Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild
[deliverable/linux.git] / arch / powerpc / platforms / iseries / setup.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4 *
1da177e4
LT
5 * Description:
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9 * <dan@net4x.com>.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#undef DEBUG
18
1da177e4
LT
19#include <linux/init.h>
20#include <linux/threads.h>
21#include <linux/smp.h>
22#include <linux/param.h>
23#include <linux/string.h>
1da177e4
LT
24#include <linux/initrd.h>
25#include <linux/seq_file.h>
26#include <linux/kdev_t.h>
27#include <linux/major.h>
28#include <linux/root_dev.h>
bec7c458 29#include <linux/kernel.h>
1da177e4
LT
30
31#include <asm/processor.h>
32#include <asm/machdep.h>
33#include <asm/page.h>
34#include <asm/mmu.h>
35#include <asm/pgtable.h>
36#include <asm/mmu_context.h>
37#include <asm/cputable.h>
38#include <asm/sections.h>
39#include <asm/iommu.h>
aed31351 40#include <asm/firmware.h>
49b09853 41#include <asm/system.h>
1da177e4 42#include <asm/time.h>
1da177e4
LT
43#include <asm/paca.h>
44#include <asm/cache.h>
45#include <asm/sections.h>
0bc0ffd5 46#include <asm/abs_addr.h>
15b17189 47#include <asm/iseries/hv_lp_config.h>
c0a8d05c 48#include <asm/iseries/hv_call_event.h>
8021b8a7 49#include <asm/iseries/hv_call_xm.h>
8875ccfb 50#include <asm/iseries/it_lp_queue.h>
bbc8b628 51#include <asm/iseries/mf.h>
e45423ea 52#include <asm/iseries/hv_lp_event.h>
c43a55ff 53#include <asm/iseries/lpar_map.h>
bf6a7112 54#include <asm/udbg.h>
7d01c880 55#include <asm/irq.h>
1da177e4 56
f11b7bd8 57#include "naca.h"
c8b84976 58#include "setup.h"
b08567cb
SR
59#include "irq.h"
60#include "vpd_areas.h"
61#include "processor_vpd.h"
62#include "main_store.h"
63#include "call_sm.h"
0e29bb1a 64#include "call_hpt.h"
c8b84976 65
1da177e4 66#ifdef DEBUG
bf6a7112 67#define DBG(fmt...) udbg_printf(fmt)
1da177e4
LT
68#else
69#define DBG(fmt...)
70#endif
71
72/* Function Prototypes */
799d6046 73static unsigned long build_iSeries_Memory_Map(void);
143a1dec
PM
74static void iseries_shared_idle(void);
75static void iseries_dedicated_idle(void);
145d01e4 76#ifdef CONFIG_PCI
1da177e4 77extern void iSeries_pci_final_fixup(void);
145d01e4
SR
78#else
79static void iSeries_pci_final_fixup(void) { }
80#endif
1da177e4 81
1da177e4 82extern int rd_size; /* Defined in drivers/block/rd.c */
1da177e4
LT
83
84extern unsigned long iSeries_recal_tb;
85extern unsigned long iSeries_recal_titan;
86
1da177e4
LT
87struct MemoryBlock {
88 unsigned long absStart;
89 unsigned long absEnd;
90 unsigned long logicalStart;
91 unsigned long logicalEnd;
92};
93
94/*
95 * Process the main store vpd to determine where the holes in memory are
96 * and return the number of physical blocks and fill in the array of
97 * block data.
98 */
99static unsigned long iSeries_process_Condor_mainstore_vpd(
100 struct MemoryBlock *mb_array, unsigned long max_entries)
101{
102 unsigned long holeFirstChunk, holeSizeChunks;
103 unsigned long numMemoryBlocks = 1;
104 struct IoHriMainStoreSegment4 *msVpd =
105 (struct IoHriMainStoreSegment4 *)xMsVpd;
106 unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
107 unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
108 unsigned long holeSize = holeEnd - holeStart;
109
110 printk("Mainstore_VPD: Condor\n");
111 /*
112 * Determine if absolute memory has any
113 * holes so that we can interpret the
114 * access map we get back from the hypervisor
115 * correctly.
