[PATCH] powerpc: Move more ppc64 files with no ppc32 equivalent to powerpc
[deliverable/linux.git] / arch / powerpc / platforms / iseries / setup.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4 *
1da177e4
LT
5 * Description:
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9 * <dan@net4x.com>.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#undef DEBUG
18
19#include <linux/config.h>
20#include <linux/init.h>
21#include <linux/threads.h>
22#include <linux/smp.h>
23#include <linux/param.h>
24#include <linux/string.h>
1da177e4
LT
25#include <linux/initrd.h>
26#include <linux/seq_file.h>
27#include <linux/kdev_t.h>
28#include <linux/major.h>
29#include <linux/root_dev.h>
bec7c458 30#include <linux/kernel.h>
1da177e4
LT
31
32#include <asm/processor.h>
33#include <asm/machdep.h>
34#include <asm/page.h>
35#include <asm/mmu.h>
36#include <asm/pgtable.h>
37#include <asm/mmu_context.h>
38#include <asm/cputable.h>
39#include <asm/sections.h>
40#include <asm/iommu.h>
aed31351 41#include <asm/firmware.h>
799d6046 42#include <asm/systemcfg.h>
1da177e4
LT
43
44#include <asm/time.h>
1da177e4
LT
45#include <asm/paca.h>
46#include <asm/cache.h>
47#include <asm/sections.h>
0bc0ffd5 48#include <asm/abs_addr.h>
15b17189 49#include <asm/iseries/hv_lp_config.h>
c0a8d05c 50#include <asm/iseries/hv_call_event.h>
8021b8a7 51#include <asm/iseries/hv_call_xm.h>
8875ccfb 52#include <asm/iseries/it_lp_queue.h>
bbc8b628 53#include <asm/iseries/mf.h>
e45423ea 54#include <asm/iseries/hv_lp_event.h>
c43a55ff 55#include <asm/iseries/lpar_map.h>
1da177e4 56
f11b7bd8 57#include "naca.h"
c8b84976 58#include "setup.h"
b08567cb
SR
59#include "irq.h"
60#include "vpd_areas.h"
61#include "processor_vpd.h"
62#include "main_store.h"
63#include "call_sm.h"
0e29bb1a 64#include "call_hpt.h"
c8b84976 65
1da177e4
LT
66extern void hvlog(char *fmt, ...);
67
68#ifdef DEBUG
69#define DBG(fmt...) hvlog(fmt)
70#else
71#define DBG(fmt...)
72#endif
73
74/* Function Prototypes */
799d6046 75static unsigned long build_iSeries_Memory_Map(void);
143a1dec
PM
76static void iseries_shared_idle(void);
77static void iseries_dedicated_idle(void);
145d01e4 78#ifdef CONFIG_PCI
1da177e4 79extern void iSeries_pci_final_fixup(void);
145d01e4
SR
80#else
81static void iSeries_pci_final_fixup(void) { }
82#endif
1da177e4
LT
83
84/* Global Variables */
1da177e4
LT
85int piranha_simulator;
86
87extern int rd_size; /* Defined in drivers/block/rd.c */
88extern unsigned long klimit;
89extern unsigned long embedded_sysmap_start;
90extern unsigned long embedded_sysmap_end;
91
92extern unsigned long iSeries_recal_tb;
93extern unsigned long iSeries_recal_titan;
94
95static int mf_initialized;
96
bec7c458
SR
97static unsigned long cmd_mem_limit;
98
1da177e4
LT
99struct MemoryBlock {
100 unsigned long absStart;
101 unsigned long absEnd;
102 unsigned long logicalStart;
103 unsigned long logicalEnd;
104};
105
106/*
107 * Process the main store vpd to determine where the holes in memory are
108 * and return the number of physical blocks and fill in the array of
109 * block data.
110 */
111static unsigned long iSeries_process_Condor_mainstore_vpd(
112 struct MemoryBlock *mb_array, unsigned long max_entries)
113{
114 unsigned long holeFirstChunk, holeSizeChunks;
115 unsigned long numMemoryBlocks = 1;
116 struct IoHriMainStoreSegment4 *msVpd =
117 (struct IoHriMainStoreSegment4 *)xMsVpd;
118 unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
119 unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
120 unsigned long holeSize = holeEnd - holeStart;
121
122 printk("Mainstore_VPD: Condor\n");
123 /*
124 * Determine if absolute memory has any
125 * holes so that we can interpret the
126 * access map we get back from the hypervisor
127 * correctly.
