s390/cio: Use BITS_TO_LONGS() instead of __BITOPS_WORDS()
[deliverable/linux.git] / arch / s390 / include / asm / bitops.h
CommitLineData
1da177e4 1/*
1da177e4 2 * S390 version
a53c8fab 3 * Copyright IBM Corp. 1999
1da177e4
LT
4 * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com)
5 *
6 * Derived from "include/asm-i386/bitops.h"
7 * Copyright (C) 1992, Linus Torvalds
8 *
9 */
c406abd3 10
a53c8fab
HC
11#ifndef _S390_BITOPS_H
12#define _S390_BITOPS_H
13
0624517d
JS
14#ifndef _LINUX_BITOPS_H
15#error only <linux/bitops.h> can be included directly
16#endif
17
1da177e4
LT
18#include <linux/compiler.h>
19
20/*
21 * 32 bit bitops format:
22 * bit 0 is the LSB of *addr; bit 31 is the MSB of *addr;
23 * bit 32 is the LSB of *(addr+4). That combined with the
24 * big endian byte order on S390 give the following bit
25 * order in memory:
26 * 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10 \
27 * 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
28 * after that follows the next long with bit numbers
29 * 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
30 * 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
31 * The reason for this bit ordering is the fact that
32 * in the architecture independent code bits operations
33 * of the form "flags |= (1 << bitnr)" are used INTERMIXED
34 * with operation of the form "set_bit(bitnr, flags)".
35 *
36 * 64 bit bitops format:
37 * bit 0 is the LSB of *addr; bit 63 is the MSB of *addr;
38 * bit 64 is the LSB of *(addr+8). That combined with the
39 * big endian byte order on S390 give the following bit
40 * order in memory:
41 * 3f 3e 3d 3c 3b 3a 39 38 37 36 35 34 33 32 31 30
42 * 2f 2e 2d 2c 2b 2a 29 28 27 26 25 24 23 22 21 20
43 * 1f 1e 1d 1c 1b 1a 19 18 17 16 15 14 13 12 11 10
44 * 0f 0e 0d 0c 0b 0a 09 08 07 06 05 04 03 02 01 00
45 * after that follows the next long with bit numbers
46 * 7f 7e 7d 7c 7b 7a 79 78 77 76 75 74 73 72 71 70
47 * 6f 6e 6d 6c 6b 6a 69 68 67 66 65 64 63 62 61 60
48 * 5f 5e 5d 5c 5b 5a 59 58 57 56 55 54 53 52 51 50
49 * 4f 4e 4d 4c 4b 4a 49 48 47 46 45 44 43 42 41 40
50 * The reason for this bit ordering is the fact that
51 * in the architecture independent code bits operations
52 * of the form "flags |= (1 << bitnr)" are used INTERMIXED
53 * with operation of the form "set_bit(bitnr, flags)".
54 */
55
e3dd9c2d 56/* bitmap tables from arch/s390/kernel/bitmap.c */
1da177e4
LT
57extern const char _oi_bitmap[];
58extern const char _ni_bitmap[];
59extern const char _zb_findmap[];
60extern const char _sb_findmap[];
61
f4815ac6 62#ifndef CONFIG_64BIT
1da177e4 63
1da177e4
LT
64#define __BITOPS_OR "or"
65#define __BITOPS_AND "nr"
66#define __BITOPS_XOR "xr"
67
94c12cc7
MS
68#define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \
69 asm volatile( \
70 " l %0,%2\n" \
71 "0: lr %1,%0\n" \
72 __op_string " %1,%3\n" \
73 " cs %0,%1,%2\n" \
74 " jl 0b" \
75 : "=&d" (__old), "=&d" (__new), \
76 "=Q" (*(unsigned long *) __addr) \
77 : "d" (__val), "Q" (*(unsigned long *) __addr) \
78 : "cc");
79
f4815ac6 80#else /* CONFIG_64BIT */
1da177e4 81
1da177e4
LT
82#define __BITOPS_OR "ogr"
83#define __BITOPS_AND "ngr"
84#define __BITOPS_XOR "xgr"
85
94c12cc7
MS
86#define __BITOPS_LOOP(__old, __new, __addr, __val, __op_string) \
87 asm volatile( \
88 " lg %0,%2\n" \
89 "0: lgr %1,%0\n" \
90 __op_string " %1,%3\n" \
91 " csg %0,%1,%2\n" \
92 " jl 0b" \
93 : "=&d" (__old), "=&d" (__new), \
94 "=Q" (*(unsigned long *) __addr) \
95 : "d" (__val), "Q" (*(unsigned long *) __addr) \
96 : "cc");
97
f4815ac6 98#endif /* CONFIG_64BIT */
1da177e4 99
01c2475f 100#define __BITOPS_WORDS(bits) (((bits) + BITS_PER_LONG - 1) / BITS_PER_LONG)
94c12cc7 101#define __BITOPS_BARRIER() asm volatile("" : : : "memory")
1da177e4
LT
102
103#ifdef CONFIG_SMP
104/*
105 * SMP safe set_bit routine based on compare and swap (CS)
106 */
107static inline void set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
108{
109 unsigned long addr, old, new, mask;
110
111 addr = (unsigned long) ptr;
1da177e4 112 /* calculate address for CS */
