sparc64: Implement HAVE_CONTEXT_TRACKING
[deliverable/linux.git] / arch / sparc / kernel / kprobes.c
CommitLineData
1da177e4
LT
1/* arch/sparc64/kernel/kprobes.c
2 *
3 * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
4 */
5
1da177e4
LT
6#include <linux/kernel.h>
7#include <linux/kprobes.h>
b6700096 8#include <linux/module.h>
1eeb66a1 9#include <linux/kdebug.h>
5a0e3ad6 10#include <linux/slab.h>
812cb83a 11#include <linux/context_tracking.h>
1da177e4 12#include <asm/signal.h>
05e14cb3 13#include <asm/cacheflush.h>
b6700096 14#include <asm/uaccess.h>
1da177e4
LT
15
16/* We do not have hardware single-stepping on sparc64.
17 * So we implement software single-stepping with breakpoint
18 * traps. The top-level scheme is similar to that used
19 * in the x86 kprobes implementation.
20 *
21 * In the kprobe->ainsn.insn[] array we store the original
22 * instruction at index zero and a break instruction at
23 * index one.
24 *
25 * When we hit a kprobe we:
26 * - Run the pre-handler
27 * - Remember "regs->tnpc" and interrupt level stored in
28 * "regs->tstate" so we can restore them later
29 * - Disable PIL interrupts
30 * - Set regs->tpc to point to kprobe->ainsn.insn[0]
31 * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
32 * - Mark that we are actively in a kprobe
33 *
34 * At this point we wait for the second breakpoint at
35 * kprobe->ainsn.insn[1] to hit. When it does we:
36 * - Run the post-handler
37 * - Set regs->tpc to "remembered" regs->tnpc stored above,
38 * restore the PIL interrupt level in "regs->tstate" as well
39 * - Make any adjustments necessary to regs->tnpc in order
40 * to handle relative branches correctly. See below.
41 * - Mark that we are no longer actively in a kprobe.
42 */
43
f215d985
AM
44DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
45DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
46
f438d914
MH
47struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
48
05e14cb3 49int __kprobes arch_prepare_kprobe(struct kprobe *p)
1da177e4 50{
936cf251
DM
51 if ((unsigned long) p->addr & 0x3UL)
52 return -EILSEQ;
53
1da177e4 54 p->ainsn.insn[0] = *p->addr;
f0882589
DM
55 flushi(&p->ainsn.insn[0]);
56
1da177e4 57 p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
f0882589
DM
58 flushi(&p->ainsn.insn[1]);
59
7e1048b1 60 p->opcode = *p->addr;
49a2a1b8 61 return 0;
7e1048b1
RL
62}
63
05e14cb3 64void __kprobes arch_arm_kprobe(struct kprobe *p)
7e1048b1
RL
65{
66 *p->addr = BREAKPOINT_INSTRUCTION;
67 flushi(p->addr);
68}
69
05e14cb3 70void __kprobes arch_disarm_kprobe(struct kprobe *p)
7e1048b1
RL
71{
72 *p->addr = p->opcode;
73 flushi(p->addr);
1da177e4
LT
74}
75
07fab8da 76static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
e539c233 77{
f215d985
AM
78 kcb->prev_kprobe.kp = kprobe_running();
79 kcb->prev_kprobe.status = kcb->kprobe_status;
80 kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
81 kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
e539c233
PP
82}
83
07fab8da 84static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
e539c233 85{
f215d985
AM
86 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
87 kcb->kprobe_status = kcb->prev_kprobe.status;
88 kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
89 kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
e539c233
PP
90}
91
07fab8da 92static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
f215d985 93 struct kprobe_ctlblk *kcb)
1da177e4 94{
f215d985
AM
95 __get_cpu_var(current_kprobe) = p;
96 kcb->kprobe_orig_tnpc = regs->tnpc;
97 kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
e539c233
PP
98}
99
07fab8da 100static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
f215d985 101 struct kprobe_ctlblk *kcb)
e539c233 102{
1da177e4
LT
103 regs->tstate |= TSTATE_PIL;
104
105 /*single step inline, if it a breakpoint instruction*/
106 if (p->opcode == BREAKPOINT_INSTRUCTION) {
107 regs->tpc = (unsigned long) p->addr;
f215d985 108 regs->tnpc = kcb->kprobe_orig_tnpc;
1da177e4
LT
109 } else {
110 regs->tpc = (unsigned long) &p->ainsn.insn[0];
111 regs->tnpc = (unsigned long) &p->ainsn.insn[1];
112 }
113}
114
05e14cb3 115static int __kprobes kprobe_handler(struct pt_regs *regs)
1da177e4
LT
116{
117 struct kprobe *p;
118 void *addr = (void *) regs->tpc;
119 int ret = 0;
d217d545
AM
120 struct kprobe_ctlblk *kcb;
121
122 /*
123 * We don't want to be preempted for the entire
124 * duration of kprobe processing
125 */
126 preempt_disable();
127 kcb = get_kprobe_ctlblk();
1da177e4 128
1da177e4 129 if (kprobe_running()) {
1da177e4
LT
130 p = get_kprobe(addr);
131 if (p) {
f215d985 132 if (kcb->kprobe_status == KPROBE_HIT_SS) {
1da177e4 133 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
f215d985 134 kcb->kprobe_orig_tstate_pil);
1da177e4
LT
135 goto no_kprobe;
136 }
e539c233
PP
137 /* We have reentered the kprobe_handler(), since
138 * another probe was hit while within the handler.