116 */
117 mb_array[0].logicalStart = 0;
118 mb_array[0].logicalEnd = 0x100000000;
119 mb_array[0].absStart = 0;
120 mb_array[0].absEnd = 0x100000000;
121
122 if (holeSize) {
123 numMemoryBlocks = 2;
124 holeStart = holeStart & 0x000fffffffffffff;
125 holeStart = addr_to_chunk(holeStart);
126 holeFirstChunk = holeStart;
127 holeSize = addr_to_chunk(holeSize);
128 holeSizeChunks = holeSize;
129 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
130 holeFirstChunk, holeSizeChunks );
131 mb_array[0].logicalEnd = holeFirstChunk;
132 mb_array[0].absEnd = holeFirstChunk;
133 mb_array[1].logicalStart = holeFirstChunk;
134 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
135 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
136 mb_array[1].absEnd = 0x100000000;
137 }
138 return numMemoryBlocks;
139}
140
141#define MaxSegmentAreas 32
142#define MaxSegmentAdrRangeBlocks 128
143#define MaxAreaRangeBlocks 4
144
145static unsigned long iSeries_process_Regatta_mainstore_vpd(
146 struct MemoryBlock *mb_array, unsigned long max_entries)
147{
148 struct IoHriMainStoreSegment5 *msVpdP =
149 (struct IoHriMainStoreSegment5 *)xMsVpd;
150 unsigned long numSegmentBlocks = 0;
151 u32 existsBits = msVpdP->msAreaExists;
152 unsigned long area_num;
153
154 printk("Mainstore_VPD: Regatta\n");
155
156 for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
157 unsigned long numAreaBlocks;
158 struct IoHriMainStoreArea4 *currentArea;
159
160 if (existsBits & 0x80000000) {
161 unsigned long block_num;
162
163 currentArea = &msVpdP->msAreaArray[area_num];
164 numAreaBlocks = currentArea->numAdrRangeBlocks;
165 printk("ms_vpd: processing area %2ld blocks=%ld",
166 area_num, numAreaBlocks);
167 for (block_num = 0; block_num < numAreaBlocks;
168 ++block_num ) {
169 /* Process an address range block */
170 struct MemoryBlock tempBlock;
171 unsigned long i;
172
173 tempBlock.absStart =
174 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
175 tempBlock.absEnd =
176 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
177 tempBlock.logicalStart = 0;
178 tempBlock.logicalEnd = 0;
179 printk("\n block %ld absStart=%016lx absEnd=%016lx",
180 block_num, tempBlock.absStart,
181 tempBlock.absEnd);
182
183 for (i = 0; i < numSegmentBlocks; ++i) {
184 if (mb_array[i].absStart ==
185 tempBlock.absStart)
186 break;
187 }
188 if (i == numSegmentBlocks) {
189 if (numSegmentBlocks == max_entries)
190 panic("iSeries_process_mainstore_vpd: too many memory blocks");
191 mb_array[numSegmentBlocks] = tempBlock;
192 ++numSegmentBlocks;
193 } else
194 printk(" (duplicate)");
195 }
196 printk("\n");
197 }
198 existsBits <<= 1;
199 }
200 /* Now sort the blocks found into ascending sequence */
201 if (numSegmentBlocks > 1) {
202 unsigned long m, n;
203
204 for (m = 0; m < numSegmentBlocks - 1; ++m) {
205 for (n = numSegmentBlocks - 1; m < n; --n) {
206 if (mb_array[n].absStart <
207 mb_array[n-1].absStart) {
208 struct MemoryBlock tempBlock;
209
210 tempBlock = mb_array[n];
211 mb_array[n] = mb_array[n-1];
212 mb_array[n-1] = tempBlock;
213 }
214 }
215 }
216 }
217 /*
218 * Assign "logical" addresses to each block. These
219 * addresses correspond to the hypervisor "bitmap" space.
220 * Convert all addresses into units of 256K chunks.
