[PATCH] powerpc: Cleanup LOADADDR etc. asm macros
[deliverable/linux.git] / arch / powerpc / platforms / iseries / setup.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4 *
1da177e4
LT
5 * Description:
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9 * <dan@net4x.com>.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#undef DEBUG
18
19#include <linux/config.h>
20#include <linux/init.h>
21#include <linux/threads.h>
22#include <linux/smp.h>
23#include <linux/param.h>
24#include <linux/string.h>
1da177e4
LT
25#include <linux/initrd.h>
26#include <linux/seq_file.h>
27#include <linux/kdev_t.h>
28#include <linux/major.h>
29#include <linux/root_dev.h>
bec7c458 30#include <linux/kernel.h>
1da177e4
LT
31
32#include <asm/processor.h>
33#include <asm/machdep.h>
34#include <asm/page.h>
35#include <asm/mmu.h>
36#include <asm/pgtable.h>
37#include <asm/mmu_context.h>
38#include <asm/cputable.h>
39#include <asm/sections.h>
40#include <asm/iommu.h>
aed31351 41#include <asm/firmware.h>
49b09853 42#include <asm/system.h>
1da177e4 43#include <asm/time.h>
1da177e4
LT
44#include <asm/paca.h>
45#include <asm/cache.h>
46#include <asm/sections.h>
0bc0ffd5 47#include <asm/abs_addr.h>
15b17189 48#include <asm/iseries/hv_lp_config.h>
c0a8d05c 49#include <asm/iseries/hv_call_event.h>
8021b8a7 50#include <asm/iseries/hv_call_xm.h>
8875ccfb 51#include <asm/iseries/it_lp_queue.h>
bbc8b628 52#include <asm/iseries/mf.h>
e45423ea 53#include <asm/iseries/hv_lp_event.h>
c43a55ff 54#include <asm/iseries/lpar_map.h>
bf6a7112 55#include <asm/udbg.h>
1da177e4 56
f11b7bd8 57#include "naca.h"
c8b84976 58#include "setup.h"
b08567cb
SR
59#include "irq.h"
60#include "vpd_areas.h"
61#include "processor_vpd.h"
62#include "main_store.h"
63#include "call_sm.h"
0e29bb1a 64#include "call_hpt.h"
c8b84976 65
1da177e4 66#ifdef DEBUG
bf6a7112 67#define DBG(fmt...) udbg_printf(fmt)
1da177e4
LT
68#else
69#define DBG(fmt...)
70#endif
71
72/* Function Prototypes */
799d6046 73static unsigned long build_iSeries_Memory_Map(void);
143a1dec
PM
74static void iseries_shared_idle(void);
75static void iseries_dedicated_idle(void);
145d01e4 76#ifdef CONFIG_PCI
1da177e4 77extern void iSeries_pci_final_fixup(void);
145d01e4
SR
78#else
79static void iSeries_pci_final_fixup(void) { }
80#endif
1da177e4
LT
81
82/* Global Variables */
1da177e4
LT
83int piranha_simulator;
84
85extern int rd_size; /* Defined in drivers/block/rd.c */
1da177e4
LT
86extern unsigned long embedded_sysmap_start;
87extern unsigned long embedded_sysmap_end;
88
89extern unsigned long iSeries_recal_tb;
90extern unsigned long iSeries_recal_titan;
91
92static int mf_initialized;
93
bec7c458
SR
94static unsigned long cmd_mem_limit;
95
1da177e4
LT
96struct MemoryBlock {
97 unsigned long absStart;
98 unsigned long absEnd;
99 unsigned long logicalStart;
100 unsigned long logicalEnd;
101};
102
103/*
104 * Process the main store vpd to determine where the holes in memory are
105 * and return the number of physical blocks and fill in the array of
106 * block data.
107 */
108static unsigned long iSeries_process_Condor_mainstore_vpd(
109 struct MemoryBlock *mb_array, unsigned long max_entries)
110{
111 unsigned long holeFirstChunk, holeSizeChunks;
112 unsigned long numMemoryBlocks = 1;
113 struct IoHriMainStoreSegment4 *msVpd =
114 (struct IoHriMainStoreSegment4 *)xMsVpd;
115 unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
116 unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
117 unsigned long holeSize = holeEnd - holeStart;
118
119 printk("Mainstore_VPD: Condor\n");
120 /*
121 * Determine if absolute memory has any
122 * holes so that we can interpret the
123 * access map we get back from the hypervisor
124 * correctly.