128 */
129 mb_array[0].logicalStart = 0;
130 mb_array[0].logicalEnd = 0x100000000;
131 mb_array[0].absStart = 0;
132 mb_array[0].absEnd = 0x100000000;
133
134 if (holeSize) {
135 numMemoryBlocks = 2;
136 holeStart = holeStart & 0x000fffffffffffff;
137 holeStart = addr_to_chunk(holeStart);
138 holeFirstChunk = holeStart;
139 holeSize = addr_to_chunk(holeSize);
140 holeSizeChunks = holeSize;
141 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
142 holeFirstChunk, holeSizeChunks );
143 mb_array[0].logicalEnd = holeFirstChunk;
144 mb_array[0].absEnd = holeFirstChunk;
145 mb_array[1].logicalStart = holeFirstChunk;
146 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
147 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
148 mb_array[1].absEnd = 0x100000000;
149 }
150 return numMemoryBlocks;
151}
152
153#define MaxSegmentAreas 32
154#define MaxSegmentAdrRangeBlocks 128
155#define MaxAreaRangeBlocks 4
156
157static unsigned long iSeries_process_Regatta_mainstore_vpd(
158 struct MemoryBlock *mb_array, unsigned long max_entries)
159{
160 struct IoHriMainStoreSegment5 *msVpdP =
161 (struct IoHriMainStoreSegment5 *)xMsVpd;
162 unsigned long numSegmentBlocks = 0;
163 u32 existsBits = msVpdP->msAreaExists;
164 unsigned long area_num;
165
166 printk("Mainstore_VPD: Regatta\n");
167
168 for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
169 unsigned long numAreaBlocks;
170 struct IoHriMainStoreArea4 *currentArea;
171
172 if (existsBits & 0x80000000) {
173 unsigned long block_num;
174
175 currentArea = &msVpdP->msAreaArray[area_num];
176 numAreaBlocks = currentArea->numAdrRangeBlocks;
177 printk("ms_vpd: processing area %2ld blocks=%ld",
178 area_num, numAreaBlocks);
179 for (block_num = 0; block_num < numAreaBlocks;
180 ++block_num ) {
181 /* Process an address range block */
182 struct MemoryBlock tempBlock;
183 unsigned long i;
184
185 tempBlock.absStart =
186 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
187 tempBlock.absEnd =
188 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
189 tempBlock.logicalStart = 0;
190 tempBlock.logicalEnd = 0;
191 printk("\n block %ld absStart=%016lx absEnd=%016lx",
192 block_num, tempBlock.absStart,
193 tempBlock.absEnd);
194
195 for (i = 0; i < numSegmentBlocks; ++i) {
196 if (mb_array[i].absStart ==
197 tempBlock.absStart)
198 break;
199 }
200 if (i == numSegmentBlocks) {
201 if (numSegmentBlocks == max_entries)
202 panic("iSeries_process_mainstore_vpd: too many memory blocks");
203 mb_array[numSegmentBlocks] = tempBlock;
204 ++numSegmentBlocks;
205 } else
206 printk(" (duplicate)");
207 }
208 printk("\n");
209 }
210 existsBits <<= 1;
211 }
212 /* Now sort the blocks found into ascending sequence */
213 if (numSegmentBlocks > 1) {
214 unsigned long m, n;
215
216 for (m = 0; m < numSegmentBlocks - 1; ++m) {
217 for (n = numSegmentBlocks - 1; m < n; --n) {
218 if (mb_array[n].absStart <
219 mb_array[n-1].absStart) {
220 struct MemoryBlock tempBlock;
221
222 tempBlock = mb_array[n];
223 mb_array[n] = mb_array[n-1];
224 mb_array[n-1] = tempBlock;
225 }
226 }
227 }
228 }
229 /*
230 * Assign "logical" addresses to each block. These
231 * addresses correspond to the hypervisor "bitmap" space.