221 */
222 {
223 unsigned long i, nextBitmapAddress;
224
225 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
226 nextBitmapAddress = 0;
227 for (i = 0; i < numSegmentBlocks; ++i) {
228 unsigned long length = mb_array[i].absEnd -
229 mb_array[i].absStart;
230
231 mb_array[i].logicalStart = nextBitmapAddress;
232 mb_array[i].logicalEnd = nextBitmapAddress + length;
233 nextBitmapAddress += length;
234 printk(" Bitmap range: %016lx - %016lx\n"
235 " Absolute range: %016lx - %016lx\n",
236 mb_array[i].logicalStart,
237 mb_array[i].logicalEnd,
238 mb_array[i].absStart, mb_array[i].absEnd);
239 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
240 0x000fffffffffffff);
241 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
242 0x000fffffffffffff);
243 mb_array[i].logicalStart =
244 addr_to_chunk(mb_array[i].logicalStart);
245 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
246 }
247 }
248
249 return numSegmentBlocks;
250}
251
252static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
253 unsigned long max_entries)
254{
255 unsigned long i;
256 unsigned long mem_blocks = 0;
257
258 if (cpu_has_feature(CPU_FTR_SLB))
259 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
260 max_entries);
261 else
262 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
263 max_entries);
264
265 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
266 for (i = 0; i < mem_blocks; ++i) {
267 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
268 " abs chunks %016lx - %016lx\n",
269 i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
270 mb_array[i].absStart, mb_array[i].absEnd);
271 }
272 return mem_blocks;
273}
274
275static void __init iSeries_get_cmdline(void)
276{
277 char *p, *q;
278
279 /* copy the command line parameter from the primary VSP */
280 HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
281 HvLpDma_Direction_RemoteToLocal);
282
283 p = cmd_line;
284 q = cmd_line + 255;
285 while(p < q) {
286 if (!*p || *p == '\n')
287 break;
288 ++p;
289 }
290 *p = 0;
291}
292
293static void __init iSeries_init_early(void)
294{
1da177e4
LT
295 DBG(" -> iSeries_init_early()\n");
296
1da177e4
LT
297#if defined(CONFIG_BLK_DEV_INITRD)
298 /*
299 * If the init RAM disk has been configured and there is
300 * a non-zero starting address for it, set it up
301 */
302 if (naca.xRamDisk) {
303 initrd_start = (unsigned long)__va(naca.xRamDisk);
3c726f8d 304 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
1da177e4
LT
305 initrd_below_start_ok = 1; // ramdisk in kernel space
306 ROOT_DEV = Root_RAM0;
3c726f8d
BH
307 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
308 rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
1da177e4
LT
309 } else
310#endif /* CONFIG_BLK_DEV_INITRD */
311 {
312 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
313 }
314
315 iSeries_recal_tb = get_tb();
316 iSeries_recal_titan = HvCallXm_loadTod();
317
1da177e4
LT
318 /*
319 * Initialize the DMA/TCE management
320 */
321 iommu_init_early_iSeries();
322
1da177e4
LT
323 /* Initialize machine-dependency vectors */
324#ifdef CONFIG_SMP
325 smp_init_iSeries();
326#endif
1da177e4
LT
327
328 /* Associate Lp Event Queue 0 with processor 0 */
329 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
330
331 mf_init();
1da177e4
LT
332
333 /* If we were passed an initrd, set the ROOT_DEV properly if the values
334 * look sensible. If not, clear initrd reference.
335 */
336#ifdef CONFIG_BLK_DEV_INITRD
337 if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
338 initrd_end > initrd_start)
339 ROOT_DEV = Root_RAM0;
340 else
341 initrd_start = initrd_end = 0;
342#endif /* CONFIG_BLK_DEV_INITRD */
343
344 DBG(" <- iSeries_init_early()\n");
345}
346
56e97b71 347struct mschunks_map mschunks_map = {
34c8f696
ME
348 /* XXX We don't use these, but Piranha might need them. */
349 .chunk_size = MSCHUNKS_CHUNK_SIZE,
350 .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
351 .chunk_mask = MSCHUNKS_OFFSET_MASK,
352};
56e97b71 353EXPORT_SYMBOL(mschunks_map);
34c8f696 354
56e97b71 355void mschunks_alloc(unsigned long num_chunks)
34c8f696
ME
356{
357 klimit = _ALIGN(klimit, sizeof(u32));
56e97b71 358 mschunks_map.mapping = (u32 *)klimit;
34c8f696 359 klimit += num_chunks * sizeof(u32);
56e97b71 360 mschunks_map.num_chunks = num_chunks;
34c8f696
ME
361}
362
1da177e4
LT
363/*
364 * The iSeries may have very large memories ( > 128 GB ) and a partition
365 * may get memory in "chunks" that may be anywhere in the 2**52 real
366 * address space. The chunks are 256K in size. To map this to the
367 * memory model Linux expects, the AS/400 specific code builds a
368 * translation table to translate what Linux thinks are "physical"
369 * addresses to the actual real addresses. This allows us to make
370 * it appear to Linux that we have contiguous memory starting at
371 * physical address zero while in fact this could be far from the truth.