125 */
126 mb_array[0].logicalStart = 0;
127 mb_array[0].logicalEnd = 0x100000000;
128 mb_array[0].absStart = 0;
129 mb_array[0].absEnd = 0x100000000;
130
131 if (holeSize) {
132 numMemoryBlocks = 2;
133 holeStart = holeStart & 0x000fffffffffffff;
134 holeStart = addr_to_chunk(holeStart);
135 holeFirstChunk = holeStart;
136 holeSize = addr_to_chunk(holeSize);
137 holeSizeChunks = holeSize;
138 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
139 holeFirstChunk, holeSizeChunks );
140 mb_array[0].logicalEnd = holeFirstChunk;
141 mb_array[0].absEnd = holeFirstChunk;
142 mb_array[1].logicalStart = holeFirstChunk;
143 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
144 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
145 mb_array[1].absEnd = 0x100000000;
146 }
147 return numMemoryBlocks;
148}
149
150#define MaxSegmentAreas 32
151#define MaxSegmentAdrRangeBlocks 128
152#define MaxAreaRangeBlocks 4
153
154static unsigned long iSeries_process_Regatta_mainstore_vpd(
155 struct MemoryBlock *mb_array, unsigned long max_entries)
156{
157 struct IoHriMainStoreSegment5 *msVpdP =
158 (struct IoHriMainStoreSegment5 *)xMsVpd;
159 unsigned long numSegmentBlocks = 0;
160 u32 existsBits = msVpdP->msAreaExists;
161 unsigned long area_num;
162
163 printk("Mainstore_VPD: Regatta\n");
164
165 for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
166 unsigned long numAreaBlocks;
167 struct IoHriMainStoreArea4 *currentArea;
168
169 if (existsBits & 0x80000000) {
170 unsigned long block_num;
171
172 currentArea = &msVpdP->msAreaArray[area_num];
173 numAreaBlocks = currentArea->numAdrRangeBlocks;
174 printk("ms_vpd: processing area %2ld blocks=%ld",
175 area_num, numAreaBlocks);
176 for (block_num = 0; block_num < numAreaBlocks;
177 ++block_num ) {
178 /* Process an address range block */
179 struct MemoryBlock tempBlock;
180 unsigned long i;
181
182 tempBlock.absStart =
183 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
184 tempBlock.absEnd =
185 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
186 tempBlock.logicalStart = 0;
187 tempBlock.logicalEnd = 0;
188 printk("\n block %ld absStart=%016lx absEnd=%016lx",
189 block_num, tempBlock.absStart,
190 tempBlock.absEnd);
191
192 for (i = 0; i < numSegmentBlocks; ++i) {
193 if (mb_array[i].absStart ==
194 tempBlock.absStart)
195 break;
196 }
197 if (i == numSegmentBlocks) {
198 if (numSegmentBlocks == max_entries)
199 panic("iSeries_process_mainstore_vpd: too many memory blocks");
200 mb_array[numSegmentBlocks] = tempBlock;
201 ++numSegmentBlocks;
202 } else
203 printk(" (duplicate)");
204 }
205 printk("\n");
206 }
207 existsBits <<= 1;
208 }
209 /* Now sort the blocks found into ascending sequence */
210 if (numSegmentBlocks > 1) {
211 unsigned long m, n;
212
213 for (m = 0; m < numSegmentBlocks - 1; ++m) {
214 for (n = numSegmentBlocks - 1; m < n; --n) {
215 if (mb_array[n].absStart <
216 mb_array[n-1].absStart) {
217 struct MemoryBlock tempBlock;
218
219 tempBlock = mb_array[n];
220 mb_array[n] = mb_array[n-1];
221 mb_array[n-1] = tempBlock;
222 }
223 }
224 }
225 }
226 /*
227 * Assign "logical" addresses to each block. These
228 * addresses correspond to the hypervisor "bitmap" space.