232 * Convert all addresses into units of 256K chunks.
233 */
234 {
235 unsigned long i, nextBitmapAddress;
236
237 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
238 nextBitmapAddress = 0;
239 for (i = 0; i < numSegmentBlocks; ++i) {
240 unsigned long length = mb_array[i].absEnd -
241 mb_array[i].absStart;
242
243 mb_array[i].logicalStart = nextBitmapAddress;
244 mb_array[i].logicalEnd = nextBitmapAddress + length;
245 nextBitmapAddress += length;
246 printk(" Bitmap range: %016lx - %016lx\n"
247 " Absolute range: %016lx - %016lx\n",
248 mb_array[i].logicalStart,
249 mb_array[i].logicalEnd,
250 mb_array[i].absStart, mb_array[i].absEnd);
251 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
252 0x000fffffffffffff);
253 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
254 0x000fffffffffffff);
255 mb_array[i].logicalStart =
256 addr_to_chunk(mb_array[i].logicalStart);
257 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
258 }
259 }
260
261 return numSegmentBlocks;
262}
263
264static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
265 unsigned long max_entries)
266{
267 unsigned long i;
268 unsigned long mem_blocks = 0;
269
270 if (cpu_has_feature(CPU_FTR_SLB))
271 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
272 max_entries);
273 else
274 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
275 max_entries);
276
277 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
278 for (i = 0; i < mem_blocks; ++i) {
279 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
280 " abs chunks %016lx - %016lx\n",
281 i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
282 mb_array[i].absStart, mb_array[i].absEnd);
283 }
284 return mem_blocks;
285}
286
287static void __init iSeries_get_cmdline(void)
288{
289 char *p, *q;
290
291 /* copy the command line parameter from the primary VSP */
292 HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
293 HvLpDma_Direction_RemoteToLocal);
294
295 p = cmd_line;
296 q = cmd_line + 255;
297 while(p < q) {
298 if (!*p || *p == '\n')
299 break;
300 ++p;
301 }
302 *p = 0;
303}
304
305static void __init iSeries_init_early(void)
306{
1da177e4
LT
307 DBG(" -> iSeries_init_early()\n");
308
aed31351
SR
309 ppc64_firmware_features = FW_FEATURE_ISERIES;
310
ba293fff
ME
311 ppc64_interrupt_controller = IC_ISERIES;
312
1da177e4
LT
313#if defined(CONFIG_BLK_DEV_INITRD)
314 /*
315 * If the init RAM disk has been configured and there is
316 * a non-zero starting address for it, set it up
317 */
318 if (naca.xRamDisk) {
319 initrd_start = (unsigned long)__va(naca.xRamDisk);
3c726f8d 320 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
1da177e4
LT
321 initrd_below_start_ok = 1; // ramdisk in kernel space
322 ROOT_DEV = Root_RAM0;
3c726f8d
BH
323 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
324 rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
1da177e4
LT
325 } else
326#endif /* CONFIG_BLK_DEV_INITRD */
327 {
328 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
329 }
330
331 iSeries_recal_tb = get_tb();
332 iSeries_recal_titan = HvCallXm_loadTod();
333
1da177e4
LT
334 /*
335 * Initialize the hash table management pointers
336 */
337 hpte_init_iSeries();
338
339 /*
340 * Initialize the DMA/TCE management
341 */
342 iommu_init_early_iSeries();
343
1da177e4
LT
344 /* Initialize machine-dependency vectors */
345#ifdef CONFIG_SMP
346 smp_init_iSeries();
347#endif
348 if (itLpNaca.xPirEnvironMode == 0)
349 piranha_simulator = 1;
350
351 /* Associate Lp Event Queue 0 with processor 0 */
352 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
353
354 mf_init();
355 mf_initialized = 1;
356 mb();
357
358 /* If we were passed an initrd, set the ROOT_DEV properly if the values
359 * look sensible. If not, clear initrd reference.