372 * To avoid confusion, I'll let the words physical and/or real address
373 * apply to the Linux addresses while I'll use "absolute address" to
374 * refer to the actual hardware real address.
375 *
376 * build_iSeries_Memory_Map gets information from the Hypervisor and
377 * looks at the Main Store VPD to determine the absolute addresses
378 * of the memory that has been assigned to our partition and builds
379 * a table used to translate Linux's physical addresses to these
380 * absolute addresses. Absolute addresses are needed when
381 * communicating with the hypervisor (e.g. to build HPT entries)
799d6046
PM
382 *
383 * Returns the physical memory size
1da177e4
LT
384 */
385
799d6046 386static unsigned long __init build_iSeries_Memory_Map(void)
1da177e4
LT
387{
388 u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
389 u32 nextPhysChunk;
390 u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
1da177e4
LT
391 u32 totalChunks,moreChunks;
392 u32 currChunk, thisChunk, absChunk;
393 u32 currDword;
394 u32 chunkBit;
395 u64 map;
396 struct MemoryBlock mb[32];
397 unsigned long numMemoryBlocks, curBlock;
398
399 /* Chunk size on iSeries is 256K bytes */
400 totalChunks = (u32)HvLpConfig_getMsChunks();
56e97b71 401 mschunks_alloc(totalChunks);
1da177e4
LT
402
403 /*
404 * Get absolute address of our load area
405 * and map it to physical address 0
406 * This guarantees that the loadarea ends up at physical 0
407 * otherwise, it might not be returned by PLIC as the first
408 * chunks
409 */
410
411 loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
412 loadAreaSize = itLpNaca.xLoadAreaChunks;
413
414 /*
415 * Only add the pages already mapped here.
416 * Otherwise we might add the hpt pages
417 * The rest of the pages of the load area
418 * aren't in the HPT yet and can still
419 * be assigned an arbitrary physical address
420 */
421 if ((loadAreaSize * 64) > HvPagesToMap)
422 loadAreaSize = HvPagesToMap / 64;
423
424 loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
425
426 /*
427 * TODO Do we need to do something if the HPT is in the 64MB load area?
428 * This would be required if the itLpNaca.xLoadAreaChunks includes
429 * the HPT size
430 */
431
432 printk("Mapping load area - physical addr = 0000000000000000\n"
433 " absolute addr = %016lx\n",
434 chunk_to_addr(loadAreaFirstChunk));
435 printk("Load area size %dK\n", loadAreaSize * 256);
436
437 for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
56e97b71 438 mschunks_map.mapping[nextPhysChunk] =
1da177e4
LT
439 loadAreaFirstChunk + nextPhysChunk;
440
441 /*
442 * Get absolute address of our HPT and remember it so
443 * we won't map it to any physical address
444 */
445 hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
446 hptSizePages = (u32)HvCallHpt_getHptPages();
3c726f8d
BH
447 hptSizeChunks = hptSizePages >>
448 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
1da177e4
LT
449 hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
450
451 printk("HPT absolute addr = %016lx, size = %dK\n",
452 chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
453
1da177e4
LT
454 /*
455 * Determine if absolute memory has any
456 * holes so that we can interpret the
457 * access map we get back from the hypervisor
458 * correctly.