229 * Convert all addresses into units of 256K chunks.
230 */
231 {
232 unsigned long i, nextBitmapAddress;
233
234 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
235 nextBitmapAddress = 0;
236 for (i = 0; i < numSegmentBlocks; ++i) {
237 unsigned long length = mb_array[i].absEnd -
238 mb_array[i].absStart;
239
240 mb_array[i].logicalStart = nextBitmapAddress;
241 mb_array[i].logicalEnd = nextBitmapAddress + length;
242 nextBitmapAddress += length;
243 printk(" Bitmap range: %016lx - %016lx\n"
244 " Absolute range: %016lx - %016lx\n",
245 mb_array[i].logicalStart,
246 mb_array[i].logicalEnd,
247 mb_array[i].absStart, mb_array[i].absEnd);
248 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
249 0x000fffffffffffff);
250 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
251 0x000fffffffffffff);
252 mb_array[i].logicalStart =
253 addr_to_chunk(mb_array[i].logicalStart);
254 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
255 }
256 }
257
258 return numSegmentBlocks;
259}
260
261static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
262 unsigned long max_entries)
263{
264 unsigned long i;
265 unsigned long mem_blocks = 0;
266
267 if (cpu_has_feature(CPU_FTR_SLB))
268 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
269 max_entries);
270 else
271 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
272 max_entries);
273
274 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
275 for (i = 0; i < mem_blocks; ++i) {
276 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
277 " abs chunks %016lx - %016lx\n",
278 i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
279 mb_array[i].absStart, mb_array[i].absEnd);
280 }
281 return mem_blocks;
282}
283
284static void __init iSeries_get_cmdline(void)
285{
286 char *p, *q;
287
288 /* copy the command line parameter from the primary VSP */
289 HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
290 HvLpDma_Direction_RemoteToLocal);
291
292 p = cmd_line;
293 q = cmd_line + 255;
294 while(p < q) {
295 if (!*p || *p == '\n')
296 break;
297 ++p;
298 }
299 *p = 0;
300}
301
302static void __init iSeries_init_early(void)
303{
1da177e4
LT
304 DBG(" -> iSeries_init_early()\n");
305
aed31351
SR
306 ppc64_firmware_features = FW_FEATURE_ISERIES;
307
ba293fff
ME
308 ppc64_interrupt_controller = IC_ISERIES;
309
1da177e4
LT
310#if defined(CONFIG_BLK_DEV_INITRD)
311 /*
312 * If the init RAM disk has been configured and there is
313 * a non-zero starting address for it, set it up
314 */
315 if (naca.xRamDisk) {
316 initrd_start = (unsigned long)__va(naca.xRamDisk);
3c726f8d 317 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
1da177e4
LT
318 initrd_below_start_ok = 1; // ramdisk in kernel space
319 ROOT_DEV = Root_RAM0;
3c726f8d
BH
320 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
321 rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
1da177e4
LT
322 } else
323#endif /* CONFIG_BLK_DEV_INITRD */
324 {
325 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
326 }
327
328 iSeries_recal_tb = get_tb();
329 iSeries_recal_titan = HvCallXm_loadTod();
330
1da177e4
LT
331 /*
332 * Initialize the hash table management pointers
333 */
334 hpte_init_iSeries();
335
336 /*
337 * Initialize the DMA/TCE management
338 */
339 iommu_init_early_iSeries();
340
1da177e4
LT
341 /* Initialize machine-dependency vectors */
342#ifdef CONFIG_SMP
343 smp_init_iSeries();
344#endif
345 if (itLpNaca.xPirEnvironMode == 0)
346 piranha_simulator = 1;
347
348 /* Associate Lp Event Queue 0 with processor 0 */
349 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
350
351 mf_init();
352 mf_initialized = 1;
353 mb();
354
355 /* If we were passed an initrd, set the ROOT_DEV properly if the values
356 * look sensible. If not, clear initrd reference.