360 */
361#ifdef CONFIG_BLK_DEV_INITRD
362 if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
363 initrd_end > initrd_start)
364 ROOT_DEV = Root_RAM0;
365 else
366 initrd_start = initrd_end = 0;
367#endif /* CONFIG_BLK_DEV_INITRD */
368
369 DBG(" <- iSeries_init_early()\n");
370}
371
56e97b71 372struct mschunks_map mschunks_map = {
34c8f696
ME
373 /* XXX We don't use these, but Piranha might need them. */
374 .chunk_size = MSCHUNKS_CHUNK_SIZE,
375 .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
376 .chunk_mask = MSCHUNKS_OFFSET_MASK,
377};
56e97b71 378EXPORT_SYMBOL(mschunks_map);
34c8f696 379
56e97b71 380void mschunks_alloc(unsigned long num_chunks)
34c8f696
ME
381{
382 klimit = _ALIGN(klimit, sizeof(u32));
56e97b71 383 mschunks_map.mapping = (u32 *)klimit;
34c8f696 384 klimit += num_chunks * sizeof(u32);
56e97b71 385 mschunks_map.num_chunks = num_chunks;
34c8f696
ME
386}
387
1da177e4
LT
388/*
389 * The iSeries may have very large memories ( > 128 GB ) and a partition
390 * may get memory in "chunks" that may be anywhere in the 2**52 real
391 * address space. The chunks are 256K in size. To map this to the
392 * memory model Linux expects, the AS/400 specific code builds a
393 * translation table to translate what Linux thinks are "physical"
394 * addresses to the actual real addresses. This allows us to make
395 * it appear to Linux that we have contiguous memory starting at
396 * physical address zero while in fact this could be far from the truth.
397 * To avoid confusion, I'll let the words physical and/or real address
398 * apply to the Linux addresses while I'll use "absolute address" to
399 * refer to the actual hardware real address.
400 *
401 * build_iSeries_Memory_Map gets information from the Hypervisor and
402 * looks at the Main Store VPD to determine the absolute addresses
403 * of the memory that has been assigned to our partition and builds
404 * a table used to translate Linux's physical addresses to these
405 * absolute addresses. Absolute addresses are needed when
406 * communicating with the hypervisor (e.g. to build HPT entries)
799d6046
PM
407 *
408 * Returns the physical memory size
1da177e4
LT
409 */
410
799d6046 411static unsigned long __init build_iSeries_Memory_Map(void)
1da177e4
LT
412{
413 u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
414 u32 nextPhysChunk;
415 u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
1da177e4
LT
416 u32 totalChunks,moreChunks;
417 u32 currChunk, thisChunk, absChunk;
418 u32 currDword;
419 u32 chunkBit;
420 u64 map;
421 struct MemoryBlock mb[32];
422 unsigned long numMemoryBlocks, curBlock;
423
424 /* Chunk size on iSeries is 256K bytes */
425 totalChunks = (u32)HvLpConfig_getMsChunks();
56e97b71 426 mschunks_alloc(totalChunks);
1da177e4
LT
427
428 /*
429 * Get absolute address of our load area
430 * and map it to physical address 0
431 * This guarantees that the loadarea ends up at physical 0
432 * otherwise, it might not be returned by PLIC as the first
433 * chunks
434 */
435
436 loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
437 loadAreaSize = itLpNaca.xLoadAreaChunks;
438
439 /*
440 * Only add the pages already mapped here.
441 * Otherwise we might add the hpt pages
442 * The rest of the pages of the load area
443 * aren't in the HPT yet and can still
444 * be assigned an arbitrary physical address
445 */
446 if ((loadAreaSize * 64) > HvPagesToMap)
447 loadAreaSize = HvPagesToMap / 64;
448
449 loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
450
451 /*
452 * TODO Do we need to do something if the HPT is in the 64MB load area?
