PCI: Cleanup the includes of <linux/pci.h>
[deliverable/linux.git] / arch / powerpc / platforms / pseries / ras.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
d9953105 3 *
1da177e4
LT
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
d9953105 8 *
1da177e4
LT
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
d9953105 13 *
1da177e4
LT
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19/* Change Activity:
20 * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
d9953105 21 * End Change Activity
1da177e4
LT
22 */
23
24#include <linux/errno.h>
25#include <linux/threads.h>
26#include <linux/kernel_stat.h>
27#include <linux/signal.h>
28#include <linux/sched.h>
29#include <linux/ioport.h>
30#include <linux/interrupt.h>
31#include <linux/timex.h>
32#include <linux/init.h>
33#include <linux/slab.h>
1da177e4
LT
34#include <linux/delay.h>
35#include <linux/irq.h>
36#include <linux/random.h>
37#include <linux/sysrq.h>
38#include <linux/bitops.h>
39
40#include <asm/uaccess.h>
41#include <asm/system.h>
42#include <asm/io.h>
43#include <asm/pgtable.h>
44#include <asm/irq.h>
45#include <asm/cache.h>
46#include <asm/prom.h>
47#include <asm/ptrace.h>
1da177e4
LT
48#include <asm/machdep.h>
49#include <asm/rtas.h>
dcad47fc 50#include <asm/udbg.h>
8c4f1f29 51#include <asm/firmware.h>
1da177e4 52
577830b0 53#include "pseries.h"
c902be71 54
1da177e4
LT
55static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
56static DEFINE_SPINLOCK(ras_log_buf_lock);
57
8c4f1f29 58char mce_data_buf[RTAS_ERROR_LOG_MAX];
1da177e4 59
1da177e4
LT
60static int ras_get_sensor_state_token;
61static int ras_check_exception_token;
62
63#define EPOW_SENSOR_TOKEN 9
64#define EPOW_SENSOR_INDEX 0
65#define RAS_VECTOR_OFFSET 0x500
66
7d12e780
DH
67static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
68static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
1da177e4
LT
69
70/* #define DEBUG */
71
0ebfff14
BH
72
73static void request_ras_irqs(struct device_node *np,
7d12e780 74 irq_handler_t handler,
1da177e4
LT
75 const char *name)
76{
0ebfff14
BH
77 int i, index, count = 0;
78 struct of_irq oirq;
954a46e2 79 const u32 *opicprop;
0ebfff14
BH
80 unsigned int opicplen;
81 unsigned int virqs[16];
82
83 /* Check for obsolete "open-pic-interrupt" property. If present, then
84 * map those interrupts using the default interrupt host and default
85 * trigger
86 */
e2eb6392 87 opicprop = of_get_property(np, "open-pic-interrupt", &opicplen);
0ebfff14
BH
88 if (opicprop) {
89 opicplen /= sizeof(u32);
90 for (i = 0; i < opicplen; i++) {
91 if (count > 15)
92 break;
6e99e458 93 virqs[count] = irq_create_mapping(NULL, *(opicprop++));
0ebfff14
BH
94 if (virqs[count] == NO_IRQ)
95 printk(KERN_ERR "Unable to allocate interrupt "
96 "number for %s\n", np->full_name);
97 else
98 count++;
99
1da177e4 100 }
0ebfff14
BH
101 }
102 /* Else use normal interrupt tree parsing */
103 else {
104 /* First try to do a proper OF tree parsing */
105 for (index = 0; of_irq_map_one(np, index, &oirq) == 0;
106 index++) {
107 if (count > 15)
108 break;
109 virqs[count] = irq_create_of_mapping(oirq.controller,
110 oirq.specifier,
111 oirq.size);
112 if (virqs[count] == NO_IRQ)
113 printk(KERN_ERR "Unable to allocate interrupt "
114 "number for %s\n", np->full_name);
115 else
116 count++;
117 }
118 }
119
120 /* Now request them */
121 for (i = 0; i < count; i++) {
122 if (request_irq(virqs[i], handler, 0, name, NULL)) {
1da177e4 123 printk(KERN_ERR "Unable to request interrupt %d for "
0ebfff14 124 "%s\n", virqs[i], np->full_name);
1da177e4
LT
125 return;
126 }
1da177e4
LT
127 }
128}
129
130/*
131 * Initialize handlers for the set of interrupts caused by hardware errors
132 * and power system events.
