_index++;
474
d52f2dc4
MN
475 }
476 }
477 cpuhw->bhrb_stack.nr = u_index;
478 return;
479}
480
330a1eb7
ME
481static bool is_ebb_event(struct perf_event *event)
482{
483 /*
484 * This could be a per-PMU callback, but we'd rather avoid the cost. We
485 * check that the PMU supports EBB, meaning those that don't can still
486 * use bit 63 of the event code for something else if they wish.
487 */
4d9690dd 488 return (ppmu->flags & PPMU_ARCH_207S) &&
8d7c55d0 489 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
330a1eb7
ME
490}
491
492static int ebb_event_check(struct perf_event *event)
493{
494 struct perf_event *leader = event->group_leader;
495
496 /* Event and group leader must agree on EBB */
497 if (is_ebb_event(leader) != is_ebb_event(event))
498 return -EINVAL;
499
500 if (is_ebb_event(event)) {
501 if (!(event->attach_state & PERF_ATTACH_TASK))
502 return -EINVAL;
503
504 if (!leader->attr.pinned || !leader->attr.exclusive)
505 return -EINVAL;
506
58b5fb00
ME
507 if (event->attr.freq ||
508 event->attr.inherit ||
509 event->attr.sample_type ||
510 event->attr.sample_period ||
511 event->attr.enable_on_exec)
330a1eb7
ME
512 return -EINVAL;
513 }
514
515 return 0;
516}
517
518static void ebb_event_add(struct perf_event *event)
519{
520 if (!is_ebb_event(event) || current->thread.used_ebb)
521 return;
522
523 /*
524 * IFF this is the first time we've added an EBB event, set
525 * PMXE in the user MMCR0 so we can detect when it's cleared by
526 * userspace. We need this so that we can context switch while
527 * userspace is in the EBB handler (where PMXE is 0).
528 */
529 current->thread.used_ebb = 1;
530 current->thread.mmcr0 |= MMCR0_PMXE;
531}
532
533static void ebb_switch_out(unsigned long mmcr0)
534{
535 if (!(mmcr0 & MMCR0_EBE))
536 return;
537
538 current->thread.siar = mfspr(SPRN_SIAR);
539 current->thread.sier = mfspr(SPRN_SIER);
540 current->thread.sdar = mfspr(SPRN_SDAR);
541 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
542 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
543}
544
545static unsigned long ebb_switch_in(bool ebb, unsigned long mmcr0)
546{
547 if (!ebb)
548 goto out;
549
76cb8a78
ME
550 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
551 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
330a1eb7 552
c2e37a26
ME
553 /*
554 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
555 * with pmao_restore_workaround() because we may add PMAO but we never
556 * clear it here.
557 */
330a1eb7
ME
558 mmcr0 |= current->thread.mmcr0;
559
c2e37a26
ME
560 /*
561 * Be careful not to set PMXE if userspace had it cleared. This is also
562 * compatible with pmao_restore_workaround() because it has already
563 * cleared PMXE and we leave PMAO alone.
564 */
330a1eb7
ME
565 if (!(current->thread.mmcr0 & MMCR0_PMXE))
566 mmcr0 &= ~MMCR0_PMXE;
567
568 mtspr(SPRN_SIAR, current->thread.siar);
569 mtspr(SPRN_SIER, current->thread.sier);
570 mtspr(SPRN_SDAR, current->thread.sdar);
571 mtspr(SPRN_MMCR2, current->thread.mmcr2);
572out:
573 return mmcr0;
574}
c2e37a26
ME
575
576static void pmao_restore_workaround(bool ebb)
577{
578 unsigned pmcs[6];
579
580 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
581 return;
582
583 /*
584 * On POWER8E there is a hardware defect which affects the PMU context
585 * switch logic, ie. power_pmu_disable/enable().
586 *
587 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
588 * by the hardware. Sometime later the actual PMU exception is
589 * delivered.
590 *
591 * If we context switch, or simply disable/enable, the PMU prior to the
592 * exception arriving, the exception will be lost when we clear PMAO.
593 *
594 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
595 * set, and this _should_ generate an exception. However because of the
596 * defect no exception is generated when we write PMAO, and we get
597 * stuck with no counters counting but no exception delivered.
598 *
599 * The workaround is to detect this case and tweak the hardware to
600 * create another pending PMU exception.
601 *
602 * We do that by setting up PMC6 (cycles) for an imminent overflow and
603 * enabling the PMU. That causes a new exception to be generated in the
604 * chip, but we don't take it yet because we have interrupts hard
605 * disabled. We then write back the PMU state as we want it to be seen
606 * by the exception handler. When we reenable interrupts the exception
607 * handler will be called and see the correct state.
608 *
609 * The logic is the same for EBB, except that the exception is gated by
610 * us having interrupts hard disabled as well as the fact that we are
611 * not in userspace. The exception is finally delivered when we return
612 * to userspace.
613 */
614
615 /* Only if PMAO is set and PMAO_SYNC is clear */
616 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
617 return;
618
619 /* If we're doing EBB, only if BESCR[GE] is set */
620 if (ebb && !(current->thread.bescr & BESCR_GE))
621 return;
622
623 /*
624 * We are already soft-disabled in power_pmu_enable(). We need to hard
625 * enable to actually prevent the PMU exception from firing.
626 */
627 hard_irq_disable();
628
629 /*
630 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
631 * Using read/write_pmc() in a for loop adds 12 function calls and
632 * almost doubles our code size.
633 */
634 pmcs[0] = mfspr(SPRN_PMC1);
635 pmcs[1] = mfspr(SPRN_PMC2);
636 pmcs[2] = mfspr(SPRN_PMC3);
637 pmcs[3] = mfspr(SPRN_PMC4);
638 pmcs[4] = mfspr(SPRN_PMC5);
639 pmcs[5] = mfspr(SPRN_PMC6);
640
641 /* Ensure all freeze bits are unset */
642 mtspr(SPRN_MMCR2, 0);
643
644 /* Set up PMC6 to overflow in one cycle */
645 mtspr(SPRN_PMC6, 0x7FFFFFFE);
646
647 /* Enable exceptions and unfreeze PMC6 */
648 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
649
650 /* Now we need to refreeze and restore the PMCs */
651 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
652
653 mtspr(SPRN_PMC1, pmcs[0]);
654 mtspr(SPRN_PMC2, pmcs[1]);
655 mtspr(SPRN_PMC3, pmcs[2]);
656 mtspr(SPRN_PMC4, pmcs[3]);
657 mtspr(SPRN_PMC5, pmcs[4]);
658 mtspr(SPRN_PMC6, pmcs[5]);
659}
98fb1807
PM
660#endif /* CONFIG_PPC64 */
661
cdd6c482 662static void perf_event_interrupt(struct pt_regs *regs);
7595d63b 663
4574910e 664/*
57c0c15b 665 * Read one performance monitor counter (PMC).
4574910e
PM
666 */
667static unsigned long read_pmc(int idx)
668{
669 unsigned long val;
670
671 switch (idx) {
672 case 1:
673 val = mfspr(SPRN_PMC1);
674 break;
675 case 2:
676 val = mfspr(SPRN_PMC2);
677 break;
678 case 3:
679 val = mfspr(SPRN_PMC3);
680 break;
681 case 4:
682 val = mfspr(SPRN_PMC4);
683 break;
684 case 5:
685 val = mfspr(SPRN_PMC5);
686 break;
687 case 6:
688 val = mfspr(SPRN_PMC6);
689 break;
98fb1807 690#ifdef CONFIG_PPC64
4574910e
PM
691 case 7:
692 val = mfspr(SPRN_PMC7);
693 break;
694 case 8:
695 val = mfspr(SPRN_PMC8);
696 break;
98fb1807 697#endif /* CONFIG_PPC64 */
4574910e
PM
698 default:
699 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
700 val = 0;
701 }
702 return val;
703}
704
705/*
706 * Write one PMC.