453 * This would be required if the itLpNaca.xLoadAreaChunks includes
454 * the HPT size
455 */
456
457 printk("Mapping load area - physical addr = 0000000000000000\n"
458 " absolute addr = %016lx\n",
459 chunk_to_addr(loadAreaFirstChunk));
460 printk("Load area size %dK\n", loadAreaSize * 256);
461
462 for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
56e97b71 463 mschunks_map.mapping[nextPhysChunk] =
1da177e4
LT
464 loadAreaFirstChunk + nextPhysChunk;
465
466 /*
467 * Get absolute address of our HPT and remember it so
468 * we won't map it to any physical address
469 */
470 hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
471 hptSizePages = (u32)HvCallHpt_getHptPages();
3c726f8d
BH
472 hptSizeChunks = hptSizePages >>
473 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
1da177e4
LT
474 hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
475
476 printk("HPT absolute addr = %016lx, size = %dK\n",
477 chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
478
3c726f8d 479 ppc64_pft_size = __ilog2(hptSizePages * HW_PAGE_SIZE);
1da177e4
LT
480
481 /*
482 * The actual hashed page table is in the hypervisor,
483 * we have no direct access
484 */
485 htab_address = NULL;
486
487 /*
488 * Determine if absolute memory has any
489 * holes so that we can interpret the
490 * access map we get back from the hypervisor
491 * correctly.
492 */
493 numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
494
495 /*
496 * Process the main store access map from the hypervisor
497 * to build up our physical -> absolute translation table
498 */
499 curBlock = 0;
500 currChunk = 0;
501 currDword = 0;
502 moreChunks = totalChunks;
503
504 while (moreChunks) {
505 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
506 currDword);
507 thisChunk = currChunk;
508 while (map) {
509 chunkBit = map >> 63;
510 map <<= 1;
511 if (chunkBit) {
512 --moreChunks;
513 while (thisChunk >= mb[curBlock].logicalEnd) {
514 ++curBlock;
515 if (curBlock >= numMemoryBlocks)
516 panic("out of memory blocks");
517 }
518 if (thisChunk < mb[curBlock].logicalStart)
519 panic("memory block error");
520
521 absChunk = mb[curBlock].absStart +
522 (thisChunk - mb[curBlock].logicalStart);
523 if (((absChunk < hptFirstChunk) ||
524 (absChunk > hptLastChunk)) &&
525 ((absChunk < loadAreaFirstChunk) ||
526 (absChunk > loadAreaLastChunk))) {
56e97b71
ME
527 mschunks_map.mapping[nextPhysChunk] =
528 absChunk;
1da177e4
LT
529 ++nextPhysChunk;
530 }
531 }
532 ++thisChunk;
533 }
534 ++currDword;
535 currChunk += 64;
536 }
537
538 /*
539 * main store size (in chunks) is
540 * totalChunks - hptSizeChunks
541 * which should be equal to
542 * nextPhysChunk
543 */
799d6046 544 return chunk_to_addr(nextPhysChunk);
1da177e4
LT
545}
546
1da177e4
LT
547/*
548 * Document me.
549 */
550static void __init iSeries_setup_arch(void)
551{
1da177e4
LT
552 unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;
553
9f497581
ME
554 if (get_paca()->lppaca.shared_proc) {
555 ppc_md.idle_loop = iseries_shared_idle;
556 printk(KERN_INFO "Using shared processor idle loop\n");
557 } else {
558 ppc_md.idle_loop = iseries_dedicated_idle;
559 printk(KERN_INFO "Using dedicated idle loop\n");
560 }
561
1da177e4 562 /* Setup the Lp Event Queue */
512d31d6 563 setup_hvlpevent_queue();
1da177e4 564
1da177e4
LT
565 printk("Max logical processors = %d\n",
566 itVpdAreas.xSlicMaxLogicalProcs);
567 printk("Max physical processors = %d\n",
568 itVpdAreas.xSlicMaxPhysicalProcs);
95b29380 569
799d6046
PM
570 _systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR;
571 printk("Processor version = %x\n", _systemcfg->processor);
1da177e4
LT
572}
573
d8699e65 574static void iSeries_show_cpuinfo(struct seq_file *m)
1da177e4
LT
575{
576 seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
577}
578
579/*
580 * Document me.
581 * and Implement me.
582 */
583static int iSeries_get_irq(struct pt_regs *regs)
584{
585 /* -2 means ignore this interrupt */
586 return -2;
587}
588
589/*
590 * Document me.
591 */
592static void iSeries_restart(char *cmd)
593{
594 mf_reboot();
595}
596
597/*
598 * Document me.