133 */
134static int __init init_ras_IRQ(void)
135{
136 struct device_node *np;
137
138 ras_get_sensor_state_token = rtas_token("get-sensor-state");
139 ras_check_exception_token = rtas_token("check-exception");
140
141 /* Internal Errors */
142 np = of_find_node_by_path("/event-sources/internal-errors");
143 if (np != NULL) {
0ebfff14 144 request_ras_irqs(np, ras_error_interrupt, "RAS_ERROR");
1da177e4
LT
145 of_node_put(np);
146 }
147
148 /* EPOW Events */
149 np = of_find_node_by_path("/event-sources/epow-events");
150 if (np != NULL) {
0ebfff14 151 request_ras_irqs(np, ras_epow_interrupt, "RAS_EPOW");
1da177e4
LT
152 of_node_put(np);
153 }
154
69ed3324 155 return 0;
1da177e4
LT
156}
157__initcall(init_ras_IRQ);
158
159/*
160 * Handle power subsystem events (EPOW).
161 *
162 * Presently we just log the event has occurred. This should be fixed
163 * to examine the type of power failure and take appropriate action where
164 * the time horizon permits something useful to be done.
165 */
7d12e780 166static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
1da177e4
LT
167{
168 int status = 0xdeadbeef;
169 int state = 0;
170 int critical;
171
172 status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
173 EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
174
175 if (state > 3)
176 critical = 1; /* Time Critical */
177 else
178 critical = 0;
179
180 spin_lock(&ras_log_buf_lock);
181
182 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
183 RAS_VECTOR_OFFSET,
0ebfff14 184 irq_map[irq].hwirq,
1da177e4
LT
185 RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
186 critical, __pa(&ras_log_buf),
187 rtas_get_error_log_max());
188
189 udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
190 *((unsigned long *)&ras_log_buf), status, state);
191 printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
192 *((unsigned long *)&ras_log_buf), status, state);
193
194 /* format and print the extended information */
195 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
196
197 spin_unlock(&ras_log_buf_lock);
198 return IRQ_HANDLED;
199}
200
201/*
202 * Handle hardware error interrupts.
203 *
204 * RTAS check-exception is called to collect data on the exception. If
205 * the error is deemed recoverable, we log a warning and return.
206 * For nonrecoverable errors, an error is logged and we stop all processing
207 * as quickly as possible in order to prevent propagation of the failure.
208 */
7d12e780 209static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
1da177e4
LT
210{
211 struct rtas_error_log *rtas_elog;
212 int status = 0xdeadbeef;
213 int fatal;
214
215 spin_lock(&ras_log_buf_lock);
216
217 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
218 RAS_VECTOR_OFFSET,
0ebfff14 219 irq_map[irq].hwirq,
1da177e4
LT
220 RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
221 __pa(&ras_log_buf),
222 rtas_get_error_log_max());
223
224 rtas_elog = (struct rtas_error_log *)ras_log_buf;
225
226 if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
227 fatal = 1;
228 else
229 fatal = 0;
230
231 /* format and print the extended information */
232 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
233
234 if (fatal) {
235 udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
236 *((unsigned long *)&ras_log_buf), status);
237 printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
238 *((unsigned long *)&ras_log_buf), status);
239
240#ifndef DEBUG
241 /* Don't actually power off when debugging so we can test
242 * without actually failing while injecting errors.
243 * Error data will not be logged to syslog.
244 */
245 ppc_md.power_off();
246#endif
247 } else {
248 udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
249 *((unsigned long *)&ras_log_buf), status);
250 printk(KERN_WARNING
251 "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
252 *((unsigned long *)&ras_log_buf), status);
253 }
254
255 spin_unlock(&ras_log_buf_lock);
256 return IRQ_HANDLED;
257}
258
259/* Get the error information for errors coming through the
260 * FWNMI vectors. The pt_regs' r3 will be updated to reflect
261 * the actual r3 if possible, and a ptr to the error log entry
262 * will be returned if found.