01c2475f 113 addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
1da177e4 114 /* make OR mask */
01c2475f 115 mask = 1UL << (nr & (BITS_PER_LONG - 1));
1da177e4
LT
116 /* Do the atomic update. */
117 __BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
118}
119
120/*
121 * SMP safe clear_bit routine based on compare and swap (CS)
122 */
123static inline void clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
124{
125 unsigned long addr, old, new, mask;
126
127 addr = (unsigned long) ptr;
1da177e4 128 /* calculate address for CS */
01c2475f 129 addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
1da177e4 130 /* make AND mask */
01c2475f 131 mask = ~(1UL << (nr & (BITS_PER_LONG - 1)));
1da177e4
LT
132 /* Do the atomic update. */
133 __BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
134}
135
136/*
137 * SMP safe change_bit routine based on compare and swap (CS)
138 */
139static inline void change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
140{
141 unsigned long addr, old, new, mask;
142
143 addr = (unsigned long) ptr;
1da177e4 144 /* calculate address for CS */
01c2475f 145 addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
1da177e4 146 /* make XOR mask */
01c2475f 147 mask = 1UL << (nr & (BITS_PER_LONG - 1));
1da177e4
LT
148 /* Do the atomic update. */
149 __BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
150}
151
152/*
153 * SMP safe test_and_set_bit routine based on compare and swap (CS)
154 */
155static inline int
156test_and_set_bit_cs(unsigned long nr, volatile unsigned long *ptr)
157{
158 unsigned long addr, old, new, mask;
159
160 addr = (unsigned long) ptr;
1da177e4 161 /* calculate address for CS */
01c2475f 162 addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
1da177e4 163 /* make OR/test mask */
01c2475f 164 mask = 1UL << (nr & (BITS_PER_LONG - 1));
1da177e4
LT
165 /* Do the atomic update. */
166 __BITOPS_LOOP(old, new, addr, mask, __BITOPS_OR);
167 __BITOPS_BARRIER();
168 return (old & mask) != 0;
169}
170
171/*
172 * SMP safe test_and_clear_bit routine based on compare and swap (CS)
173 */
174static inline int
175test_and_clear_bit_cs(unsigned long nr, volatile unsigned long *ptr)
176{
177 unsigned long addr, old, new, mask;
178
179 addr = (unsigned long) ptr;
1da177e4 180 /* calculate address for CS */
01c2475f 181 addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
1da177e4 182 /* make AND/test mask */
01c2475f 183 mask = ~(1UL << (nr & (BITS_PER_LONG - 1)));
1da177e4
LT
184 /* Do the atomic update. */
185 __BITOPS_LOOP(old, new, addr, mask, __BITOPS_AND);
186 __BITOPS_BARRIER();
187 return (old ^ new) != 0;
188}
189
190/*
191 * SMP safe test_and_change_bit routine based on compare and swap (CS)
192 */
193static inline int
194test_and_change_bit_cs(unsigned long nr, volatile unsigned long *ptr)
195{
196 unsigned long addr, old, new, mask;
197
198 addr = (unsigned long) ptr;
1da177e4 199 /* calculate address for CS */
01c2475f 200 addr += (nr ^ (nr & (BITS_PER_LONG - 1))) >> 3;
1da177e4 201 /* make XOR/test mask */
01c2475f 202 mask = 1UL << (nr & (BITS_PER_LONG - 1));
1da177e4
LT
203 /* Do the atomic update. */
204 __BITOPS_LOOP(old, new, addr, mask, __BITOPS_XOR);
205 __BITOPS_BARRIER();
206 return (old & mask) != 0;
207}
208#endif /* CONFIG_SMP */
209
210/*
211 * fast, non-SMP set_bit routine
212 */
213static inline void __set_bit(unsigned long nr, volatile unsigned long *ptr)
214{
215 unsigned long addr;
216
01c2475f 217 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
94c12cc7 218 asm volatile(
987bcdac
MS
219 " oc %O0(1,%R0),%1"
220 : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" );
1da177e4
LT
221}
222
223static inline void
224__constant_set_bit(const unsigned long nr, volatile unsigned long *ptr)
225{
226 unsigned long addr;
227
01c2475f 228 addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
94c12cc7 229 *(unsigned char *) addr |= 1 << (nr & 7);
1da177e4
LT
230}
231
232#define set_bit_simple(nr,addr) \
233(__builtin_constant_p((nr)) ? \
234 __constant_set_bit((nr),(addr)) : \
235 __set_bit((nr),(addr)) )
236