459 */
460 numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
461
462 /*
463 * Process the main store access map from the hypervisor
464 * to build up our physical -> absolute translation table
465 */
466 curBlock = 0;
467 currChunk = 0;
468 currDword = 0;
469 moreChunks = totalChunks;
470
471 while (moreChunks) {
472 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
473 currDword);
474 thisChunk = currChunk;
475 while (map) {
476 chunkBit = map >> 63;
477 map <<= 1;
478 if (chunkBit) {
479 --moreChunks;
480 while (thisChunk >= mb[curBlock].logicalEnd) {
481 ++curBlock;
482 if (curBlock >= numMemoryBlocks)
483 panic("out of memory blocks");
484 }
485 if (thisChunk < mb[curBlock].logicalStart)
486 panic("memory block error");
487
488 absChunk = mb[curBlock].absStart +
489 (thisChunk - mb[curBlock].logicalStart);
490 if (((absChunk < hptFirstChunk) ||
491 (absChunk > hptLastChunk)) &&
492 ((absChunk < loadAreaFirstChunk) ||
493 (absChunk > loadAreaLastChunk))) {
56e97b71
ME
494 mschunks_map.mapping[nextPhysChunk] =
495 absChunk;
1da177e4
LT
496 ++nextPhysChunk;
497 }
498 }
499 ++thisChunk;
500 }
501 ++currDword;
502 currChunk += 64;
503 }
504
505 /*
506 * main store size (in chunks) is
507 * totalChunks - hptSizeChunks
508 * which should be equal to
509 * nextPhysChunk
510 */
799d6046 511 return chunk_to_addr(nextPhysChunk);
1da177e4
LT
512}
513
1da177e4
LT
514/*
515 * Document me.
516 */
517static void __init iSeries_setup_arch(void)
518{
3356bb9f 519 if (get_lppaca()->shared_proc) {
9f497581 520 ppc_md.idle_loop = iseries_shared_idle;
4baaf0cf 521 printk(KERN_DEBUG "Using shared processor idle loop\n");
9f497581
ME
522 } else {
523 ppc_md.idle_loop = iseries_dedicated_idle;
4baaf0cf 524 printk(KERN_DEBUG "Using dedicated idle loop\n");
9f497581
ME
525 }
526
1da177e4 527 /* Setup the Lp Event Queue */
512d31d6 528 setup_hvlpevent_queue();
1da177e4 529
1da177e4
LT
530 printk("Max logical processors = %d\n",
531 itVpdAreas.xSlicMaxLogicalProcs);
532 printk("Max physical processors = %d\n",
533 itVpdAreas.xSlicMaxPhysicalProcs);
1da177e4
LT
534}
535
d8699e65 536static void iSeries_show_cpuinfo(struct seq_file *m)
1da177e4
LT
537{
538 seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
539}
540
1da177e4
LT
541static void __init iSeries_progress(char * st, unsigned short code)
542{
543 printk("Progress: [%04x] - %s\n", (unsigned)code, st);
260de22f 544 mf_display_progress(code);
1da177e4
LT
545}
546
547static void __init iSeries_fixup_klimit(void)
548{
549 /*
550 * Change klimit to take into account any ram disk
551 * that may be included
552 */
553 if (naca.xRamDisk)
554 klimit = KERNELBASE + (u64)naca.xRamDisk +
3c726f8d 555 (naca.xRamDiskSize * HW_PAGE_SIZE);
1da177e4
LT
556}
557
558static int __init iSeries_src_init(void)
559{
560 /* clear the progress line */
561 ppc_md.progress(" ", 0xffff);
562 return 0;
563}
564
565late_initcall(iSeries_src_init);
566
d200903e
ME
567static inline void process_iSeries_events(void)
568{
569 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
570}
571
572static void yield_shared_processor(void)
573{
574 unsigned long tb;
d200903e
ME
575
576 HvCall_setEnabledInterrupts(HvCall_MaskIPI |
577 HvCall_MaskLpEvent |
578 HvCall_MaskLpProd |
579 HvCall_MaskTimeout);
580
581 tb = get_tb();
582 /* Compute future tb value when yield should expire */
583 HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
584
d200903e
ME
585 /*
586 * The decrementer stops during the yield. Force a fake decrementer
587 * here and let the timer_interrupt code sort out the actual time.