357 */
358#ifdef CONFIG_BLK_DEV_INITRD
359 if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
360 initrd_end > initrd_start)
361 ROOT_DEV = Root_RAM0;
362 else
363 initrd_start = initrd_end = 0;
364#endif /* CONFIG_BLK_DEV_INITRD */
365
366 DBG(" <- iSeries_init_early()\n");
367}
368
56e97b71 369struct mschunks_map mschunks_map = {
34c8f696
ME
370 /* XXX We don't use these, but Piranha might need them. */
371 .chunk_size = MSCHUNKS_CHUNK_SIZE,
372 .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
373 .chunk_mask = MSCHUNKS_OFFSET_MASK,
374};
56e97b71 375EXPORT_SYMBOL(mschunks_map);
34c8f696 376
56e97b71 377void mschunks_alloc(unsigned long num_chunks)
34c8f696
ME
378{
379 klimit = _ALIGN(klimit, sizeof(u32));
56e97b71 380 mschunks_map.mapping = (u32 *)klimit;
34c8f696 381 klimit += num_chunks * sizeof(u32);
56e97b71 382 mschunks_map.num_chunks = num_chunks;
34c8f696
ME
383}
384
1da177e4
LT
385/*
386 * The iSeries may have very large memories ( > 128 GB ) and a partition
387 * may get memory in "chunks" that may be anywhere in the 2**52 real
388 * address space. The chunks are 256K in size. To map this to the
389 * memory model Linux expects, the AS/400 specific code builds a
390 * translation table to translate what Linux thinks are "physical"
391 * addresses to the actual real addresses. This allows us to make
392 * it appear to Linux that we have contiguous memory starting at
393 * physical address zero while in fact this could be far from the truth.
394 * To avoid confusion, I'll let the words physical and/or real address
395 * apply to the Linux addresses while I'll use "absolute address" to
396 * refer to the actual hardware real address.
397 *
398 * build_iSeries_Memory_Map gets information from the Hypervisor and
399 * looks at the Main Store VPD to determine the absolute addresses
400 * of the memory that has been assigned to our partition and builds
401 * a table used to translate Linux's physical addresses to these
402 * absolute addresses. Absolute addresses are needed when
403 * communicating with the hypervisor (e.g. to build HPT entries)
799d6046
PM
404 *
405 * Returns the physical memory size
1da177e4
LT
406 */
407
799d6046 408static unsigned long __init build_iSeries_Memory_Map(void)
1da177e4
LT
409{
410 u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
411 u32 nextPhysChunk;
412 u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
1da177e4
LT
413 u32 totalChunks,moreChunks;
414 u32 currChunk, thisChunk, absChunk;
415 u32 currDword;
416 u32 chunkBit;
417 u64 map;
418 struct MemoryBlock mb[32];
419 unsigned long numMemoryBlocks, curBlock;
420
421 /* Chunk size on iSeries is 256K bytes */
422 totalChunks = (u32)HvLpConfig_getMsChunks();
56e97b71 423 mschunks_alloc(totalChunks);
1da177e4
LT
424
425 /*
426 * Get absolute address of our load area
427 * and map it to physical address 0
428 * This guarantees that the loadarea ends up at physical 0
429 * otherwise, it might not be returned by PLIC as the first
430 * chunks
431 */
432
433 loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
434 loadAreaSize = itLpNaca.xLoadAreaChunks;
435
436 /*
437 * Only add the pages already mapped here.
438 * Otherwise we might add the hpt pages
439 * The rest of the pages of the load area
440 * aren't in the HPT yet and can still
441 * be assigned an arbitrary physical address
442 */
443 if ((loadAreaSize * 64) > HvPagesToMap)
444 loadAreaSize = HvPagesToMap / 64;
445
446 loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
447
448 /*
449 * TODO Do we need to do something if the HPT is in the 64MB load area?
450 * This would be required if the itLpNaca.xLoadAreaChunks includes
451 * the HPT size
452 */
453
454 printk("Mapping load area - physical addr = 0000000000000000\n"
455 " absolute addr = %016lx\n",
456 chunk_to_addr(loadAreaFirstChunk));
457 printk("Load area size %dK\n", loadAreaSize * 256);
458
459 for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
56e97b71 460 mschunks_map.mapping[nextPhysChunk] =
1da177e4
LT
461 loadAreaFirstChunk + nextPhysChunk;
462
463 /*
464 * Get absolute address of our HPT and remember it so
465 * we won't map it to any physical address
466 */
467 hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
468 hptSizePages = (u32)HvCallHpt_getHptPages();
3c726f8d
BH
469 hptSizeChunks = hptSizePages >>
470 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
1da177e4
LT
471 hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
472
473 printk("HPT absolute addr = %016lx, size = %dK\n",
474 chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
475
1da177e4
LT
476 /*
477 * Determine if absolute memory has any
478 * holes so that we can interpret the
479 * access map we get back from the hypervisor
480 * correctly.