707 */
708static void write_pmc(int idx, unsigned long val)
709{
710 switch (idx) {
711 case 1:
712 mtspr(SPRN_PMC1, val);
713 break;
714 case 2:
715 mtspr(SPRN_PMC2, val);
716 break;
717 case 3:
718 mtspr(SPRN_PMC3, val);
719 break;
720 case 4:
721 mtspr(SPRN_PMC4, val);
722 break;
723 case 5:
724 mtspr(SPRN_PMC5, val);
725 break;
726 case 6:
727 mtspr(SPRN_PMC6, val);
728 break;
98fb1807 729#ifdef CONFIG_PPC64
4574910e
PM
730 case 7:
731 mtspr(SPRN_PMC7, val);
732 break;
733 case 8:
734 mtspr(SPRN_PMC8, val);
735 break;
98fb1807 736#endif /* CONFIG_PPC64 */
4574910e
PM
737 default:
738 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
739 }
740}
741
5f6d0380
AK
742/* Called from sysrq_handle_showregs() */
743void perf_event_print_debug(void)
744{
745 unsigned long sdar, sier, flags;
746 u32 pmcs[MAX_HWEVENTS];
747 int i;
748
749 if (!ppmu->n_counter)
750 return;
751
752 local_irq_save(flags);
753
754 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
755 smp_processor_id(), ppmu->name, ppmu->n_counter);
756
757 for (i = 0; i < ppmu->n_counter; i++)
758 pmcs[i] = read_pmc(i + 1);
759
760 for (; i < MAX_HWEVENTS; i++)
761 pmcs[i] = 0xdeadbeef;
762
763 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
764 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
765
766 if (ppmu->n_counter > 4)
767 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
768 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
769
770 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
771 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
772
773 sdar = sier = 0;
774#ifdef CONFIG_PPC64
775 sdar = mfspr(SPRN_SDAR);
776
777 if (ppmu->flags & PPMU_HAS_SIER)
778 sier = mfspr(SPRN_SIER);
779
4d9690dd 780 if (ppmu->flags & PPMU_ARCH_207S) {
5f6d0380
AK
781 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
782 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
783 pr_info("EBBRR: %016lx BESCR: %016lx\n",
784 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
785 }
786#endif
787 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
788 mfspr(SPRN_SIAR), sdar, sier);
789
790 local_irq_restore(flags);
791}
792
4574910e
PM
793/*
794 * Check if a set of events can all go on the PMU at once.
795 * If they can't, this will look at alternative codes for the events
796 * and see if any combination of alternative codes is feasible.
cdd6c482 797 * The feasible set is returned in event_id[].
4574910e 798 */
cdd6c482
IM
799static int power_check_constraints(struct cpu_hw_events *cpuhw,
800 u64 event_id[], unsigned int cflags[],
ab7ef2e5 801 int n_ev)
4574910e 802{
448d64f8 803 unsigned long mask, value, nv;
cdd6c482
IM
804 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
805 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
4574910e 806 int i, j;
448d64f8
PM
807 unsigned long addf = ppmu->add_fields;
808 unsigned long tadd = ppmu->test_adder;
4574910e 809
a8f90e90 810 if (n_ev > ppmu->n_counter)
4574910e
PM
811 return -1;
812
813 /* First see if the events will go on as-is */
814 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 815 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
cdd6c482
IM
816 && !ppmu->limited_pmc_event(event_id[i])) {
817 ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 818 cpuhw->alternatives[i]);
cdd6c482 819 event_id[i] = cpuhw->alternatives[i][0];
ab7ef2e5 820 }
cdd6c482 821 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
e51ee31e 822 &cpuhw->avalues[i][0]))
4574910e 823 return -1;
4574910e
PM
824 }
825 value = mask = 0;
826 for (i = 0; i < n_ev; ++i) {
e51ee31e
PM
827 nv = (value | cpuhw->avalues[i][0]) +
828 (value & cpuhw->avalues[i][0] & addf);
4574910e 829 if ((((nv + tadd) ^ value) & mask) != 0 ||
e51ee31e
PM
830 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
831 cpuhw->amasks[i][0]) != 0)
4574910e
PM
832 break;
833 value = nv;
e51ee31e 834 mask |= cpuhw->amasks[i][0];
4574910e
PM
835 }
836 if (i == n_ev)
837 return 0; /* all OK */
838
839 /* doesn't work, gather alternatives... */
840 if (!ppmu->get_alternatives)
841 return -1;
842 for (i = 0; i < n_ev; ++i) {
ab7ef2e5 843 choice[i] = 0;
cdd6c482 844 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
e51ee31e 845 cpuhw->alternatives[i]);
4574910e 846 for (j = 1; j < n_alt[i]; ++j)
e51ee31e
PM
847 ppmu->get_constraint(cpuhw->alternatives[i][j],
848 &cpuhw->amasks[i][j],
849 &cpuhw->avalues[i][j]);
4574910e
PM
850 }
851
852 /* enumerate all possibilities and see if any will work */
853 i = 0;
854 j = -1;
855 value = mask = nv = 0;
856 while (i < n_ev) {
857 if (j >= 0) {
858 /* we're backtracking, restore context */
859 value = svalues[i];
860 mask = smasks[i];
861 j = choice[i];
862 }
863 /*
cdd6c482 864 * See if any alternative k for event_id i,
4574910e
PM
865 * where k > j, will satisfy the constraints.
866 */
867 while (++j < n_alt[i]) {
e51ee31e
PM
868 nv = (value | cpuhw->avalues[i][j]) +
869 (value & cpuhw->avalues[i][j] & addf);
4574910e 870 if ((((nv + tadd) ^ value) & mask) == 0 &&
e51ee31e
PM
871 (((nv + tadd) ^ cpuhw->avalues[i][j])
872 & cpuhw->amasks[i][j]) == 0)
4574910e
PM
873 break;
874 }
875 if (j >= n_alt[i]) {
876 /*
877 * No feasible alternative, backtrack
cdd6c482 878 * to event_id i-1 and continue enumerating its
4574910e
PM
879 * alternatives from where we got up to.
880 */
881 if (--i < 0)
882 return -1;
883 } else {
884 /*
cdd6c482
IM
885 * Found a feasible alternative for event_id i,
886 * remember where we got up to with this event_id,
887 * go on to the next event_id, and start with
4574910e
PM
888 * the first alternative for it.
889 */
890 choice[i] = j;
891 svalues[i] = value;
892 smasks[i] = mask;
893 value = nv;
e51ee31e 894 mask |= cpuhw->amasks[i][j];
4574910e
PM
895 ++i;
896 j = -1;
897 }
898 }
899
900 /* OK, we have a feasible combination, tell the caller the solution */
901 for (i = 0; i < n_ev; ++i)
cdd6c482 902 event_id[i] = cpuhw->alternatives[i][choice[i]];
4574910e
PM
903 return 0;
904}
905
0475f9ea 906/*
cdd6c482 907 * Check if newly-added events have consistent settings for
0475f9ea 908 * exclude_{user,kernel,hv} with each other and any previously
cdd6c482 909 * added events.
0475f9ea 910 */
cdd6c482 911static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
ab7ef2e5 912 int n_prev, int n_new)
0475f9ea 913{
ab7ef2e5
PM
914 int eu = 0, ek = 0, eh = 0;
915 int i, n, first;
cdd6c482 916 struct perf_event *event;
0475f9ea
PM
917
918 n = n_prev + n_new;
919 if (n <= 1)
920 return 0;
921
ab7ef2e5
PM
922 first = 1;
923 for (i = 0; i < n; ++i) {
924 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
925 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
926 continue;
927 }
cdd6c482 928 event = ctrs[i];
ab7ef2e5 929 if (first) {
cdd6c482
IM
930 eu = event->attr.exclude_user;
931 ek = event->attr.exclude_kernel;
932 eh = event->attr.exclude_hv;
ab7ef2e5 933 first = 0;
cdd6c482
IM
934 } else if (event->attr.exclude_user != eu ||
935 event->attr.exclude_kernel != ek ||
936 event->attr.exclude_hv != eh) {
0475f9ea 937 return -EAGAIN;
ab7ef2e5 938 }
0475f9ea 939 }
ab7ef2e5
PM
940
941 if (eu || ek || eh)
942 for (i = 0; i < n; ++i)
943 if (cflags[i] & PPMU_LIMITED_PMC_OK)
944 cflags[i] |= PPMU_LIMITED_PMC_REQD;
945
0475f9ea
PM
946 return 0;
947}
948
86c74ab3
EM
949static u64 check_and_compute_delta(u64 prev, u64 val)
950{
951 u64 delta = (val - prev) & 0xfffffffful;
952
953 /*
954 * POWER7 can roll back counter values, if the new value is smaller
955 * than the previous value it will cause the delta and the counter to
956 * have bogus values unless we rolled a counter over. If a coutner is
957 * rolled back, it will be smaller, but within 256, which is the maximum
958 * number of events to rollback at once. If we dectect a rollback
959 * return 0. This can lead to a small lack of precision in the
960 * counters.