237/*
238 * fast, non-SMP clear_bit routine
239 */
240static inline void
241__clear_bit(unsigned long nr, volatile unsigned long *ptr)
242{
243 unsigned long addr;
244
01c2475f 245 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
94c12cc7 246 asm volatile(
987bcdac
MS
247 " nc %O0(1,%R0),%1"
248 : "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7]) : "cc" );
1da177e4
LT
249}
250
251static inline void
252__constant_clear_bit(const unsigned long nr, volatile unsigned long *ptr)
253{
254 unsigned long addr;
255
01c2475f 256 addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
94c12cc7 257 *(unsigned char *) addr &= ~(1 << (nr & 7));
1da177e4
LT
258}
259
260#define clear_bit_simple(nr,addr) \
261(__builtin_constant_p((nr)) ? \
262 __constant_clear_bit((nr),(addr)) : \
263 __clear_bit((nr),(addr)) )
264
265/*
266 * fast, non-SMP change_bit routine
267 */
268static inline void __change_bit(unsigned long nr, volatile unsigned long *ptr)
269{
270 unsigned long addr;
271
01c2475f 272 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
94c12cc7 273 asm volatile(
987bcdac
MS
274 " xc %O0(1,%R0),%1"
275 : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7]) : "cc" );
1da177e4
LT
276}
277
278static inline void
279__constant_change_bit(const unsigned long nr, volatile unsigned long *ptr)
280{
281 unsigned long addr;
282
01c2475f 283 addr = ((unsigned long) ptr) + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
94c12cc7 284 *(unsigned char *) addr ^= 1 << (nr & 7);
1da177e4
LT
285}
286
287#define change_bit_simple(nr,addr) \
288(__builtin_constant_p((nr)) ? \
289 __constant_change_bit((nr),(addr)) : \
290 __change_bit((nr),(addr)) )
291
292/*
293 * fast, non-SMP test_and_set_bit routine
294 */
295static inline int
296test_and_set_bit_simple(unsigned long nr, volatile unsigned long *ptr)
297{
298 unsigned long addr;
299 unsigned char ch;
300
01c2475f 301 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
1da177e4 302 ch = *(unsigned char *) addr;
94c12cc7 303 asm volatile(
987bcdac
MS
304 " oc %O0(1,%R0),%1"
305 : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7])
306 : "cc", "memory");
1da177e4
LT
307 return (ch >> (nr & 7)) & 1;
308}
309#define __test_and_set_bit(X,Y) test_and_set_bit_simple(X,Y)
310
311/*
312 * fast, non-SMP test_and_clear_bit routine
313 */
314static inline int
315test_and_clear_bit_simple(unsigned long nr, volatile unsigned long *ptr)
316{
317 unsigned long addr;
318 unsigned char ch;
319
01c2475f 320 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
1da177e4 321 ch = *(unsigned char *) addr;
94c12cc7 322 asm volatile(
987bcdac
MS
323 " nc %O0(1,%R0),%1"
324 : "=Q" (*(char *) addr) : "Q" (_ni_bitmap[nr & 7])
325 : "cc", "memory");
1da177e4
LT
326 return (ch >> (nr & 7)) & 1;
327}
328#define __test_and_clear_bit(X,Y) test_and_clear_bit_simple(X,Y)
329
330/*
331 * fast, non-SMP test_and_change_bit routine
332 */
333static inline int
334test_and_change_bit_simple(unsigned long nr, volatile unsigned long *ptr)
335{
336 unsigned long addr;
337 unsigned char ch;
338
01c2475f 339 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
1da177e4 340 ch = *(unsigned char *) addr;
94c12cc7 341 asm volatile(
987bcdac
MS
342 " xc %O0(1,%R0),%1"
343 : "=Q" (*(char *) addr) : "Q" (_oi_bitmap[nr & 7])
344 : "cc", "memory");
1da177e4
LT
345 return (ch >> (nr & 7)) & 1;
346}
347#define __test_and_change_bit(X,Y) test_and_change_bit_simple(X,Y)
348
349#ifdef CONFIG_SMP
350#define set_bit set_bit_cs
351#define clear_bit clear_bit_cs
352#define change_bit change_bit_cs
353#define test_and_set_bit test_and_set_bit_cs
354#define test_and_clear_bit test_and_clear_bit_cs
355#define test_and_change_bit test_and_change_bit_cs
356#else
357#define set_bit set_bit_simple
358#define clear_bit clear_bit_simple
359#define change_bit change_bit_simple
360#define test_and_set_bit test_and_set_bit_simple
361#define test_and_clear_bit test_and_clear_bit_simple
362#define test_and_change_bit test_and_change_bit_simple
363#endif
364
365
366/*
367 * This routine doesn't need to be atomic.