481 */
482 numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
483
484 /*
485 * Process the main store access map from the hypervisor
486 * to build up our physical -> absolute translation table
487 */
488 curBlock = 0;
489 currChunk = 0;
490 currDword = 0;
491 moreChunks = totalChunks;
492
493 while (moreChunks) {
494 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
495 currDword);
496 thisChunk = currChunk;
497 while (map) {
498 chunkBit = map >> 63;
499 map <<= 1;
500 if (chunkBit) {
501 --moreChunks;
502 while (thisChunk >= mb[curBlock].logicalEnd) {
503 ++curBlock;
504 if (curBlock >= numMemoryBlocks)
505 panic("out of memory blocks");
506 }
507 if (thisChunk < mb[curBlock].logicalStart)
508 panic("memory block error");
509
510 absChunk = mb[curBlock].absStart +
511 (thisChunk - mb[curBlock].logicalStart);
512 if (((absChunk < hptFirstChunk) ||
513 (absChunk > hptLastChunk)) &&
514 ((absChunk < loadAreaFirstChunk) ||
515 (absChunk > loadAreaLastChunk))) {
56e97b71
ME
516 mschunks_map.mapping[nextPhysChunk] =
517 absChunk;
1da177e4
LT
518 ++nextPhysChunk;
519 }
520 }
521 ++thisChunk;
522 }
523 ++currDword;
524 currChunk += 64;
525 }
526
527 /*
528 * main store size (in chunks) is
529 * totalChunks - hptSizeChunks
530 * which should be equal to
531 * nextPhysChunk
532 */
799d6046 533 return chunk_to_addr(nextPhysChunk);
1da177e4
LT
534}
535
1da177e4
LT
536/*
537 * Document me.
538 */
539static void __init iSeries_setup_arch(void)
540{
9f497581
ME
541 if (get_paca()->lppaca.shared_proc) {
542 ppc_md.idle_loop = iseries_shared_idle;
543 printk(KERN_INFO "Using shared processor idle loop\n");
544 } else {
545 ppc_md.idle_loop = iseries_dedicated_idle;
546 printk(KERN_INFO "Using dedicated idle loop\n");
547 }
548
1da177e4 549 /* Setup the Lp Event Queue */
512d31d6 550 setup_hvlpevent_queue();
1da177e4 551
1da177e4
LT
552 printk("Max logical processors = %d\n",
553 itVpdAreas.xSlicMaxLogicalProcs);
554 printk("Max physical processors = %d\n",
555 itVpdAreas.xSlicMaxPhysicalProcs);
1da177e4
LT
556}
557
d8699e65 558static void iSeries_show_cpuinfo(struct seq_file *m)
1da177e4
LT
559{
560 seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
561}
562
1da177e4
LT
563/*
564 * Document me.
565 */
566static void iSeries_restart(char *cmd)
567{
568 mf_reboot();
569}
570
571/*
572 * Document me.
573 */
574static void iSeries_power_off(void)
575{
576 mf_power_off();
577}
578
579/*
580 * Document me.