961 */
962 if (prev > val && (prev - val) < 256)
963 delta = 0;
964
965 return delta;
966}
967
cdd6c482 968static void power_pmu_read(struct perf_event *event)
4574910e 969{
98fb1807 970 s64 val, delta, prev;
4574910e 971
a4eaf7f1
PZ
972 if (event->hw.state & PERF_HES_STOPPED)
973 return;
974
cdd6c482 975 if (!event->hw.idx)
4574910e 976 return;
330a1eb7
ME
977
978 if (is_ebb_event(event)) {
979 val = read_pmc(event->hw.idx);
980 local64_set(&event->hw.prev_count, val);
981 return;
982 }
983
4574910e
PM
984 /*
985 * Performance monitor interrupts come even when interrupts
986 * are soft-disabled, as long as interrupts are hard-enabled.
987 * Therefore we treat them like NMIs.
988 */
989 do {
e7850595 990 prev = local64_read(&event->hw.prev_count);
4574910e 991 barrier();
cdd6c482 992 val = read_pmc(event->hw.idx);
86c74ab3
EM
993 delta = check_and_compute_delta(prev, val);
994 if (!delta)
995 return;
e7850595 996 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
4574910e 997
e7850595 998 local64_add(delta, &event->count);
f5602941
AB
999
1000 /*
1001 * A number of places program the PMC with (0x80000000 - period_left).
1002 * We never want period_left to be less than 1 because we will program
1003 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1004 * roll around to 0 before taking an exception. We have seen this
1005 * on POWER8.
1006 *
1007 * To fix this, clamp the minimum value of period_left to 1.
1008 */
1009 do {
1010 prev = local64_read(&event->hw.period_left);
1011 val = prev - delta;
1012 if (val < 1)
1013 val = 1;
1014 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
4574910e
PM
1015}
1016
ab7ef2e5
PM
1017/*
1018 * On some machines, PMC5 and PMC6 can't be written, don't respect
1019 * the freeze conditions, and don't generate interrupts. This tells
cdd6c482 1020 * us if `event' is using such a PMC.
ab7ef2e5
PM
1021 */
1022static int is_limited_pmc(int pmcnum)
1023{
0bbd0d4b
PM
1024 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1025 && (pmcnum == 5 || pmcnum == 6);
ab7ef2e5
PM
1026}
1027
a8f90e90 1028static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
1029 unsigned long pmc5, unsigned long pmc6)
1030{
cdd6c482 1031 struct perf_event *event;
ab7ef2e5
PM
1032 u64 val, prev, delta;
1033 int i;
1034
1035 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 1036 event = cpuhw->limited_counter[i];
cdd6c482 1037 if (!event->hw.idx)
ab7ef2e5 1038 continue;
cdd6c482 1039 val = (event->hw.idx == 5) ? pmc5 : pmc6;
e7850595 1040 prev = local64_read(&event->hw.prev_count);
cdd6c482 1041 event->hw.idx = 0;
86c74ab3
EM
1042 delta = check_and_compute_delta(prev, val);
1043 if (delta)
1044 local64_add(delta, &event->count);
ab7ef2e5
PM
1045 }
1046}
1047
a8f90e90 1048static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
ab7ef2e5
PM
1049 unsigned long pmc5, unsigned long pmc6)
1050{
cdd6c482 1051 struct perf_event *event;
86c74ab3 1052 u64 val, prev;
ab7ef2e5
PM
1053 int i;
1054
1055 for (i = 0; i < cpuhw->n_limited; ++i) {
a8f90e90 1056 event = cpuhw->limited_counter[i];
cdd6c482
IM
1057 event->hw.idx = cpuhw->limited_hwidx[i];
1058 val = (event->hw.idx == 5) ? pmc5 : pmc6;
86c74ab3
EM
1059 prev = local64_read(&event->hw.prev_count);
1060 if (check_and_compute_delta(prev, val))
1061 local64_set(&event->hw.prev_count, val);
cdd6c482 1062 perf_event_update_userpage(event);
ab7ef2e5
PM
1063 }
1064}
1065
1066/*
cdd6c482 1067 * Since limited events don't respect the freeze conditions, we
ab7ef2e5 1068 * have to read them immediately after freezing or unfreezing the
cdd6c482
IM
1069 * other events. We try to keep the values from the limited
1070 * events as consistent as possible by keeping the delay (in
ab7ef2e5 1071 * cycles and instructions) between freezing/unfreezing and reading
cdd6c482
IM
1072 * the limited events as small and consistent as possible.
1073 * Therefore, if any limited events are in use, we read them
ab7ef2e5
PM
1074 * both, and always in the same order, to minimize variability,
1075 * and do it inside the same asm that writes MMCR0.
1076 */
cdd6c482 1077static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
ab7ef2e5
PM
1078{
1079 unsigned long pmc5, pmc6;
1080
1081 if (!cpuhw->n_limited) {
1082 mtspr(SPRN_MMCR0, mmcr0);
1083 return;
1084 }
1085
1086 /*
1087 * Write MMCR0, then read PMC5 and PMC6 immediately.
dcd945e0
PM
1088 * To ensure we don't get a performance monitor interrupt
1089 * between writing MMCR0 and freezing/thawing the limited
cdd6c482 1090 * events, we first write MMCR0 with the event overflow
dcd945e0 1091 * interrupt enable bits turned off.
ab7ef2e5
PM
1092 */
1093 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1094 : "=&r" (pmc5), "=&r" (pmc6)
dcd945e0
PM
1095 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1096 "i" (SPRN_MMCR0),
ab7ef2e5
PM
1097 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1098
1099 if (mmcr0 & MMCR0_FC)
a8f90e90 1100 freeze_limited_counters(cpuhw, pmc5, pmc6);
ab7ef2e5 1101 else
a8f90e90 1102 thaw_limited_counters(cpuhw, pmc5, pmc6);
dcd945e0
PM
1103
1104 /*
cdd6c482 1105 * Write the full MMCR0 including the event overflow interrupt
dcd945e0
PM
1106 * enable bits, if necessary.
1107 */
1108 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1109 mtspr(SPRN_MMCR0, mmcr0);
ab7ef2e5
PM
1110}
1111
4574910e 1112/*
cdd6c482
IM
1113 * Disable all events to prevent PMU interrupts and to allow
1114 * events to be added or removed.
4574910e 1115 */
a4eaf7f1 1116static void power_pmu_disable(struct pmu *pmu)
4574910e 1117{
cdd6c482 1118 struct cpu_hw_events *cpuhw;
330a1eb7 1119 unsigned long flags, mmcr0, val;
4574910e 1120
f36a1a13
PM
1121 if (!ppmu)
1122 return;
4574910e 1123 local_irq_save(flags);
cdd6c482 1124 cpuhw = &__get_cpu_var(cpu_hw_events);
4574910e 1125
448d64f8 1126 if (!cpuhw->disabled) {
01d0287f
PM
1127 /*
1128 * Check if we ever enabled the PMU on this cpu.
1129 */
1130 if (!cpuhw->pmcs_enabled) {
a6dbf93a 1131 ppc_enable_pmcs();
01d0287f
PM
1132 cpuhw->pmcs_enabled = 1;
1133 }
1134
378a6ee9 1135 /*
76cb8a78 1136 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
378a6ee9 1137 */
330a1eb7 1138 val = mmcr0 = mfspr(SPRN_MMCR0);
378a6ee9 1139 val |= MMCR0_FC;
76cb8a78
ME
1140 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1141 MMCR0_FC56);
378a6ee9
ME
1142
1143 /*
1144 * The barrier is to make sure the mtspr has been
1145 * executed and the PMU has frozen the events etc.