368 */
369
370static inline int __test_bit(unsigned long nr, const volatile unsigned long *ptr)
371{
372 unsigned long addr;
373 unsigned char ch;
374
01c2475f 375 addr = (unsigned long) ptr + ((nr ^ (BITS_PER_LONG - 8)) >> 3);
1da177e4
LT
376 ch = *(volatile unsigned char *) addr;
377 return (ch >> (nr & 7)) & 1;
378}
379
380static inline int
381__constant_test_bit(unsigned long nr, const volatile unsigned long *addr) {
ef1bea9e 382 return (((volatile char *) addr)
01c2475f 383 [(nr^(BITS_PER_LONG-8))>>3] & (1<<(nr&7))) != 0;
1da177e4
LT
384}
385
386#define test_bit(nr,addr) \
387(__builtin_constant_p((nr)) ? \
388 __constant_test_bit((nr),(addr)) : \
389 __test_bit((nr),(addr)) )
390
afff7e2b 391/*
0abbf05c 392 * Optimized find bit helper functions.
afff7e2b 393 */
0abbf05c
MS
394
395/**
396 * __ffz_word_loop - find byte offset of first long != -1UL
397 * @addr: pointer to array of unsigned long
398 * @size: size of the array in bits
399 */
400static inline unsigned long __ffz_word_loop(const unsigned long *addr,
401 unsigned long size)
402{
403 typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
404 unsigned long bytes = 0;
405
406 asm volatile(
f4815ac6 407#ifndef CONFIG_64BIT
a22fb7ff
MS
408 " ahi %1,-1\n"
409 " sra %1,5\n"
410 " jz 1f\n"
0abbf05c
MS
411 "0: c %2,0(%0,%3)\n"
412 " jne 1f\n"
413 " la %0,4(%0)\n"
414 " brct %1,0b\n"
415 "1:\n"
416#else
a22fb7ff
MS
417 " aghi %1,-1\n"
418 " srag %1,%1,6\n"
419 " jz 1f\n"
0abbf05c
MS
420 "0: cg %2,0(%0,%3)\n"
421 " jne 1f\n"
422 " la %0,8(%0)\n"
423 " brct %1,0b\n"
424 "1:\n"
425#endif
6d88f827 426 : "+&a" (bytes), "+&d" (size)
0abbf05c
MS
427 : "d" (-1UL), "a" (addr), "m" (*(addrtype *) addr)
428 : "cc" );
429 return bytes;
430}
431
432/**
433 * __ffs_word_loop - find byte offset of first long != 0UL
434 * @addr: pointer to array of unsigned long
435 * @size: size of the array in bits
436 */
437static inline unsigned long __ffs_word_loop(const unsigned long *addr,
438 unsigned long size)
afff7e2b 439{
0abbf05c
MS
440 typedef struct { long _[__BITOPS_WORDS(size)]; } addrtype;
441 unsigned long bytes = 0;
afff7e2b 442
0abbf05c 443 asm volatile(
f4815ac6 444#ifndef CONFIG_64BIT
a22fb7ff
MS
445 " ahi %1,-1\n"
446 " sra %1,5\n"
447 " jz 1f\n"
0abbf05c
MS
448 "0: c %2,0(%0,%3)\n"
449 " jne 1f\n"
450 " la %0,4(%0)\n"
451 " brct %1,0b\n"
452 "1:\n"
453#else
a22fb7ff
MS
454 " aghi %1,-1\n"
455 " srag %1,%1,6\n"
456 " jz 1f\n"
0abbf05c
MS
457 "0: cg %2,0(%0,%3)\n"
458 " jne 1f\n"
459 " la %0,8(%0)\n"
460 " brct %1,0b\n"
461 "1:\n"
462#endif
6d88f827 463 : "+&a" (bytes), "+&a" (size)
0abbf05c
MS
464 : "d" (0UL), "a" (addr), "m" (*(addrtype *) addr)
465 : "cc" );
466 return bytes;
467}
468
469/**
470 * __ffz_word - add number of the first unset bit
471 * @nr: base value the bit number is added to
472 * @word: the word that is searched for unset bits
473 */
474static inline unsigned long __ffz_word(unsigned long nr, unsigned long word)