588 */
3356bb9f 589 get_lppaca()->int_dword.fields.decr_int = 1;
cb2c9b27 590 ppc64_runlatch_on();
d200903e
ME
591 process_iSeries_events();
592}
593
143a1dec 594static void iseries_shared_idle(void)
d200903e 595{
3c57bb9f
AB
596 while (1) {
597 while (!need_resched() && !hvlpevent_is_pending()) {
598 local_irq_disable();
599 ppc64_runlatch_off();
600
601 /* Recheck with irqs off */
602 if (!need_resched() && !hvlpevent_is_pending())
603 yield_shared_processor();
d200903e 604
3c57bb9f
AB
605 HMT_medium();
606 local_irq_enable();
607 }
608
609 ppc64_runlatch_on();
d200903e 610
3c57bb9f
AB
611 if (hvlpevent_is_pending())
612 process_iSeries_events();
613
5bfb5d69 614 preempt_enable_no_resched();
3c57bb9f 615 schedule();
5bfb5d69 616 preempt_disable();
3c57bb9f 617 }
3c57bb9f
AB
618}
619
143a1dec 620static void iseries_dedicated_idle(void)
3c57bb9f 621{
64c7c8f8 622 set_thread_flag(TIF_POLLING_NRFLAG);
d200903e
ME
623
624 while (1) {
64c7c8f8 625 if (!need_resched()) {
3c57bb9f
AB
626 while (!need_resched()) {
627 ppc64_runlatch_off();
628 HMT_low();
629
630 if (hvlpevent_is_pending()) {
d200903e 631 HMT_medium();
3c57bb9f
AB
632 ppc64_runlatch_on();
633 process_iSeries_events();
d200903e 634 }
d200903e 635 }
3c57bb9f
AB
636
637 HMT_medium();
d200903e
ME
638 }
639
640 ppc64_runlatch_on();
5bfb5d69 641 preempt_enable_no_resched();
d200903e 642 schedule();
5bfb5d69 643 preempt_disable();
d200903e 644 }
d200903e
ME
645}
646
145d01e4
SR
647#ifndef CONFIG_PCI
648void __init iSeries_init_IRQ(void) { }
649#endif
650
e8222502 651static int __init iseries_probe(void)
4762713a 652{
e8222502
BH
653 unsigned long root = of_get_flat_dt_root();
654 if (!of_flat_dt_is_compatible(root, "IBM,iSeries"))
57cfb814
ME
655 return 0;
656
d0160bf0
ME
657 powerpc_firmware_features |= FW_FEATURE_ISERIES;
658 powerpc_firmware_features |= FW_FEATURE_LPAR;
57cfb814 659
7d0daae4
ME
660 hpte_init_iSeries();
661
57cfb814 662 return 1;
4762713a
ME
663}
664
e8222502
BH
665define_machine(iseries) {
666 .name = "iSeries",
9f497581 667 .setup_arch = iSeries_setup_arch,
d8699e65 668 .show_cpuinfo = iSeries_show_cpuinfo,
9f497581
ME
669 .init_IRQ = iSeries_init_IRQ,
670 .get_irq = iSeries_get_irq,
671 .init_early = iSeries_init_early,
672 .pcibios_fixup = iSeries_pci_final_fixup,
a9ea2101
ME
673 .restart = mf_reboot,
674 .power_off = mf_power_off,
675 .halt = mf_power_off,
9f497581
ME
676 .get_boot_time = iSeries_get_boot_time,
677 .set_rtc_time = iSeries_set_rtc_time,
678 .get_rtc_time = iSeries_get_rtc_time,
95b29380 679 .calibrate_decr = generic_calibrate_decr,
9f497581 680 .progress = iSeries_progress,
4762713a 681 .probe = iseries_probe,
9f497581
ME
682 /* XXX Implement enable_pmcs for iSeries */
683};
684
4762713a 685void * __init iSeries_early_setup(void)
1da177e4 686{
799d6046
PM
687 unsigned long phys_mem_size;
688
1da177e4 689 iSeries_fixup_klimit();
c0a59491 690
4762713a
ME
691 /*
692 * Initialize the table which translate Linux physical addresses to
693 * AS/400 absolute addresses
694 */
799d6046 695 phys_mem_size = build_iSeries_Memory_Map();
4762713a 696
bec7c458
SR
697 iSeries_get_cmdline();
698
c81014f6 699 return (void *) __pa(build_flat_dt(phys_mem_size));
1da177e4 700}
bec7c458 701
bf6a7112
ME
702static void hvputc(char c)
703{
704 if (c == '\n')
705 hvputc('\r');
706
707 HvCall_writeLogBuffer(&c, 1);
708}
709
710void __init udbg_init_iseries(void)
711{
712 udbg_putc = hvputc;
713}
This page took 0.224073 seconds and 5 git commands to generate.