1146 * before we return.
1147 */
1148 write_mmcr0(cpuhw, val);
1149 mb();
1150
f708223d
PM
1151 /*
1152 * Disable instruction sampling if it was enabled
1153 */
1154 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1155 mtspr(SPRN_MMCRA,
1156 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1157 mb();
1158 }
1159
378a6ee9
ME
1160 cpuhw->disabled = 1;
1161 cpuhw->n_added = 0;
330a1eb7
ME
1162
1163 ebb_switch_out(mmcr0);
4574910e 1164 }
330a1eb7 1165
4574910e 1166 local_irq_restore(flags);
4574910e
PM
1167}
1168
1169/*
cdd6c482
IM
1170 * Re-enable all events if disable == 0.
1171 * If we were previously disabled and events were added, then
4574910e
PM
1172 * put the new config on the PMU.
1173 */
a4eaf7f1 1174static void power_pmu_enable(struct pmu *pmu)
4574910e 1175{
cdd6c482
IM
1176 struct perf_event *event;
1177 struct cpu_hw_events *cpuhw;
4574910e
PM
1178 unsigned long flags;
1179 long i;
330a1eb7 1180 unsigned long val, mmcr0;
4574910e 1181 s64 left;
cdd6c482 1182 unsigned int hwc_index[MAX_HWEVENTS];
ab7ef2e5
PM
1183 int n_lim;
1184 int idx;
330a1eb7 1185 bool ebb;
4574910e 1186
f36a1a13
PM
1187 if (!ppmu)
1188 return;
4574910e 1189 local_irq_save(flags);
0a48843d 1190
cdd6c482 1191 cpuhw = &__get_cpu_var(cpu_hw_events);
0a48843d
ME
1192 if (!cpuhw->disabled)
1193 goto out;
1194
4ea355b5
ME
1195 if (cpuhw->n_events == 0) {
1196 ppc_set_pmu_inuse(0);
1197 goto out;
1198 }
1199
4574910e
PM
1200 cpuhw->disabled = 0;
1201
330a1eb7
ME
1202 /*
1203 * EBB requires an exclusive group and all events must have the EBB
1204 * flag set, or not set, so we can just check a single event. Also we
1205 * know we have at least one event.
1206 */
1207 ebb = is_ebb_event(cpuhw->event[0]);
1208
4574910e 1209 /*
cdd6c482 1210 * If we didn't change anything, or only removed events,
4574910e
PM
1211 * no need to recalculate MMCR* settings and reset the PMCs.
1212 * Just reenable the PMU with the current MMCR* settings
cdd6c482 1213 * (possibly updated for removal of events).
4574910e
PM
1214 */
1215 if (!cpuhw->n_added) {
f708223d 1216 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e 1217 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
f708223d 1218 goto out_enable;
4574910e
PM
1219 }
1220
1221 /*
cdd6c482 1222 * Compute MMCR* values for the new set of events
4574910e 1223 */
cdd6c482 1224 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
4574910e
PM
1225 cpuhw->mmcr)) {
1226 /* shouldn't ever get here */
1227 printk(KERN_ERR "oops compute_mmcr failed\n");
1228 goto out;
1229 }
1230
0475f9ea
PM
1231 /*
1232 * Add in MMCR0 freeze bits corresponding to the
cdd6c482
IM
1233 * attr.exclude_* bits for the first event.
1234 * We have already checked that all events have the
1235 * same values for these bits as the first event.
0475f9ea 1236 */
cdd6c482
IM
1237 event = cpuhw->event[0];
1238 if (event->attr.exclude_user)
0475f9ea 1239 cpuhw->mmcr[0] |= MMCR0_FCP;
cdd6c482
IM
1240 if (event->attr.exclude_kernel)
1241 cpuhw->mmcr[0] |= freeze_events_kernel;
1242 if (event->attr.exclude_hv)
0475f9ea
PM
1243 cpuhw->mmcr[0] |= MMCR0_FCHV;
1244
4574910e
PM
1245 /*
1246 * Write the new configuration to MMCR* with the freeze
cdd6c482
IM
1247 * bit set and set the hardware events to their initial values.
1248 * Then unfreeze the events.
4574910e 1249 */
a6dbf93a 1250 ppc_set_pmu_inuse(1);
f708223d 1251 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
4574910e
PM
1252 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1253 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1254 | MMCR0_FC);
1255
1256 /*
cdd6c482 1257 * Read off any pre-existing events that need to move
4574910e
PM
1258 * to another PMC.
1259 */
cdd6c482
IM
1260 for (i = 0; i < cpuhw->n_events; ++i) {
1261 event = cpuhw->event[i];
1262 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1263 power_pmu_read(event);
1264 write_pmc(event->hw.idx, 0);
1265 event->hw.idx = 0;
4574910e
PM
1266 }
1267 }
1268
1269 /*
cdd6c482 1270 * Initialize the PMCs for all the new and moved events.
4574910e 1271 */
ab7ef2e5 1272 cpuhw->n_limited = n_lim = 0;
cdd6c482
IM
1273 for (i = 0; i < cpuhw->n_events; ++i) {
1274 event = cpuhw->event[i];
1275 if (event->hw.idx)
4574910e 1276 continue;
ab7ef2e5
PM
1277 idx = hwc_index[i] + 1;
1278 if (is_limited_pmc(idx)) {
a8f90e90 1279 cpuhw->limited_counter[n_lim] = event;
ab7ef2e5
PM
1280 cpuhw->limited_hwidx[n_lim] = idx;
1281 ++n_lim;
1282 continue;
1283 }
330a1eb7
ME
1284
1285 if (ebb)
1286 val = local64_read(&event->hw.prev_count);
1287 else {
1288 val = 0;
1289 if (event->hw.sample_period) {
1290 left = local64_read(&event->hw.period_left);
1291 if (left < 0x80000000L)
1292 val = 0x80000000L - left;
1293 }
1294 local64_set(&event->hw.prev_count, val);
4574910e 1295 }
330a1eb7 1296
cdd6c482 1297 event->hw.idx = idx;
a4eaf7f1
PZ
1298 if (event->hw.state & PERF_HES_STOPPED)
1299 val = 0;
ab7ef2e5 1300 write_pmc(idx, val);
330a1eb7 1301
cdd6c482 1302 perf_event_update_userpage(event);
4574910e 1303 }
ab7ef2e5 1304 cpuhw->n_limited = n_lim;
4574910e 1305 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
f708223d
PM
1306
1307 out_enable:
c2e37a26
ME
1308 pmao_restore_workaround(ebb);
1309
8903461c
ME
1310 if (ppmu->flags & PPMU_ARCH_207S)
1311 mtspr(SPRN_MMCR2, 0);
1312
330a1eb7
ME
1313 mmcr0 = ebb_switch_in(ebb, cpuhw->mmcr[0]);
1314
f708223d 1315 mb();
b4d6c06c
AK
1316 if (cpuhw->bhrb_users)
1317 ppmu->config_bhrb(cpuhw->bhrb_filter);
1318
330a1eb7 1319 write_mmcr0(cpuhw, mmcr0);
4574910e 1320
f708223d
PM
1321 /*
1322 * Enable instruction sampling if necessary
1323 */
1324 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1325 mb();
1326 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1327 }
1328
4574910e 1329 out:
3925f46b 1330
4574910e
PM
1331 local_irq_restore(flags);
1332}
1333
cdd6c482
IM
1334static int collect_events(struct perf_event *group, int max_count,
1335 struct perf_event *ctrs[], u64 *events,
ab7ef2e5 1336 unsigned int *flags)
4574910e
PM
1337{
1338 int n = 0;
cdd6c482 1339 struct perf_event *event;
4574910e 1340
cdd6c482 1341 if (!is_software_event(group)) {
4574910e
PM
1342 if (n >= max_count)
1343 return -1;
1344 ctrs[n] = group;
cdd6c482 1345 flags[n] = group->hw.event_base;
4574910e
PM
1346 events[n++] = group->hw.config;
1347 }
a8f90e90 1348 list_for_each_entry(event, &group->sibling_list, group_entry) {
cdd6c482
IM
1349 if (!is_software_event(event) &&
1350 event->state != PERF_EVENT_STATE_OFF) {
4574910e
PM
1351 if (n >= max_count)
1352 return -1;
cdd6c482
IM
1353 ctrs[n] = event;
1354 flags[n] = event->hw.event_base;
1355 events[n++] = event->hw.config;
4574910e
PM
1356 }
1357 }
1358 return n;
1359}
1360
4574910e 1361/*
cdd6c482
IM
1362 * Add a event to the PMU.