475{
f4815ac6 476#ifdef CONFIG_64BIT
e13ed9b2 477 if ((word & 0xffffffff) == 0xffffffff) {
afff7e2b 478 word >>= 32;
0abbf05c 479 nr += 32;
afff7e2b
MS
480 }
481#endif
e13ed9b2 482 if ((word & 0xffff) == 0xffff) {
afff7e2b 483 word >>= 16;
0abbf05c 484 nr += 16;
afff7e2b 485 }
e13ed9b2 486 if ((word & 0xff) == 0xff) {
afff7e2b 487 word >>= 8;
0abbf05c 488 nr += 8;
afff7e2b 489 }
0abbf05c 490 return nr + _zb_findmap[(unsigned char) word];
afff7e2b
MS
491}
492
0abbf05c
MS
493/**
494 * __ffs_word - add number of the first set bit
495 * @nr: base value the bit number is added to
496 * @word: the word that is searched for set bits
afff7e2b 497 */
0abbf05c 498static inline unsigned long __ffs_word(unsigned long nr, unsigned long word)
afff7e2b 499{
f4815ac6 500#ifdef CONFIG_64BIT
e13ed9b2 501 if ((word & 0xffffffff) == 0) {
afff7e2b 502 word >>= 32;
0abbf05c 503 nr += 32;
afff7e2b
MS
504 }
505#endif
e13ed9b2 506 if ((word & 0xffff) == 0) {
afff7e2b 507 word >>= 16;
0abbf05c 508 nr += 16;
afff7e2b 509 }
e13ed9b2 510 if ((word & 0xff) == 0) {
afff7e2b 511 word >>= 8;
0abbf05c 512 nr += 8;
afff7e2b 513 }
0abbf05c 514 return nr + _sb_findmap[(unsigned char) word];
afff7e2b 515}
1da177e4 516
afff7e2b 517
0abbf05c
MS
518/**
519 * __load_ulong_be - load big endian unsigned long
520 * @p: pointer to array of unsigned long
521 * @offset: byte offset of source value in the array
522 */
523static inline unsigned long __load_ulong_be(const unsigned long *p,
524 unsigned long offset)
525{
526 p = (unsigned long *)((unsigned long) p + offset);
527 return *p;
528}
afff7e2b 529
0abbf05c
MS
530/**
531 * __load_ulong_le - load little endian unsigned long
532 * @p: pointer to array of unsigned long
533 * @offset: byte offset of source value in the array
534 */
535static inline unsigned long __load_ulong_le(const unsigned long *p,
536 unsigned long offset)
1da177e4 537{
0abbf05c 538 unsigned long word;
1da177e4 539
0abbf05c 540 p = (unsigned long *)((unsigned long) p + offset);
f4815ac6 541#ifndef CONFIG_64BIT
94c12cc7 542 asm volatile(
987bcdac
MS
543 " ic %0,%O1(%R1)\n"
544 " icm %0,2,%O1+1(%R1)\n"
545 " icm %0,4,%O1+2(%R1)\n"
546 " icm %0,8,%O1+3(%R1)"
547 : "=&d" (word) : "Q" (*p) : "cc");
0abbf05c
MS
548#else
549 asm volatile(
550 " lrvg %0,%1"
551 : "=d" (word) : "m" (*p) );
552#endif
553 return word;
1da177e4
LT
554}
555
0abbf05c
MS
556/*
557 * The various find bit functions.
558 */
559
560/*
561 * ffz - find first zero in word.
562 * @word: The word to search
563 *
564 * Undefined if no zero exists, so code should check against ~0UL first.
565 */
566static inline unsigned long ffz(unsigned long word)
1da177e4 567{
0abbf05c
MS
568 return __ffz_word(0, word);
569}
1da177e4 570
0abbf05c
MS
571/**
572 * __ffs - find first bit in word.
573 * @word: The word to search
574 *
575 * Undefined if no bit exists, so code should check against 0 first.