599 */
600static void iSeries_power_off(void)
601{
602 mf_power_off();
603}
604
605/*
606 * Document me.
607 */
608static void iSeries_halt(void)
609{
610 mf_power_off();
611}
612
1da177e4
LT
613static void __init iSeries_progress(char * st, unsigned short code)
614{
615 printk("Progress: [%04x] - %s\n", (unsigned)code, st);
616 if (!piranha_simulator && mf_initialized) {
617 if (code != 0xffff)
618 mf_display_progress(code);
619 else
620 mf_clear_src();
621 }
622}
623
624static void __init iSeries_fixup_klimit(void)
625{
626 /*
627 * Change klimit to take into account any ram disk
628 * that may be included
629 */
630 if (naca.xRamDisk)
631 klimit = KERNELBASE + (u64)naca.xRamDisk +
3c726f8d 632 (naca.xRamDiskSize * HW_PAGE_SIZE);
1da177e4
LT
633 else {
634 /*
635 * No ram disk was included - check and see if there
636 * was an embedded system map. Change klimit to take
637 * into account any embedded system map
638 */
639 if (embedded_sysmap_end)
640 klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
641 0xfffffffffffff000);
642 }
643}
644
645static int __init iSeries_src_init(void)
646{
647 /* clear the progress line */
648 ppc_md.progress(" ", 0xffff);
649 return 0;
650}
651
652late_initcall(iSeries_src_init);
653
d200903e
ME
654static inline void process_iSeries_events(void)
655{
656 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
657}
658
659static void yield_shared_processor(void)
660{
661 unsigned long tb;
d200903e
ME
662
663 HvCall_setEnabledInterrupts(HvCall_MaskIPI |
664 HvCall_MaskLpEvent |
665 HvCall_MaskLpProd |
666 HvCall_MaskTimeout);
667
668 tb = get_tb();
669 /* Compute future tb value when yield should expire */
670 HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
671
d200903e
ME
672 /*
673 * The decrementer stops during the yield. Force a fake decrementer
674 * here and let the timer_interrupt code sort out the actual time.
675 */
676 get_paca()->lppaca.int_dword.fields.decr_int = 1;
677 process_iSeries_events();
678}
679
143a1dec 680static void iseries_shared_idle(void)
d200903e 681{
3c57bb9f
AB
682 while (1) {
683 while (!need_resched() && !hvlpevent_is_pending()) {
684 local_irq_disable();
685 ppc64_runlatch_off();
686
687 /* Recheck with irqs off */
688 if (!need_resched() && !hvlpevent_is_pending())
689 yield_shared_processor();
d200903e 690
3c57bb9f
AB
691 HMT_medium();
692 local_irq_enable();
693 }
694
695 ppc64_runlatch_on();
d200903e 696
3c57bb9f
AB
697 if (hvlpevent_is_pending())
698 process_iSeries_events();
699
5bfb5d69 700 preempt_enable_no_resched();
3c57bb9f 701 schedule();
5bfb5d69 702 preempt_disable();
3c57bb9f 703 }
3c57bb9f
AB
704}
705
143a1dec 706static void iseries_dedicated_idle(void)
3c57bb9f 707{
3c57bb9f 708 long oldval;
64c7c8f8 709 set_thread_flag(TIF_POLLING_NRFLAG);
d200903e
ME
710
711 while (1) {
64c7c8f8 712 if (!need_resched()) {
3c57bb9f
AB
713 while (!need_resched()) {
714 ppc64_runlatch_off();
715 HMT_low();
716
717 if (hvlpevent_is_pending()) {
d200903e 718 HMT_medium();
3c57bb9f
AB
719 ppc64_runlatch_on();
720 process_iSeries_events();
d200903e 721 }
d200903e 722 }
3c57bb9f
AB
723
724 HMT_medium();
d200903e
ME
725 }
726
727 ppc64_runlatch_on();
5bfb5d69 728 preempt_enable_no_resched();
d200903e 729 schedule();
5bfb5d69 730 preempt_disable();
d200903e 731 }
d200903e
ME
732}
733
145d01e4
SR
734#ifndef CONFIG_PCI
735void __init iSeries_init_IRQ(void) { }
736#endif
737
4762713a
ME
738static int __init iseries_probe(int platform)
739{
740 return PLATFORM_ISERIES_LPAR == platform;
741}
742
9f497581
ME
743struct machdep_calls __initdata iseries_md = {
744 .setup_arch = iSeries_setup_arch,