1363 * If all events are not already frozen, then we disable and
9e35ad38 1364 * re-enable the PMU in order to get hw_perf_enable to do the
4574910e
PM
1365 * actual work of reconfiguring the PMU.
1366 */
a4eaf7f1 1367static int power_pmu_add(struct perf_event *event, int ef_flags)
4574910e 1368{
cdd6c482 1369 struct cpu_hw_events *cpuhw;
4574910e 1370 unsigned long flags;
4574910e
PM
1371 int n0;
1372 int ret = -EAGAIN;
1373
1374 local_irq_save(flags);
33696fc0 1375 perf_pmu_disable(event->pmu);
4574910e
PM
1376
1377 /*
cdd6c482 1378 * Add the event to the list (if there is room)
4574910e
PM
1379 * and check whether the total set is still feasible.
1380 */
cdd6c482
IM
1381 cpuhw = &__get_cpu_var(cpu_hw_events);
1382 n0 = cpuhw->n_events;
a8f90e90 1383 if (n0 >= ppmu->n_counter)
4574910e 1384 goto out;
cdd6c482
IM
1385 cpuhw->event[n0] = event;
1386 cpuhw->events[n0] = event->hw.config;
1387 cpuhw->flags[n0] = event->hw.event_base;
8e6d5573 1388
f53d168c 1389 /*
1390 * This event may have been disabled/stopped in record_and_restart()
1391 * because we exceeded the ->event_limit. If re-starting the event,
1392 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1393 * notification is re-enabled.
1394 */
a4eaf7f1
PZ
1395 if (!(ef_flags & PERF_EF_START))
1396 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
f53d168c 1397 else
1398 event->hw.state = 0;
a4eaf7f1 1399
8e6d5573
LM
1400 /*
1401 * If group events scheduling transaction was started,
25985edc 1402 * skip the schedulability test here, it will be performed
8e6d5573
LM
1403 * at commit time(->commit_txn) as a whole
1404 */
8d2cacbb 1405 if (cpuhw->group_flag & PERF_EVENT_TXN)
8e6d5573
LM
1406 goto nocheck;
1407
cdd6c482 1408 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
0475f9ea 1409 goto out;
e51ee31e 1410 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
4574910e 1411 goto out;
cdd6c482 1412 event->hw.config = cpuhw->events[n0];
8e6d5573
LM
1413
1414nocheck:
330a1eb7
ME
1415 ebb_event_add(event);
1416
cdd6c482 1417 ++cpuhw->n_events;
4574910e
PM
1418 ++cpuhw->n_added;
1419
1420 ret = 0;
1421 out:
ff3d79dc 1422 if (has_branch_stack(event)) {
3925f46b 1423 power_pmu_bhrb_enable(event);
ff3d79dc
AK
1424 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1425 event->attr.branch_sample_type);
1426 }
3925f46b 1427
33696fc0 1428 perf_pmu_enable(event->pmu);
4574910e
PM
1429 local_irq_restore(flags);
1430 return ret;
1431}
1432
1433/*
cdd6c482 1434 * Remove a event from the PMU.
4574910e 1435 */
a4eaf7f1 1436static void power_pmu_del(struct perf_event *event, int ef_flags)
4574910e 1437{
cdd6c482 1438 struct cpu_hw_events *cpuhw;
4574910e 1439 long i;
4574910e
PM
1440 unsigned long flags;
1441
1442 local_irq_save(flags);
33696fc0 1443 perf_pmu_disable(event->pmu);
4574910e 1444
cdd6c482
IM
1445 power_pmu_read(event);
1446
1447 cpuhw = &__get_cpu_var(cpu_hw_events);
1448 for (i = 0; i < cpuhw->n_events; ++i) {
1449 if (event == cpuhw->event[i]) {
219a92a4 1450 while (++i < cpuhw->n_events) {
cdd6c482 1451 cpuhw->event[i-1] = cpuhw->event[i];
219a92a4
ME
1452 cpuhw->events[i-1] = cpuhw->events[i];
1453 cpuhw->flags[i-1] = cpuhw->flags[i];
1454 }
cdd6c482
IM
1455 --cpuhw->n_events;
1456 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1457 if (event->hw.idx) {
1458 write_pmc(event->hw.idx, 0);
1459 event->hw.idx = 0;
ab7ef2e5 1460 }
cdd6c482 1461 perf_event_update_userpage(event);
4574910e
PM
1462 break;
1463 }
1464 }
ab7ef2e5 1465 for (i = 0; i < cpuhw->n_limited; ++i)
a8f90e90 1466 if (event == cpuhw->limited_counter[i])
ab7ef2e5
PM
1467 break;
1468 if (i < cpuhw->n_limited) {
1469 while (++i < cpuhw->n_limited) {
a8f90e90 1470 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
ab7ef2e5
PM
1471 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1472 }
1473 --cpuhw->n_limited;
1474 }
cdd6c482
IM
1475 if (cpuhw->n_events == 0) {
1476 /* disable exceptions if no events are running */
4574910e
PM
1477 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1478 }
1479
3925f46b
AK
1480 if (has_branch_stack(event))
1481 power_pmu_bhrb_disable(event);
1482
33696fc0 1483 perf_pmu_enable(event->pmu);
4574910e
PM
1484 local_irq_restore(flags);
1485}
1486
8a7b8cb9 1487/*
a4eaf7f1
PZ
1488 * POWER-PMU does not support disabling individual counters, hence
1489 * program their cycle counter to their max value and ignore the interrupts.
8a7b8cb9 1490 */
a4eaf7f1
PZ
1491
1492static void power_pmu_start(struct perf_event *event, int ef_flags)
8a7b8cb9 1493{
8a7b8cb9 1494 unsigned long flags;
a4eaf7f1 1495 s64 left;
9a45a940 1496 unsigned long val;
8a7b8cb9 1497
cdd6c482 1498 if (!event->hw.idx || !event->hw.sample_period)
8a7b8cb9 1499 return;
a4eaf7f1
PZ
1500
1501 if (!(event->hw.state & PERF_HES_STOPPED))
1502 return;
1503
1504 if (ef_flags & PERF_EF_RELOAD)
1505 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1506
1507 local_irq_save(flags);
1508 perf_pmu_disable(event->pmu);
1509
1510 event->hw.state = 0;
1511 left = local64_read(&event->hw.period_left);
9a45a940
AB
1512
1513 val = 0;
1514 if (left < 0x80000000L)
1515 val = 0x80000000L - left;
1516
1517 write_pmc(event->hw.idx, val);
a4eaf7f1
PZ
1518
1519 perf_event_update_userpage(event);
1520 perf_pmu_enable(event->pmu);
1521 local_irq_restore(flags);
1522}
1523
1524static void power_pmu_stop(struct perf_event *event, int ef_flags)
1525{
1526 unsigned long flags;
1527
1528 if (!event->hw.idx || !event->hw.sample_period)
1529 return;
1530
1531 if (event->hw.state & PERF_HES_STOPPED)
1532 return;
1533
8a7b8cb9 1534 local_irq_save(flags);
33696fc0 1535 perf_pmu_disable(event->pmu);
a4eaf7f1 1536
cdd6c482 1537 power_pmu_read(event);
a4eaf7f1
PZ
1538 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1539 write_pmc(event->hw.idx, 0);
1540
cdd6c482 1541 perf_event_update_userpage(event);
33696fc0 1542 perf_pmu_enable(event->pmu);
8a7b8cb9
PM
1543 local_irq_restore(flags);
1544}
1545
8e6d5573
LM
1546/*
1547 * Start group events scheduling transaction
1548 * Set the flag to make pmu::enable() not perform the
1549 * schedulability test, it will be performed at commit time
1550 */
51b0fe39 1551void power_pmu_start_txn(struct pmu *pmu)
8e6d5573
LM
1552{
1553 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1554
33696fc0 1555 perf_pmu_disable(pmu);
8d2cacbb 1556 cpuhw->group_flag |= PERF_EVENT_TXN;
8e6d5573
LM
1557 cpuhw->n_txn_start = cpuhw->n_events;
1558}
1559
1560/*
1561 * Stop group events scheduling transaction
1562 * Clear the flag and pmu::enable() will perform the
1563 * schedulability test.