576 */
577static inline unsigned long __ffs (unsigned long word)
578{
579 return __ffs_word(0, word);
1da177e4
LT
580}
581
0abbf05c
MS
582/**
583 * ffs - find first bit set
584 * @x: the word to search
585 *
586 * This is defined the same way as
587 * the libc and compiler builtin ffs routines, therefore
588 * differs in spirit from the above ffz (man ffs).
589 */
590static inline int ffs(int x)
591{
592 if (!x)
593 return 0;
594 return __ffs_word(1, x);
595}
1da177e4 596
0abbf05c
MS
597/**
598 * find_first_zero_bit - find the first zero bit in a memory region
599 * @addr: The address to start the search at
600 * @size: The maximum size to search
601 *
602 * Returns the bit-number of the first zero bit, not the number of the byte
603 * containing a bit.
604 */
605static inline unsigned long find_first_zero_bit(const unsigned long *addr,
606 unsigned long size)
1da177e4 607{
0abbf05c 608 unsigned long bytes, bits;
1da177e4
LT
609
610 if (!size)
611 return 0;
0abbf05c
MS
612 bytes = __ffz_word_loop(addr, size);
613 bits = __ffz_word(bytes*8, __load_ulong_be(addr, bytes));
614 return (bits < size) ? bits : size;
615}
a2812e17 616#define find_first_zero_bit find_first_zero_bit
0abbf05c
MS
617
618/**
619 * find_first_bit - find the first set bit in a memory region
620 * @addr: The address to start the search at
621 * @size: The maximum size to search
622 *
623 * Returns the bit-number of the first set bit, not the number of the byte
624 * containing a bit.
625 */
626static inline unsigned long find_first_bit(const unsigned long * addr,
627 unsigned long size)
1da177e4 628{
0abbf05c 629 unsigned long bytes, bits;
1da177e4
LT
630
631 if (!size)
632 return 0;
0abbf05c
MS
633 bytes = __ffs_word_loop(addr, size);
634 bits = __ffs_word(bytes*8, __load_ulong_be(addr, bytes));
635 return (bits < size) ? bits : size;
1da177e4 636}
a2812e17 637#define find_first_bit find_first_bit
1da177e4 638
e56e4e87
JG
639/*
640 * Big endian variant whichs starts bit counting from left using
641 * the flogr (find leftmost one) instruction.
642 */
643static inline unsigned long __flo_word(unsigned long nr, unsigned long val)
644{
645 register unsigned long bit asm("2") = val;
646 register unsigned long out asm("3");
647
648 asm volatile (
649 " .insn rre,0xb9830000,%[bit],%[bit]\n"
650 : [bit] "+d" (bit), [out] "=d" (out) : : "cc");
651 return nr + bit;
652}
653
654/*
655 * 64 bit special left bitops format:
656 * order in memory:
657 * 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
658 * 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f
659 * 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f
660 * 30 31 32 33 34 35 36 37 38 39 3a 3b 3c 3d 3e 3f
661 * after that follows the next long with bit numbers
662 * 40 41 42 43 44 45 46 47 48 49 4a 4b 4c 4d 4e 4f
663 * 50 51 52 53 54 55 56 57 58 59 5a 5b 5c 5d 5e 5f
664 * 60 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f
665 * 70 71 72 73 74 75 76 77 78 79 7a 7b 7c 7d 7e 7f
666 * The reason for this bit ordering is the fact that
667 * the hardware sets bits in a bitmap starting at bit 0
668 * and we don't want to scan the bitmap from the 'wrong
669 * end'.