581 */
582static void iSeries_halt(void)
583{
584 mf_power_off();
585}
586
1da177e4
LT
587static void __init iSeries_progress(char * st, unsigned short code)
588{
589 printk("Progress: [%04x] - %s\n", (unsigned)code, st);
590 if (!piranha_simulator && mf_initialized) {
591 if (code != 0xffff)
592 mf_display_progress(code);
593 else
594 mf_clear_src();
595 }
596}
597
598static void __init iSeries_fixup_klimit(void)
599{
600 /*
601 * Change klimit to take into account any ram disk
602 * that may be included
603 */
604 if (naca.xRamDisk)
605 klimit = KERNELBASE + (u64)naca.xRamDisk +
3c726f8d 606 (naca.xRamDiskSize * HW_PAGE_SIZE);
1da177e4
LT
607 else {
608 /*
609 * No ram disk was included - check and see if there
610 * was an embedded system map. Change klimit to take
611 * into account any embedded system map
612 */
613 if (embedded_sysmap_end)
614 klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
615 0xfffffffffffff000);
616 }
617}
618
619static int __init iSeries_src_init(void)
620{
621 /* clear the progress line */
622 ppc_md.progress(" ", 0xffff);
623 return 0;
624}
625
626late_initcall(iSeries_src_init);
627
d200903e
ME
628static inline void process_iSeries_events(void)
629{
630 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
631}
632
633static void yield_shared_processor(void)
634{
635 unsigned long tb;
d200903e
ME
636
637 HvCall_setEnabledInterrupts(HvCall_MaskIPI |
638 HvCall_MaskLpEvent |
639 HvCall_MaskLpProd |
640 HvCall_MaskTimeout);
641
642 tb = get_tb();
643 /* Compute future tb value when yield should expire */
644 HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
645
d200903e
ME
646 /*
647 * The decrementer stops during the yield. Force a fake decrementer
648 * here and let the timer_interrupt code sort out the actual time.
649 */
650 get_paca()->lppaca.int_dword.fields.decr_int = 1;
651 process_iSeries_events();
652}
653
143a1dec 654static void iseries_shared_idle(void)
d200903e 655{
3c57bb9f
AB
656 while (1) {
657 while (!need_resched() && !hvlpevent_is_pending()) {
658 local_irq_disable();
659 ppc64_runlatch_off();
660
661 /* Recheck with irqs off */
662 if (!need_resched() && !hvlpevent_is_pending())
663 yield_shared_processor();
d200903e 664
3c57bb9f
AB
665 HMT_medium();
666 local_irq_enable();
667 }
668
669 ppc64_runlatch_on();
d200903e 670
3c57bb9f
AB
671 if (hvlpevent_is_pending())
672 process_iSeries_events();
673
5bfb5d69 674 preempt_enable_no_resched();
3c57bb9f 675 schedule();
5bfb5d69 676 preempt_disable();
3c57bb9f 677 }
3c57bb9f
AB
678}
679
143a1dec 680static void iseries_dedicated_idle(void)
3c57bb9f 681{
64c7c8f8 682 set_thread_flag(TIF_POLLING_NRFLAG);
d200903e
ME
683
684 while (1) {
64c7c8f8 685 if (!need_resched()) {
3c57bb9f
AB
686 while (!need_resched()) {
687 ppc64_runlatch_off();
688 HMT_low();
689
690 if (hvlpevent_is_pending()) {
d200903e 691 HMT_medium();
3c57bb9f
AB
692 ppc64_runlatch_on();
693 process_iSeries_events();
d200903e 694 }
d200903e 695 }
3c57bb9f
AB
696
697 HMT_medium();
d200903e
ME
698 }
699
700 ppc64_runlatch_on();
5bfb5d69 701 preempt_enable_no_resched();
d200903e 702 schedule();
5bfb5d69 703 preempt_disable();
d200903e 704 }
d200903e
ME
705}
706
145d01e4
SR
707#ifndef CONFIG_PCI
708void __init iSeries_init_IRQ(void) { }
709#endif
710
4762713a
ME
711static int __init iseries_probe(int platform)
712{
713 return PLATFORM_ISERIES_LPAR == platform;
714}
715
9f497581
ME
716struct machdep_calls __initdata iseries_md = {
717 .setup_arch = iSeries_setup_arch,
d8699e65 718 .show_cpuinfo = iSeries_show_cpuinfo,
9f497581
ME
719 .init_IRQ = iSeries_init_IRQ,
720 .get_irq = iSeries_get_irq,
721 .init_early = iSeries_init_early,
722 .pcibios_fixup = iSeries_pci_final_fixup,
723 .restart = iSeries_restart,
724 .power_off = iSeries_power_off,
725 .halt = iSeries_halt,