1564 */
51b0fe39 1565void power_pmu_cancel_txn(struct pmu *pmu)
8e6d5573
LM
1566{
1567 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1568
8d2cacbb 1569 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1570 perf_pmu_enable(pmu);
8e6d5573
LM
1571}
1572
1573/*
1574 * Commit group events scheduling transaction
1575 * Perform the group schedulability test as a whole
1576 * Return 0 if success
1577 */
51b0fe39 1578int power_pmu_commit_txn(struct pmu *pmu)
8e6d5573
LM
1579{
1580 struct cpu_hw_events *cpuhw;
1581 long i, n;
1582
1583 if (!ppmu)
1584 return -EAGAIN;
1585 cpuhw = &__get_cpu_var(cpu_hw_events);
1586 n = cpuhw->n_events;
1587 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1588 return -EAGAIN;
1589 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1590 if (i < 0)
1591 return -EAGAIN;
1592
1593 for (i = cpuhw->n_txn_start; i < n; ++i)
1594 cpuhw->event[i]->hw.config = cpuhw->events[i];
1595
8d2cacbb 1596 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1597 perf_pmu_enable(pmu);
8e6d5573
LM
1598 return 0;
1599}
1600
ab7ef2e5 1601/*
cdd6c482 1602 * Return 1 if we might be able to put event on a limited PMC,
ab7ef2e5 1603 * or 0 if not.
cdd6c482 1604 * A event can only go on a limited PMC if it counts something
ab7ef2e5
PM
1605 * that a limited PMC can count, doesn't require interrupts, and
1606 * doesn't exclude any processor mode.
1607 */
cdd6c482 1608static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
ab7ef2e5
PM
1609 unsigned int flags)
1610{
1611 int n;
ef923214 1612 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5 1613
cdd6c482
IM
1614 if (event->attr.exclude_user
1615 || event->attr.exclude_kernel
1616 || event->attr.exclude_hv
1617 || event->attr.sample_period)
ab7ef2e5
PM
1618 return 0;
1619
1620 if (ppmu->limited_pmc_event(ev))
1621 return 1;
1622
1623 /*
cdd6c482 1624 * The requested event_id isn't on a limited PMC already;
ab7ef2e5
PM
1625 * see if any alternative code goes on a limited PMC.
1626 */
1627 if (!ppmu->get_alternatives)
1628 return 0;
1629
1630 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1631 n = ppmu->get_alternatives(ev, flags, alt);
ab7ef2e5 1632
ef923214 1633 return n > 0;
ab7ef2e5
PM
1634}
1635
1636/*
cdd6c482
IM
1637 * Find an alternative event_id that goes on a normal PMC, if possible,
1638 * and return the event_id code, or 0 if there is no such alternative.
1639 * (Note: event_id code 0 is "don't count" on all machines.)
ab7ef2e5 1640 */
ef923214 1641static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
ab7ef2e5 1642{
ef923214 1643 u64 alt[MAX_EVENT_ALTERNATIVES];
ab7ef2e5
PM
1644 int n;
1645
1646 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1647 n = ppmu->get_alternatives(ev, flags, alt);
1648 if (!n)
1649 return 0;
1650 return alt[0];
1651}
1652
cdd6c482
IM
1653/* Number of perf_events counting hardware events */
1654static atomic_t num_events;
7595d63b
PM
1655/* Used to avoid races in calling reserve/release_pmc_hardware */
1656static DEFINE_MUTEX(pmc_reserve_mutex);
1657
1658/*
cdd6c482 1659 * Release the PMU if this is the last perf_event.
7595d63b 1660 */
cdd6c482 1661static void hw_perf_event_destroy(struct perf_event *event)
7595d63b 1662{
cdd6c482 1663 if (!atomic_add_unless(&num_events, -1, 1)) {
7595d63b 1664 mutex_lock(&pmc_reserve_mutex);
cdd6c482 1665 if (atomic_dec_return(&num_events) == 0)
7595d63b
PM
1666 release_pmc_hardware();
1667 mutex_unlock(&pmc_reserve_mutex);
1668 }
1669}
1670
106b506c 1671/*
cdd6c482 1672 * Translate a generic cache event_id config to a raw event_id code.
106b506c
PM
1673 */
1674static int hw_perf_cache_event(u64 config, u64 *eventp)
1675{
1676 unsigned long type, op, result;
1677 int ev;
1678
1679 if (!ppmu->cache_events)
1680 return -EINVAL;
1681
1682 /* unpack config */
1683 type = config & 0xff;
1684 op = (config >> 8) & 0xff;
1685 result = (config >> 16) & 0xff;
1686
1687 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1688 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1689 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1690 return -EINVAL;
1691
1692 ev = (*ppmu->cache_events)[type][op][result];
1693 if (ev == 0)
1694 return -EOPNOTSUPP;
1695 if (ev == -1)
1696 return -EINVAL;
1697 *eventp = ev;
1698 return 0;
1699}
1700
b0a873eb 1701static int power_pmu_event_init(struct perf_event *event)
4574910e 1702{
ef923214
PM
1703 u64 ev;
1704 unsigned long flags;
cdd6c482
IM
1705 struct perf_event *ctrs[MAX_HWEVENTS];
1706 u64 events[MAX_HWEVENTS];
1707 unsigned int cflags[MAX_HWEVENTS];
4574910e 1708 int n;
7595d63b 1709 int err;
cdd6c482 1710 struct cpu_hw_events *cpuhw;
4574910e
PM
1711
1712 if (!ppmu)
b0a873eb
PZ
1713 return -ENOENT;
1714
3925f46b
AK
1715 if (has_branch_stack(event)) {
1716 /* PMU has BHRB enabled */
4d9690dd 1717 if (!(ppmu->flags & PPMU_ARCH_207S))
3925f46b
AK
1718 return -EOPNOTSUPP;
1719 }
2481c5fa 1720
cdd6c482 1721 switch (event->attr.type) {
106b506c 1722 case PERF_TYPE_HARDWARE:
cdd6c482 1723 ev = event->attr.config;
9aaa131a 1724 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
b0a873eb 1725 return -EOPNOTSUPP;
4574910e 1726 ev = ppmu->generic_events[ev];
106b506c
PM
1727 break;
1728 case PERF_TYPE_HW_CACHE:
cdd6c482 1729 err = hw_perf_cache_event(event->attr.config, &ev);
106b506c 1730 if (err)
b0a873eb 1731 return err;
106b506c
PM
1732 break;
1733 case PERF_TYPE_RAW:
cdd6c482 1734 ev = event->attr.config;
106b506c 1735 break;
90c8f954 1736 default:
b0a873eb 1737 return -ENOENT;
4574910e 1738 }
b0a873eb 1739
cdd6c482
IM
1740 event->hw.config_base = ev;
1741 event->hw.idx = 0;
4574910e 1742
0475f9ea
PM
1743 /*
1744 * If we are not running on a hypervisor, force the
1745 * exclude_hv bit to 0 so that we don't care what
d095cd46 1746 * the user set it to.