670 */
671static inline unsigned long find_first_bit_left(const unsigned long *addr,
672 unsigned long size)
673{
674 unsigned long bytes, bits;
675
676 if (!size)
677 return 0;
678 bytes = __ffs_word_loop(addr, size);
679 bits = __flo_word(bytes * 8, __load_ulong_be(addr, bytes));
680 return (bits < size) ? bits : size;
681}
682
683static inline int find_next_bit_left(const unsigned long *addr,
684 unsigned long size,
685 unsigned long offset)
686{
687 const unsigned long *p;
688 unsigned long bit, set;
689
690 if (offset >= size)
691 return size;
01c2475f 692 bit = offset & (BITS_PER_LONG - 1);
e56e4e87
JG
693 offset -= bit;
694 size -= offset;
01c2475f 695 p = addr + offset / BITS_PER_LONG;
e56e4e87
JG
696 if (bit) {
697 set = __flo_word(0, *p & (~0UL << bit));
698 if (set >= size)
699 return size + offset;
01c2475f 700 if (set < BITS_PER_LONG)
e56e4e87 701 return set + offset;
01c2475f
AM
702 offset += BITS_PER_LONG;
703 size -= BITS_PER_LONG;
e56e4e87
JG
704 p++;
705 }
706 return offset + find_first_bit_left(p, size);
707}
708
709#define for_each_set_bit_left(bit, addr, size) \
710 for ((bit) = find_first_bit_left((addr), (size)); \
711 (bit) < (size); \
712 (bit) = find_next_bit_left((addr), (size), (bit) + 1))
713
714/* same as for_each_set_bit() but use bit as value to start with */
715#define for_each_set_bit_left_cont(bit, addr, size) \
716 for ((bit) = find_next_bit_left((addr), (size), (bit)); \
717 (bit) < (size); \
718 (bit) = find_next_bit_left((addr), (size), (bit) + 1))
719
0abbf05c
MS
720/**
721 * find_next_zero_bit - find the first zero bit in a memory region
722 * @addr: The address to base the search on
723 * @offset: The bitnumber to start searching at
724 * @size: The maximum size to search
725 */
726static inline int find_next_zero_bit (const unsigned long * addr,
727 unsigned long size,
728 unsigned long offset)
1da177e4 729{
afff7e2b
MS
730 const unsigned long *p;
731 unsigned long bit, set;
732
733 if (offset >= size)
734 return size;
01c2475f 735 bit = offset & (BITS_PER_LONG - 1);
afff7e2b
MS
736 offset -= bit;
737 size -= offset;
01c2475f 738 p = addr + offset / BITS_PER_LONG;
afff7e2b
MS
739 if (bit) {
740 /*
01c2475f 741 * __ffz_word returns BITS_PER_LONG
afff7e2b
MS
742 * if no zero bit is present in the word.
743 */
152382af 744 set = __ffz_word(bit, *p >> bit);
afff7e2b
MS
745 if (set >= size)
746 return size + offset;
01c2475f 747 if (set < BITS_PER_LONG)
afff7e2b 748 return set + offset;
01c2475f
AM
749 offset += BITS_PER_LONG;
750 size -= BITS_PER_LONG;
afff7e2b 751 p++;
1da177e4 752 }
afff7e2b 753 return offset + find_first_zero_bit(p, size);
1da177e4 754}
a2812e17 755#define find_next_zero_bit find_next_zero_bit
1da177e4 756
0abbf05c
MS
757/**
758 * find_next_bit - find the first set bit in a memory region
759 * @addr: The address to base the search on
760 * @offset: The bitnumber to start searching at
761 * @size: The maximum size to search
762 */
763static inline int find_next_bit (const unsigned long * addr,
764 unsigned long size,
765 unsigned long offset)
1da177e4 766{
afff7e2b
MS
767 const unsigned long *p;
768 unsigned long bit, set;
769
770 if (offset >= size)
771 return size;
01c2475f 772 bit = offset & (BITS_PER_LONG - 1);
afff7e2b
MS
773 offset -= bit;
774 size -= offset;
01c2475f 775 p = addr + offset / BITS_PER_LONG;
afff7e2b
MS
776 if (bit) {
777 /*
01c2475f 778 * __ffs_word returns BITS_PER_LONG
afff7e2b
MS
779 * if no one bit is present in the word.
780 */
0abbf05c 781 set = __ffs_word(0, *p & (~0UL << bit));
afff7e2b
MS
782 if (set >= size)
783 return size + offset;
01c2475f 784 if (set < BITS_PER_LONG)
afff7e2b 785 return set + offset;
01c2475f
AM
786 offset += BITS_PER_LONG;
787 size -= BITS_PER_LONG;
afff7e2b 788 p++;
1da177e4 789 }
afff7e2b 790 return offset + find_first_bit(p, size);
1da177e4 791}
a2812e17 792#define find_next_bit find_next_bit
1da177e4
LT
793
794/*
795 * Every architecture must define this function. It's the fastest
796 * way of searching a 140-bit bitmap where the first 100 bits are
797 * unlikely to be set. It's guaranteed that at least one of the 140
798 * bits is cleared.
799 */
800static inline int sched_find_first_bit(unsigned long *b)
801{
802 return find_first_bit(b, 140);
803}
804
7e33db4e 805#include <asm-generic/bitops/fls.h>
56a6b1eb 806#include <asm-generic/bitops/__fls.h>
7e33db4e 807#include <asm-generic/bitops/fls64.h>
1da177e4 808
7e33db4e 809#include <asm-generic/bitops/hweight.h>
26333576 810#include <asm-generic/bitops/lock.h>
1da177e4 811
1da177e4
LT
812/*
813 * ATTENTION: intel byte ordering convention for ext2 and minix !!