726 .get_boot_time = iSeries_get_boot_time,
727 .set_rtc_time = iSeries_set_rtc_time,
728 .get_rtc_time = iSeries_get_rtc_time,
95b29380 729 .calibrate_decr = generic_calibrate_decr,
9f497581 730 .progress = iSeries_progress,
4762713a 731 .probe = iseries_probe,
9f497581
ME
732 /* XXX Implement enable_pmcs for iSeries */
733};
734
c0a59491
ME
735struct blob {
736 unsigned char data[PAGE_SIZE];
737 unsigned long next;
738};
739
740struct iseries_flat_dt {
741 struct boot_param_header header;
742 u64 reserve_map[2];
743 struct blob dt;
744 struct blob strings;
745};
746
747struct iseries_flat_dt iseries_dt;
748
749void dt_init(struct iseries_flat_dt *dt)
750{
751 dt->header.off_mem_rsvmap =
752 offsetof(struct iseries_flat_dt, reserve_map);
753 dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
754 dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
755 dt->header.totalsize = sizeof(struct iseries_flat_dt);
756 dt->header.dt_strings_size = sizeof(struct blob);
757
758 /* There is no notion of hardware cpu id on iSeries */
759 dt->header.boot_cpuid_phys = smp_processor_id();
760
761 dt->dt.next = (unsigned long)&dt->dt.data;
762 dt->strings.next = (unsigned long)&dt->strings.data;
763
764 dt->header.magic = OF_DT_HEADER;
765 dt->header.version = 0x10;
766 dt->header.last_comp_version = 0x10;
767
768 dt->reserve_map[0] = 0;
769 dt->reserve_map[1] = 0;
770}
771
772void dt_check_blob(struct blob *b)
773{
774 if (b->next >= (unsigned long)&b->next) {
775 DBG("Ran out of space in flat device tree blob!\n");
776 BUG();
777 }
778}
779
780void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
781{
782 *((u32*)dt->dt.next) = value;
783 dt->dt.next += sizeof(u32);
784
785 dt_check_blob(&dt->dt);
786}
787
788void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
789{
790 *((u64*)dt->dt.next) = value;
791 dt->dt.next += sizeof(u64);
792
793 dt_check_blob(&dt->dt);
794}
795
796unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
797{
798 unsigned long start = blob->next - (unsigned long)blob->data;
799
800 memcpy((char *)blob->next, data, len);
801 blob->next = _ALIGN(blob->next + len, 4);
802
803 dt_check_blob(blob);
804
805 return start;
806}
807
808void dt_start_node(struct iseries_flat_dt *dt, char *name)
809{
810 dt_push_u32(dt, OF_DT_BEGIN_NODE);
811 dt_push_bytes(&dt->dt, name, strlen(name) + 1);
812}
813
814#define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
815
816void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
817{
818 unsigned long offset;
819
820 dt_push_u32(dt, OF_DT_PROP);
821
822 /* Length of the data */
823 dt_push_u32(dt, len);
824
825 /* Put the property name in the string blob. */
826 offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
827
828 /* The offset of the properties name in the string blob. */
829 dt_push_u32(dt, (u32)offset);
830
831 /* The actual data. */
832 dt_push_bytes(&dt->dt, data, len);
833}
834
835void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
836{
837 dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
838}
839
840void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
841{
842 dt_prop(dt, name, (char *)&data, sizeof(u32));
843}
844
845void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
846{
847 dt_prop(dt, name, (char *)&data, sizeof(u64));
848}
849
850void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
851{
852 dt_prop(dt, name, (char *)data, sizeof(u64) * n);
853}
854
7eb5476f
ME
855void dt_prop_u32_list(struct iseries_flat_dt *dt, char *name, u32 *data, int n)
856{
857 dt_prop(dt, name, (char *)data, sizeof(u32) * n);
858}
859
c0a59491
ME
860void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
861{
862 dt_prop(dt, name, NULL, 0);
863}
864
95b29380
ME
865void dt_cpus(struct iseries_flat_dt *dt)
866{
867 unsigned char buf[32];