0475f9ea
PM
1747 */
1748 if (!firmware_has_feature(FW_FEATURE_LPAR))
cdd6c482 1749 event->attr.exclude_hv = 0;
ab7ef2e5
PM
1750
1751 /*
cdd6c482 1752 * If this is a per-task event, then we can use
ab7ef2e5
PM
1753 * PM_RUN_* events interchangeably with their non RUN_*
1754 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1755 * XXX we should check if the task is an idle task.
1756 */
1757 flags = 0;
57fa7214 1758 if (event->attach_state & PERF_ATTACH_TASK)
ab7ef2e5
PM
1759 flags |= PPMU_ONLY_COUNT_RUN;
1760
1761 /*
cdd6c482
IM
1762 * If this machine has limited events, check whether this
1763 * event_id could go on a limited event.
ab7ef2e5 1764 */
0bbd0d4b 1765 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
cdd6c482 1766 if (can_go_on_limited_pmc(event, ev, flags)) {
ab7ef2e5
PM
1767 flags |= PPMU_LIMITED_PMC_OK;
1768 } else if (ppmu->limited_pmc_event(ev)) {
1769 /*
cdd6c482 1770 * The requested event_id is on a limited PMC,
ab7ef2e5
PM
1771 * but we can't use a limited PMC; see if any
1772 * alternative goes on a normal PMC.
1773 */
1774 ev = normal_pmc_alternative(ev, flags);
1775 if (!ev)
b0a873eb 1776 return -EINVAL;
ab7ef2e5
PM
1777 }
1778 }
1779
330a1eb7
ME
1780 /* Extra checks for EBB */
1781 err = ebb_event_check(event);
1782 if (err)
1783 return err;
1784
4574910e
PM
1785 /*
1786 * If this is in a group, check if it can go on with all the
cdd6c482 1787 * other hardware events in the group. We assume the event
4574910e
PM
1788 * hasn't been linked into its leader's sibling list at this point.
1789 */
1790 n = 0;
cdd6c482 1791 if (event->group_leader != event) {
a8f90e90 1792 n = collect_events(event->group_leader, ppmu->n_counter - 1,
ab7ef2e5 1793 ctrs, events, cflags);
4574910e 1794 if (n < 0)
b0a873eb 1795 return -EINVAL;
4574910e 1796 }
0475f9ea 1797 events[n] = ev;
cdd6c482 1798 ctrs[n] = event;
ab7ef2e5
PM
1799 cflags[n] = flags;
1800 if (check_excludes(ctrs, cflags, n, 1))
b0a873eb 1801 return -EINVAL;
e51ee31e 1802
cdd6c482 1803 cpuhw = &get_cpu_var(cpu_hw_events);
e51ee31e 1804 err = power_check_constraints(cpuhw, events, cflags, n + 1);
3925f46b
AK
1805
1806 if (has_branch_stack(event)) {
1807 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1808 event->attr.branch_sample_type);
1809
1810 if(cpuhw->bhrb_filter == -1)
1811 return -EOPNOTSUPP;
1812 }
1813
cdd6c482 1814 put_cpu_var(cpu_hw_events);
e51ee31e 1815 if (err)
b0a873eb 1816 return -EINVAL;
4574910e 1817
cdd6c482
IM
1818 event->hw.config = events[n];
1819 event->hw.event_base = cflags[n];
1820 event->hw.last_period = event->hw.sample_period;
e7850595 1821 local64_set(&event->hw.period_left, event->hw.last_period);
7595d63b 1822
330a1eb7
ME
1823 /*
1824 * For EBB events we just context switch the PMC value, we don't do any
1825 * of the sample_period logic. We use hw.prev_count for this.
1826 */
1827 if (is_ebb_event(event))
1828 local64_set(&event->hw.prev_count, 0);
1829
7595d63b
PM
1830 /*
1831 * See if we need to reserve the PMU.
cdd6c482 1832 * If no events are currently in use, then we have to take a
7595d63b
PM
1833 * mutex to ensure that we don't race with another task doing
1834 * reserve_pmc_hardware or release_pmc_hardware.
1835 */
1836 err = 0;
cdd6c482 1837 if (!atomic_inc_not_zero(&num_events)) {
7595d63b 1838 mutex_lock(&pmc_reserve_mutex);
cdd6c482
IM
1839 if (atomic_read(&num_events) == 0 &&
1840 reserve_pmc_hardware(perf_event_interrupt))
7595d63b
PM
1841 err = -EBUSY;
1842 else
cdd6c482 1843 atomic_inc(&num_events);
7595d63b
PM
1844 mutex_unlock(&pmc_reserve_mutex);
1845 }
cdd6c482 1846 event->destroy = hw_perf_event_destroy;
7595d63b 1847
b0a873eb 1848 return err;
4574910e
PM
1849}
1850
35edc2a5
PZ
1851static int power_pmu_event_idx(struct perf_event *event)
1852{
1853 return event->hw.idx;
1854}
1855
1c53a270
SB
1856ssize_t power_events_sysfs_show(struct device *dev,
1857 struct device_attribute *attr, char *page)
1858{
1859 struct perf_pmu_events_attr *pmu_attr;
1860
1861 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1862
1863 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1864}
1865
b0a873eb 1866struct pmu power_pmu = {
a4eaf7f1
PZ
1867 .pmu_enable = power_pmu_enable,
1868 .pmu_disable = power_pmu_disable,
b0a873eb 1869 .event_init = power_pmu_event_init,
a4eaf7f1
PZ
1870 .add = power_pmu_add,
1871 .del = power_pmu_del,
1872 .start = power_pmu_start,
1873 .stop = power_pmu_stop,
b0a873eb 1874 .read = power_pmu_read,
b0a873eb
PZ
1875 .start_txn = power_pmu_start_txn,
1876 .cancel_txn = power_pmu_cancel_txn,
1877 .commit_txn = power_pmu_commit_txn,
35edc2a5 1878 .event_idx = power_pmu_event_idx,
3925f46b 1879 .flush_branch_stack = power_pmu_flush_branch_stack,
b0a873eb
PZ
1880};
1881
4574910e 1882/*
57c0c15b 1883 * A counter has overflowed; update its count and record
4574910e
PM
1884 * things if requested. Note that interrupts are hard-disabled
1885 * here so there is no possibility of being interrupted.
1886 */
cdd6c482 1887static void record_and_restart(struct perf_event *event, unsigned long val,
a8b0ca17 1888 struct pt_regs *regs)
4574910e 1889{
cdd6c482 1890 u64 period = event->hw.sample_period;
4574910e
PM
1891 s64 prev, delta, left;
1892 int record = 0;
1893
a4eaf7f1
PZ
1894 if (event->hw.state & PERF_HES_STOPPED) {
1895 write_pmc(event->hw.idx, 0);
1896 return;
1897 }
1898
4574910e 1899 /* we don't have to worry about interrupts here */
e7850595 1900 prev = local64_read(&event->hw.prev_count);
86c74ab3 1901 delta = check_and_compute_delta(prev, val);
e7850595 1902 local64_add(delta, &event->count);
4574910e
PM
1903
1904 /*
cdd6c482 1905 * See if the total period for this event has expired,
4574910e
PM
1906 * and update for the next period.
1907 */
1908 val = 0;
e7850595 1909 left = local64_read(&event->hw.period_left) - delta;
e13e895f
MN
1910 if (delta == 0)
1911 left++;
60db5e09 1912 if (period) {
4574910e 1913 if (left <= 0) {
60db5e09 1914 left += period;
4574910e 1915 if (left <= 0)
60db5e09 1916 left = period;
e6878835 1917 record = siar_valid(regs);
4bca770e 1918 event->hw.last_period = event->hw.sample_period;
4574910e 1919 }
98fb1807
PM
1920 if (left < 0x80000000LL)
1921 val = 0x80000000LL - left;
4574910e 1922 }
4574910e 1923
a4eaf7f1
PZ
1924 write_pmc(event->hw.idx, val);
1925 local64_set(&event->hw.prev_count, val);
1926 local64_set(&event->hw.period_left, left);
1927 perf_event_update_userpage(event);
1928
4574910e
PM
1929 /*
1930 * Finally record data if requested.