d8699e65 745 .show_cpuinfo = iSeries_show_cpuinfo,
9f497581
ME
746 .init_IRQ = iSeries_init_IRQ,
747 .get_irq = iSeries_get_irq,
748 .init_early = iSeries_init_early,
749 .pcibios_fixup = iSeries_pci_final_fixup,
750 .restart = iSeries_restart,
751 .power_off = iSeries_power_off,
752 .halt = iSeries_halt,
753 .get_boot_time = iSeries_get_boot_time,
754 .set_rtc_time = iSeries_set_rtc_time,
755 .get_rtc_time = iSeries_get_rtc_time,
95b29380 756 .calibrate_decr = generic_calibrate_decr,
9f497581 757 .progress = iSeries_progress,
4762713a 758 .probe = iseries_probe,
9f497581
ME
759 /* XXX Implement enable_pmcs for iSeries */
760};
761
c0a59491
ME
762struct blob {
763 unsigned char data[PAGE_SIZE];
764 unsigned long next;
765};
766
767struct iseries_flat_dt {
768 struct boot_param_header header;
769 u64 reserve_map[2];
770 struct blob dt;
771 struct blob strings;
772};
773
774struct iseries_flat_dt iseries_dt;
775
776void dt_init(struct iseries_flat_dt *dt)
777{
778 dt->header.off_mem_rsvmap =
779 offsetof(struct iseries_flat_dt, reserve_map);
780 dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
781 dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
782 dt->header.totalsize = sizeof(struct iseries_flat_dt);
783 dt->header.dt_strings_size = sizeof(struct blob);
784
785 /* There is no notion of hardware cpu id on iSeries */
786 dt->header.boot_cpuid_phys = smp_processor_id();
787
788 dt->dt.next = (unsigned long)&dt->dt.data;
789 dt->strings.next = (unsigned long)&dt->strings.data;
790
791 dt->header.magic = OF_DT_HEADER;
792 dt->header.version = 0x10;
793 dt->header.last_comp_version = 0x10;
794
795 dt->reserve_map[0] = 0;
796 dt->reserve_map[1] = 0;
797}
798
799void dt_check_blob(struct blob *b)
800{
801 if (b->next >= (unsigned long)&b->next) {
802 DBG("Ran out of space in flat device tree blob!\n");
803 BUG();
804 }
805}
806
807void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
808{
809 *((u32*)dt->dt.next) = value;
810 dt->dt.next += sizeof(u32);
811
812 dt_check_blob(&dt->dt);
813}
814
815void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
816{
817 *((u64*)dt->dt.next) = value;
818 dt->dt.next += sizeof(u64);
819
820 dt_check_blob(&dt->dt);
821}
822
823unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
824{
825 unsigned long start = blob->next - (unsigned long)blob->data;
826
827 memcpy((char *)blob->next, data, len);
828 blob->next = _ALIGN(blob->next + len, 4);
829
830 dt_check_blob(blob);
831
832 return start;
833}
834
835void dt_start_node(struct iseries_flat_dt *dt, char *name)
836{
837 dt_push_u32(dt, OF_DT_BEGIN_NODE);
838 dt_push_bytes(&dt->dt, name, strlen(name) + 1);
839}
840
841#define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
842
843void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
844{
845 unsigned long offset;
846
847 dt_push_u32(dt, OF_DT_PROP);
848
849 /* Length of the data */
850 dt_push_u32(dt, len);
851
852 /* Put the property name in the string blob. */
853 offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
854
855 /* The offset of the properties name in the string blob. */
856 dt_push_u32(dt, (u32)offset);
857
858 /* The actual data. */
859 dt_push_bytes(&dt->dt, data, len);
860}
861
862void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
863{
864 dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
865}
866
867void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
868{
869 dt_prop(dt, name, (char *)&data, sizeof(u32));
870}
871
872void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
873{
874 dt_prop(dt, name, (char *)&data, sizeof(u64));
875}
876