868 unsigned char *p;
869 unsigned int i, index;
870 struct IoHriProcessorVpd *d;
7eb5476f 871 u32 pft_size[2];
95b29380
ME
872
873 /* yuck */
874 snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
875 p = strchr(buf, ' ');
876 if (!p) p = buf + strlen(buf);
877
878 dt_start_node(dt, "cpus");
879 dt_prop_u32(dt, "#address-cells", 1);
880 dt_prop_u32(dt, "#size-cells", 0);
881
7eb5476f
ME
882 pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA */
883 pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
884
95b29380
ME
885 for (i = 0; i < NR_CPUS; i++) {
886 if (paca[i].lppaca.dyn_proc_status >= 2)
887 continue;
888
889 snprintf(p, 32 - (p - buf), "@%d", i);
890 dt_start_node(dt, buf);
891
892 dt_prop_str(dt, "device_type", "cpu");
893
894 index = paca[i].lppaca.dyn_hv_phys_proc_index;
895 d = &xIoHriProcessorVpd[index];
896
897 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
898 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
899
900 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
901 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
902
903 /* magic conversions to Hz copied from old code */
904 dt_prop_u32(dt, "clock-frequency",
905 ((1UL << 34) * 1000000) / d->xProcFreq);
906 dt_prop_u32(dt, "timebase-frequency",
907 ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
908
909 dt_prop_u32(dt, "reg", i);
910
7eb5476f
ME
911 dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
912
95b29380
ME
913 dt_end_node(dt);
914 }
915
916 dt_end_node(dt);
917}
918
799d6046 919void build_flat_dt(struct iseries_flat_dt *dt, unsigned long phys_mem_size)
c0a59491 920{
3ab42407
ME
921 u64 tmp[2];
922
c0a59491
ME
923 dt_init(dt);
924
925 dt_start_node(dt, "");
3ab42407
ME
926
927 dt_prop_u32(dt, "#address-cells", 2);
928 dt_prop_u32(dt, "#size-cells", 2);
929
930 /* /memory */
931 dt_start_node(dt, "memory@0");
932 dt_prop_str(dt, "name", "memory");
933 dt_prop_str(dt, "device_type", "memory");
934 tmp[0] = 0;
799d6046 935 tmp[1] = phys_mem_size;
3ab42407
ME
936 dt_prop_u64_list(dt, "reg", tmp, 2);
937 dt_end_node(dt);
938
47db3603
ME
939 /* /chosen */
940 dt_start_node(dt, "chosen");
941 dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
bec7c458
SR
942 if (cmd_mem_limit)
943 dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
47db3603
ME
944 dt_end_node(dt);
945
95b29380
ME
946 dt_cpus(dt);
947
c0a59491
ME
948 dt_end_node(dt);
949
950 dt_push_u32(dt, OF_DT_END);
951}
952
4762713a 953void * __init iSeries_early_setup(void)
1da177e4 954{
799d6046
PM
955 unsigned long phys_mem_size;
956
1da177e4 957 iSeries_fixup_klimit();
c0a59491 958
4762713a
ME
959 /*
960 * Initialize the table which translate Linux physical addresses to
961 * AS/400 absolute addresses
962 */
799d6046 963 phys_mem_size = build_iSeries_Memory_Map();
4762713a 964
bec7c458
SR
965 iSeries_get_cmdline();
966
967 /* Save unparsed command line copy for /proc/cmdline */
968 strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
969
970 /* Parse early parameters, in particular mem=x */
971 parse_early_param();
972
799d6046 973 build_flat_dt(&iseries_dt, phys_mem_size);
4762713a
ME
974
975 return (void *) __pa(&iseries_dt);
1da177e4 976}
bec7c458
SR
977
978/*
979 * On iSeries we just parse the mem=X option from the command line.
980 * On pSeries it's a bit more complicated, see prom_init_mem()
981 */
982static int __init early_parsemem(char *p)
983{
984 if (p)
985 cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
986 return 0;
987}
988early_param("mem", early_parsemem);
bf6a7112
ME
989
990static void hvputc(char c)
991{
992 if (c == '\n')
993 hvputc('\r');
994
995 HvCall_writeLogBuffer(&c, 1);
996}
997
998void __init udbg_init_iseries(void)
999{
1000 udbg_putc = hvputc;
1001}
This page took 0.141383 seconds and 5 git commands to generate.