1931 */
0bbd0d4b 1932 if (record) {
dc1d628a
PZ
1933 struct perf_sample_data data;
1934
fd0d000b 1935 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
df1a132b 1936
cdd6c482 1937 if (event->attr.sample_type & PERF_SAMPLE_ADDR)
98fb1807
PM
1938 perf_get_data_addr(regs, &data.addr);
1939
3925f46b
AK
1940 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1941 struct cpu_hw_events *cpuhw;
1942 cpuhw = &__get_cpu_var(cpu_hw_events);
1943 power_pmu_bhrb_read(cpuhw);
1944 data.br_stack = &cpuhw->bhrb_stack;
1945 }
1946
a8b0ca17 1947 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1948 power_pmu_stop(event, 0);
0bbd0d4b
PM
1949 }
1950}
1951
1952/*
1953 * Called from generic code to get the misc flags (i.e. processor mode)
cdd6c482 1954 * for an event_id.
0bbd0d4b
PM
1955 */
1956unsigned long perf_misc_flags(struct pt_regs *regs)
1957{
98fb1807 1958 u32 flags = perf_get_misc_flags(regs);
0bbd0d4b 1959
98fb1807
PM
1960 if (flags)
1961 return flags;
cdd6c482
IM
1962 return user_mode(regs) ? PERF_RECORD_MISC_USER :
1963 PERF_RECORD_MISC_KERNEL;
0bbd0d4b
PM
1964}
1965
1966/*
1967 * Called from generic code to get the instruction pointer
cdd6c482 1968 * for an event_id.
0bbd0d4b
PM
1969 */
1970unsigned long perf_instruction_pointer(struct pt_regs *regs)
1971{
33904054 1972 bool use_siar = regs_use_siar(regs);
0bbd0d4b 1973
e6878835 1974 if (use_siar && siar_valid(regs))
75382aa7 1975 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
e6878835 1976 else if (use_siar)
1977 return 0; // no valid instruction pointer
75382aa7 1978 else
1ce447b9 1979 return regs->nip;
4574910e
PM
1980}
1981
bc09c219 1982static bool pmc_overflow_power7(unsigned long val)
0837e324 1983{
0837e324
AB
1984 /*
1985 * Events on POWER7 can roll back if a speculative event doesn't
1986 * eventually complete. Unfortunately in some rare cases they will
1987 * raise a performance monitor exception. We need to catch this to
1988 * ensure we reset the PMC. In all cases the PMC will be 256 or less
1989 * cycles from overflow.
1990 *
1991 * We only do this if the first pass fails to find any overflowing
1992 * PMCs because a user might set a period of less than 256 and we
1993 * don't want to mistakenly reset them.
1994 */
bc09c219
MN
1995 if ((0x80000000 - val) <= 256)
1996 return true;
1997
1998 return false;
1999}
2000
2001static bool pmc_overflow(unsigned long val)
2002{
2003 if ((int)val < 0)
0837e324
AB
2004 return true;
2005
2006 return false;
2007}
2008
4574910e
PM
2009/*
2010 * Performance monitor interrupt stuff
2011 */
cdd6c482 2012static void perf_event_interrupt(struct pt_regs *regs)
4574910e 2013{
bc09c219 2014 int i, j;
cdd6c482
IM
2015 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
2016 struct perf_event *event;
bc09c219
MN
2017 unsigned long val[8];
2018 int found, active;
ca8f2d7f
PM
2019 int nmi;
2020
ab7ef2e5 2021 if (cpuhw->n_limited)
a8f90e90 2022 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
ab7ef2e5
PM
2023 mfspr(SPRN_PMC6));
2024
98fb1807 2025 perf_read_regs(regs);
0bbd0d4b 2026
98fb1807 2027 nmi = perf_intr_is_nmi(regs);
ca8f2d7f
PM
2028 if (nmi)
2029 nmi_enter();
2030 else
2031 irq_enter();
4574910e 2032
bc09c219
MN
2033 /* Read all the PMCs since we'll need them a bunch of times */
2034 for (i = 0; i < ppmu->n_counter; ++i)
2035 val[i] = read_pmc(i + 1);
2036
2037 /* Try to find what caused the IRQ */
2038 found = 0;
2039 for (i = 0; i < ppmu->n_counter; ++i) {
2040 if (!pmc_overflow(val[i]))
ab7ef2e5 2041 continue;
bc09c219
MN
2042 if (is_limited_pmc(i + 1))
2043 continue; /* these won't generate IRQs */
2044 /*
2045 * We've found one that's overflowed. For active
2046 * counters we need to log this. For inactive
2047 * counters, we need to reset it anyway
2048 */
2049 found = 1;
2050 active = 0;
2051 for (j = 0; j < cpuhw->n_events; ++j) {
2052 event = cpuhw->event[j];
2053 if (event->hw.idx == (i + 1)) {
2054 active = 1;
2055 record_and_restart(event, val[i], regs);
2056 break;
2057 }
4574910e 2058 }
bc09c219
MN
2059 if (!active)
2060 /* reset non active counters that have overflowed */
2061 write_pmc(i + 1, 0);
4574910e 2062 }
bc09c219
MN
2063 if (!found && pvr_version_is(PVR_POWER7)) {
2064 /* check active counters for special buggy p7 overflow */
2065 for (i = 0; i < cpuhw->n_events; ++i) {
2066 event = cpuhw->event[i];
2067 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
ab7ef2e5 2068 continue;
bc09c219
MN
2069 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2070 /* event has overflowed in a buggy way*/
2071 found = 1;
2072 record_and_restart(event,
2073 val[event->hw.idx - 1],
2074 regs);
2075 }
4574910e
PM
2076 }
2077 }
6772faa1 2078 if (!found && !nmi && printk_ratelimit())
bc09c219 2079 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
4574910e
PM
2080
2081 /*
2082 * Reset MMCR0 to its normal value. This will set PMXE and
57c0c15b 2083 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
4574910e 2084 * and thus allow interrupts to occur again.
cdd6c482 2085 * XXX might want to use MSR.PM to keep the events frozen until
4574910e
PM
2086 * we get back out of this interrupt.
2087 */
ab7ef2e5 2088 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
4574910e 2089
ca8f2d7f
PM
2090 if (nmi)
2091 nmi_exit();
2092 else
db4fb5ac 2093 irq_exit();
4574910e
PM
2094}
2095
3f6da390 2096static void power_pmu_setup(int cpu)
01d0287f 2097{
cdd6c482 2098 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
01d0287f 2099
f36a1a13
PM
2100 if (!ppmu)
2101 return;
01d0287f
PM
2102 memset(cpuhw, 0, sizeof(*cpuhw));
2103 cpuhw->mmcr[0] = MMCR0_FC;
2104}
2105
061d19f2 2106static int
85cfabbc 2107power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
3f6da390
PZ
2108{
2109 unsigned int cpu = (long)hcpu;
2110
2111 switch (action & ~CPU_TASKS_FROZEN) {
2112 case CPU_UP_PREPARE:
2113 power_pmu_setup(cpu);
2114 break;
2115
2116 default:
2117 break;
2118 }
2119
2120 return NOTIFY_OK;
2121}
2122
061d19f2 2123int register_power_pmu(struct power_pmu *pmu)
4574910e 2124{
079b3c56
PM
2125 if (ppmu)
2126 return -EBUSY; /* something's already registered */
2127
2128 ppmu = pmu;
2129 pr_info("%s performance monitor hardware support registered\n",
2130 pmu->name);
d095cd46 2131
1c53a270
SB
2132 power_pmu.attr_groups = ppmu->attr_groups;
2133
98fb1807 2134#ifdef MSR_HV
d095cd46
PM
2135 /*
2136 * Use FCHV to ignore kernel events if MSR.HV is set.
2137 */
2138 if (mfmsr() & MSR_HV)
cdd6c482 2139 freeze_events_kernel = MMCR0_FCHV;
98fb1807 2140#endif /* CONFIG_PPC64 */
d095cd46 2141
2e80a82a 2142 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
3f6da390
PZ
2143 perf_cpu_notifier(power_pmu_notifier);
2144
4574910e
PM
2145 return 0;
2146}
This page took 0.346069 seconds and 5 git commands to generate.