814 * bit 0 is the LSB of addr; bit 31 is the MSB of addr;
815 * bit 32 is the LSB of (addr+4).
816 * That combined with the little endian byte order of Intel gives the
817 * following bit order in memory:
818 * 07 06 05 04 03 02 01 00 15 14 13 12 11 10 09 08 \
819 * 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24
820 */
821
50b9b475 822static inline int find_first_zero_bit_le(void *vaddr, unsigned int size)
1da177e4 823{
0abbf05c 824 unsigned long bytes, bits;
1da177e4
LT
825
826 if (!size)
827 return 0;
0abbf05c
MS
828 bytes = __ffz_word_loop(vaddr, size);
829 bits = __ffz_word(bytes*8, __load_ulong_le(vaddr, bytes));
830 return (bits < size) ? bits : size;
1da177e4 831}
a2812e17 832#define find_first_zero_bit_le find_first_zero_bit_le
1da177e4 833
50b9b475 834static inline int find_next_zero_bit_le(void *vaddr, unsigned long size,
0abbf05c 835 unsigned long offset)
1da177e4 836{
afff7e2b 837 unsigned long *addr = vaddr, *p;
0abbf05c 838 unsigned long bit, set;
1da177e4
LT
839
840 if (offset >= size)
841 return size;
01c2475f 842 bit = offset & (BITS_PER_LONG - 1);
afff7e2b
MS
843 offset -= bit;
844 size -= offset;
01c2475f 845 p = addr + offset / BITS_PER_LONG;
1da177e4 846 if (bit) {
afff7e2b 847 /*
01c2475f 848 * s390 version of ffz returns BITS_PER_LONG
afff7e2b
MS
849 * if no zero bit is present in the word.
850 */
152382af 851 set = __ffz_word(bit, __load_ulong_le(p, 0) >> bit);
afff7e2b
MS
852 if (set >= size)
853 return size + offset;
01c2475f 854 if (set < BITS_PER_LONG)
afff7e2b 855 return set + offset;
01c2475f
AM
856 offset += BITS_PER_LONG;
857 size -= BITS_PER_LONG;
afff7e2b 858 p++;
1da177e4 859 }
50b9b475 860 return offset + find_first_zero_bit_le(p, size);
1da177e4 861}
a2812e17 862#define find_next_zero_bit_le find_next_zero_bit_le
1da177e4 863
50b9b475 864static inline unsigned long find_first_bit_le(void *vaddr, unsigned long size)
67fe9251
HC
865{
866 unsigned long bytes, bits;
867
868 if (!size)
869 return 0;
870 bytes = __ffs_word_loop(vaddr, size);
871 bits = __ffs_word(bytes*8, __load_ulong_le(vaddr, bytes));
872 return (bits < size) ? bits : size;
873}
a2812e17 874#define find_first_bit_le find_first_bit_le
67fe9251 875
50b9b475 876static inline int find_next_bit_le(void *vaddr, unsigned long size,
67fe9251
HC
877 unsigned long offset)
878{
879 unsigned long *addr = vaddr, *p;
880 unsigned long bit, set;
881
882 if (offset >= size)
883 return size;
01c2475f 884 bit = offset & (BITS_PER_LONG - 1);
67fe9251
HC
885 offset -= bit;
886 size -= offset;
01c2475f 887 p = addr + offset / BITS_PER_LONG;
67fe9251
HC
888 if (bit) {
889 /*
01c2475f 890 * s390 version of ffz returns BITS_PER_LONG
67fe9251
HC
891 * if no zero bit is present in the word.
892 */
152382af 893 set = __ffs_word(0, __load_ulong_le(p, 0) & (~0UL << bit));
67fe9251
HC
894 if (set >= size)
895 return size + offset;
01c2475f 896 if (set < BITS_PER_LONG)
67fe9251 897 return set + offset;
01c2475f
AM
898 offset += BITS_PER_LONG;
899 size -= BITS_PER_LONG;
67fe9251
HC
900 p++;
901 }
50b9b475
AM
902 return offset + find_first_bit_le(p, size);
903}
a2812e17 904#define find_next_bit_le find_next_bit_le
50b9b475 905
802caabb
AM
906#include <asm-generic/bitops/le.h>
907
148817ba 908#include <asm-generic/bitops/ext2-atomic-setbit.h>
67fe9251 909
1da177e4 910#endif /* _S390_BITOPS_H */
This page took 0.967239 seconds and 5 git commands to generate.