877void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
878{
879 dt_prop(dt, name, (char *)data, sizeof(u64) * n);
880}
881
882void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
883{
884 dt_prop(dt, name, NULL, 0);
885}
886
95b29380
ME
887void dt_cpus(struct iseries_flat_dt *dt)
888{
889 unsigned char buf[32];
890 unsigned char *p;
891 unsigned int i, index;
892 struct IoHriProcessorVpd *d;
893
894 /* yuck */
895 snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
896 p = strchr(buf, ' ');
897 if (!p) p = buf + strlen(buf);
898
899 dt_start_node(dt, "cpus");
900 dt_prop_u32(dt, "#address-cells", 1);
901 dt_prop_u32(dt, "#size-cells", 0);
902
903 for (i = 0; i < NR_CPUS; i++) {
904 if (paca[i].lppaca.dyn_proc_status >= 2)
905 continue;
906
907 snprintf(p, 32 - (p - buf), "@%d", i);
908 dt_start_node(dt, buf);
909
910 dt_prop_str(dt, "device_type", "cpu");
911
912 index = paca[i].lppaca.dyn_hv_phys_proc_index;
913 d = &xIoHriProcessorVpd[index];
914
915 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
916 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
917
918 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
919 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
920
921 /* magic conversions to Hz copied from old code */
922 dt_prop_u32(dt, "clock-frequency",
923 ((1UL << 34) * 1000000) / d->xProcFreq);
924 dt_prop_u32(dt, "timebase-frequency",
925 ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
926
927 dt_prop_u32(dt, "reg", i);
928
95b29380
ME
929 dt_end_node(dt);
930 }
931
932 dt_end_node(dt);
933}
934
799d6046 935void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
c0a59491 936{
3ab42407
ME
937 u64 tmp[2];
938
c0a59491
ME
939 dt_init(dt);
940
941 dt_start_node(dt, "");
3ab42407
ME
942
943 dt_prop_u32(dt, "#address-cells", 2);
944 dt_prop_u32(dt, "#size-cells", 2);
945
946 /* /memory */
947 dt_start_node(dt, "memory@0");
948 dt_prop_str(dt, "name", "memory");
949 dt_prop_str(dt, "device_type", "memory");
950 tmp[0] = 0;
799d6046 951 tmp[1] = phys_mem_size;
3ab42407
ME
952 dt_prop_u64_list(dt, "reg", tmp, 2);
953 dt_end_node(dt);
954
47db3603
ME
955 /* /chosen */
956 dt_start_node(dt, "chosen");
957 dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
bec7c458
SR
958 if (cmd_mem_limit)
959 dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
47db3603
ME
960 dt_end_node(dt);
961
95b29380
ME
962 dt_cpus(dt);
963
c0a59491
ME
964 dt_end_node(dt);
965
966 dt_push_u32(dt, OF_DT_END);
967}
968
4762713a 969void * __init iSeries_early_setup(void)
1da177e4 970{
799d6046
PM
971 unsigned long phys_mem_size;
972
1da177e4 973 iSeries_fixup_klimit();
c0a59491 974
4762713a
ME
975 /*
976 * Initialize the table which translate Linux physical addresses to
977 * AS/400 absolute addresses
978 */
799d6046 979 phys_mem_size = build_iSeries_Memory_Map();
4762713a 980
bec7c458
SR
981 iSeries_get_cmdline();
982
983 /* Save unparsed command line copy for /proc/cmdline */
984 strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
985
986 /* Parse early parameters, in particular mem=x */
987 parse_early_param();
988
799d6046 989 build_flat_dt(&iseries_dt, phys_mem_size);
4762713a
ME
990
991 return (void *) __pa(&iseries_dt);
1da177e4 992}
bec7c458
SR
993
994/*
995 * On iSeries we just parse the mem=X option from the command line.
996 * On pSeries it's a bit more complicated, see prom_init_mem()
997 */
998static int __init early_parsemem(char *p)
999{
1000 if (p)
1001 cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
1002 return 0;
1003}
1004early_param("mem", early_parsemem);
This page took 0.140195 seconds and 5 git commands to generate.