263 *
264 * The mce_data_buf does not have any locks or protection around it,
265 * if a second machine check comes in, or a system reset is done
266 * before we have logged the error, then we will get corruption in the
267 * error log. This is preferable over holding off on calling
268 * ibm,nmi-interlock which would result in us checkstopping if a
269 * second machine check did come in.
270 */
271static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
272{
273 unsigned long errdata = regs->gpr[3];
274 struct rtas_error_log *errhdr = NULL;
275 unsigned long *savep;
276
277 if ((errdata >= 0x7000 && errdata < 0x7fff0) ||
278 (errdata >= rtas.base && errdata < rtas.base + rtas.size - 16)) {
279 savep = __va(errdata);
280 regs->gpr[3] = savep[0]; /* restore original r3 */
281 memset(mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
282 memcpy(mce_data_buf, (char *)(savep + 1), RTAS_ERROR_LOG_MAX);
283 errhdr = (struct rtas_error_log *)mce_data_buf;
284 } else {
285 printk("FWNMI: corrupt r3\n");
286 }
287 return errhdr;
288}
289
290/* Call this when done with the data returned by FWNMI_get_errinfo.
291 * It will release the saved data area for other CPUs in the
292 * partition to receive FWNMI errors.
293 */
294static void fwnmi_release_errinfo(void)
295{
296 int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
297 if (ret != 0)
298 printk("FWNMI: nmi-interlock failed: %d\n", ret);
299}
300
c902be71 301int pSeries_system_reset_exception(struct pt_regs *regs)
1da177e4
LT
302{
303 if (fwnmi_active) {
304 struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
305 if (errhdr) {
306 /* XXX Should look at FWNMI information */
307 }
308 fwnmi_release_errinfo();
309 }
c902be71 310 return 0; /* need to perform reset */
1da177e4
LT
311}
312
313/*
314 * See if we can recover from a machine check exception.
315 * This is only called on power4 (or above) and only via
316 * the Firmware Non-Maskable Interrupts (fwnmi) handler
317 * which provides the error analysis for us.
318 *
319 * Return 1 if corrected (or delivered a signal).
320 * Return 0 if there is nothing we can do.
321 */
322static int recover_mce(struct pt_regs *regs, struct rtas_error_log * err)
323{
324 int nonfatal = 0;
325
326 if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
327 /* Platform corrected itself */
328 nonfatal = 1;
329 } else if ((regs->msr & MSR_RI) &&
330 user_mode(regs) &&
331 err->severity == RTAS_SEVERITY_ERROR_SYNC &&
332 err->disposition == RTAS_DISP_NOT_RECOVERED &&
333 err->target == RTAS_TARGET_MEMORY &&
334 err->type == RTAS_TYPE_ECC_UNCORR &&
f400e198 335 !(current->pid == 0 || is_init(current))) {
1da177e4
LT
336 /* Kill off a user process with an ECC error */
337 printk(KERN_ERR "MCE: uncorrectable ecc error for pid %d\n",
338 current->pid);
339 /* XXX something better for ECC error? */
340 _exception(SIGBUS, regs, BUS_ADRERR, regs->nip);
341 nonfatal = 1;
342 }
343
d9953105 344 log_error((char *)err, ERR_TYPE_RTAS_LOG, !nonfatal);
1da177e4
LT
345
346 return nonfatal;
347}
348
349/*
350 * Handle a machine check.
351 *
352 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
353 * should be present. If so the handler which called us tells us if the
354 * error was recovered (never true if RI=0).
355 *
356 * On hardware prior to Power 4 these exceptions were asynchronous which
357 * means we can't tell exactly where it occurred and so we can't recover.
358 */
359int pSeries_machine_check_exception(struct pt_regs *regs)
360{
361 struct rtas_error_log *errp;
362
363 if (fwnmi_active) {
364 errp = fwnmi_get_errinfo(regs);
365 fwnmi_release_errinfo();
366 if (errp && recover_mce(regs, errp))
367 return 1;
368 }
369
370 return 0;
371}
This page took 0.197346 seconds and 5 git commands to generate.