Merge branch 'sh/stable-updates'
[deliverable/linux.git] / arch / sh / mm / ioremap_32.c
CommitLineData
1da177e4
LT
1/*
2 * arch/sh/mm/ioremap.c
3 *
4 * Re-map IO memory to kernel address space so that we can access it.
5 * This is needed for high PCI addresses that aren't mapped in the
6 * 640k-1MB IO memory area on PC's
7 *
8 * (C) Copyright 1995 1996 Linus Torvalds
b66c1a39
PM
9 * (C) Copyright 2005, 2006 Paul Mundt
10 *
11 * This file is subject to the terms and conditions of the GNU General
12 * Public License. See the file "COPYING" in the main directory of this
13 * archive for more details.
1da177e4 14 */
1da177e4 15#include <linux/vmalloc.h>
b66c1a39 16#include <linux/module.h>
1da177e4 17#include <linux/mm.h>
a3e61d50 18#include <linux/pci.h>
5b3e1a85 19#include <linux/io.h>
1da177e4
LT
20#include <asm/page.h>
21#include <asm/pgalloc.h>
b66c1a39 22#include <asm/addrspace.h>
1da177e4
LT
23#include <asm/cacheflush.h>
24#include <asm/tlbflush.h>
0fd14754 25#include <asm/mmu.h>
1da177e4 26
1da177e4
LT
27/*
28 * Remap an arbitrary physical address space into the kernel virtual
29 * address space. Needed when the kernel wants to access high addresses
30 * directly.
31 *
32 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
33 * have to convert them into an offset in a page-aligned mapping, but the
34 * caller shouldn't need to know that small detail.
35 */
bf3cdeda
PM
36void __iomem *__ioremap_caller(unsigned long phys_addr, unsigned long size,
37 unsigned long flags, void *caller)
1da177e4 38{
bf3cdeda 39 struct vm_struct *area;
b66c1a39 40 unsigned long offset, last_addr, addr, orig_addr;
5b3e1a85 41 pgprot_t pgprot;
1da177e4
LT
42
43 /* Don't allow wraparound or zero size */
44 last_addr = phys_addr + size - 1;
45 if (!size || last_addr < phys_addr)
46 return NULL;
47
a3e61d50 48 /*
99f95f11
PM
49 * If we're in the fixed PCI memory range, mapping through page
50 * tables is not only pointless, but also fundamentally broken.
51 * Just return the physical address instead.
a3e61d50
PM
52 *
53 * For boards that map a small PCI memory aperture somewhere in
54 * P1/P2 space, ioremap() will already do the right thing,
55 * and we'll never get this far.
56 */
99f95f11 57 if (is_pci_memory_fixed_range(phys_addr, size))
a3e61d50
PM
58 return (void __iomem *)phys_addr;
59
1da177e4
LT
60 /*
61 * Mappings have to be page-aligned
62 */
63 offset = phys_addr & ~PAGE_MASK;
64 phys_addr &= PAGE_MASK;
65 size = PAGE_ALIGN(last_addr+1) - phys_addr;
66
67 /*
68 * Ok, go for it..
69 */
bf3cdeda 70 area = get_vm_area_caller(size, VM_IOREMAP, caller);
1da177e4
LT
71 if (!area)
72 return NULL;
73 area->phys_addr = phys_addr;
b66c1a39
PM
74 orig_addr = addr = (unsigned long)area->addr;
75
2f47f447 76#ifdef CONFIG_PMB
b66c1a39
PM
77 /*
78 * First try to remap through the PMB once a valid VMA has been
79 * established. Smaller allocations (or the rest of the size
80 * remaining after a PMB mapping due to the size not being
81 * perfectly aligned on a PMB size boundary) are then mapped
82 * through the UTLB using conventional page tables.
83 *
84 * PMB entries are all pre-faulted.
85 */
2bea7ea7 86 if (unlikely(phys_addr >= P1SEG)) {
b66c1a39
PM
87 unsigned long mapped = pmb_remap(addr, phys_addr, size, flags);
88
89 if (likely(mapped)) {
90 addr += mapped;
91 phys_addr += mapped;
92 size -= mapped;
93 }
1da177e4 94 }
b66c1a39
PM
95#endif
96
5b3e1a85 97 pgprot = __pgprot(pgprot_val(PAGE_KERNEL_NOCACHE) | flags);
b66c1a39 98 if (likely(size))
5b3e1a85 99 if (ioremap_page_range(addr, addr + size, phys_addr, pgprot)) {
b66c1a39
PM
100 vunmap((void *)orig_addr);
101 return NULL;
102 }
103
104 return (void __iomem *)(offset + (char *)orig_addr);
1da177e4 105}
bf3cdeda 106EXPORT_SYMBOL(__ioremap_caller);
1da177e4 107
78bf04fc
PM
108/*
109 * Simple checks for non-translatable mappings.
110 */
111static inline int iomapping_nontranslatable(unsigned long offset)
112{
113#ifdef CONFIG_29BIT
114 /*
115 * In 29-bit mode this includes the fixed P1/P2 areas, as well as
116 * parts of P3.
117 */
118 if (PXSEG(offset) < P3SEG || offset >= P3_ADDR_MAX)
119 return 1;
120#endif
121
122 if (is_pci_memory_fixed_range(offset, 0))
123 return 1;
124
125 return 0;
126}
127
b66c1a39 128void __iounmap(void __iomem *addr)
1da177e4 129{
b66c1a39
PM
130 unsigned long vaddr = (unsigned long __force)addr;
131 struct vm_struct *p;
132
78bf04fc
PM
133 /*
134 * Nothing to do if there is no translatable mapping.
135 */
136 if (iomapping_nontranslatable(vaddr))
b66c1a39
PM
137 return;
138
2f47f447 139#ifdef CONFIG_PMB
b66c1a39
PM
140 /*
141 * Purge any PMB entries that may have been established for this
142 * mapping, then proceed with conventional VMA teardown.
143 *
144 * XXX: Note that due to the way that remove_vm_area() does
145 * matching of the resultant VMA, we aren't able to fast-forward
146 * the address past the PMB space until the end of the VMA where
147 * the page tables reside. As such, unmap_vm_area() will be
148 * forced to linearly scan over the area until it finds the page
149 * tables where PTEs that need to be unmapped actually reside,
150 * which is far from optimal. Perhaps we need to use a separate
151 * VMA for the PMB mappings?
152 * -- PFM.
153 */
154 pmb_unmap(vaddr);
155#endif
156
157 p = remove_vm_area((void *)(vaddr & PAGE_MASK));
158 if (!p) {
866e6b9e 159 printk(KERN_ERR "%s: bad address %p\n", __func__, addr);
b66c1a39
PM
160 return;
161 }
162
163 kfree(p);
1da177e4 164}
b66c1a39 165EXPORT_SYMBOL(__iounmap);
This page took 0.683405 seconds and 5 git commands to generate.