139 * We here save the original kprobes variables and
140 * just single step on the instruction of the new probe
141 * without calling any user handlers.
142 */
f215d985
AM
143 save_previous_kprobe(kcb);
144 set_current_kprobe(p, regs, kcb);
bf8d5c52 145 kprobes_inc_nmissed_count(p);
f215d985
AM
146 kcb->kprobe_status = KPROBE_REENTER;
147 prepare_singlestep(p, regs, kcb);
e539c233 148 return 1;
1da177e4 149 } else {
eb3a7292
KA
150 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
151 /* The breakpoint instruction was removed by
152 * another cpu right after we hit, no further
153 * handling of this interrupt is appropriate
154 */
155 ret = 1;
156 goto no_kprobe;
157 }
f215d985 158 p = __get_cpu_var(current_kprobe);
1da177e4
LT
159 if (p->break_handler && p->break_handler(p, regs))
160 goto ss_probe;
161 }
1da177e4
LT
162 goto no_kprobe;
163 }
164
1da177e4
LT
165 p = get_kprobe(addr);
166 if (!p) {
1da177e4
LT
167 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
168 /*
169 * The breakpoint instruction was removed right
170 * after we hit it. Another cpu has removed
171 * either a probepoint or a debugger breakpoint
172 * at this address. In either case, no further
173 * handling of this interrupt is appropriate.
174 */
175 ret = 1;
176 }
177 /* Not one of ours: let kernel handle it */
178 goto no_kprobe;
179 }
180
f215d985
AM
181 set_current_kprobe(p, regs, kcb);
182 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1da177e4
LT
183 if (p->pre_handler && p->pre_handler(p, regs))
184 return 1;
185
186ss_probe:
f215d985
AM
187 prepare_singlestep(p, regs, kcb);
188 kcb->kprobe_status = KPROBE_HIT_SS;
1da177e4
LT
189 return 1;
190
191no_kprobe:
d217d545 192 preempt_enable_no_resched();
1da177e4
LT
193 return ret;
194}
195
196/* If INSN is a relative control transfer instruction,
197 * return the corrected branch destination value.
198 *
f0882589
DM
199 * regs->tpc and regs->tnpc still hold the values of the
200 * program counters at the time of trap due to the execution
201 * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
202 *
1da177e4 203 */
f0882589
DM
204static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
205 struct pt_regs *regs)
1da177e4 206{
f0882589
DM
207 unsigned long real_pc = (unsigned long) p->addr;
208
1da177e4 209 /* Branch not taken, no mods necessary. */
f0882589
DM
210 if (regs->tnpc == regs->tpc + 0x4UL)
211 return real_pc + 0x8UL;
1da177e4
LT
212
213 /* The three cases are call, branch w/prediction,
214 * and traditional branch.
215 */
216 if ((insn & 0xc0000000) == 0x40000000 ||
217 (insn & 0xc1c00000) == 0x00400000 ||
218 (insn & 0xc1c00000) == 0x00800000) {
f0882589
DM
219 unsigned long ainsn_addr;
220
221 ainsn_addr = (unsigned long) &p->ainsn.insn[0];
222
1da177e4
LT
223 /* The instruction did all the work for us
224 * already, just apply the offset to the correct
225 * instruction location.
226 */
f0882589 227 return (real_pc + (regs->tnpc - ainsn_addr));
1da177e4
LT
228 }
229
f0882589
DM
230 /* It is jmpl or some other absolute PC modification instruction,
231 * leave NPC as-is.
232 */
233 return regs->tnpc;
1da177e4
LT
234}
235
236/* If INSN is an instruction which writes it's PC location
237 * into a destination register, fix that up.
238 */
05e14cb3
PP
239static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
240 unsigned long real_pc)
1da177e4
LT
241{
242 unsigned long *slot = NULL;
243
f0882589 244 /* Simplest case is 'call', which always uses %o7 */
1da177e4
LT
245 if ((insn & 0xc0000000) == 0x40000000) {
246 slot = &regs->u_regs[UREG_I7];
247 }
248
f0882589 249 /* 'jmpl' encodes the register inside of the opcode */
1da177e4
LT
250 if ((insn & 0xc1f80000) == 0x81c00000) {
251 unsigned long rd = ((insn >> 25) & 0x1f);
252
253 if (rd <= 15) {
254 slot = &regs->u_regs[rd];
255 } else {
256 /* Hard case, it goes onto the stack. */
257 flushw_all();
258
259 rd -= 16;
260 slot = (unsigned long *)
261 (regs->u_regs[UREG_FP] + STACK_BIAS);
262 slot += rd;
263 }
264 }
265 if (slot != NULL)
266 *slot = real_pc;
267}
268
269/*
270 * Called after single-stepping. p->addr is the address of the
f0882589 271 * instruction which has been replaced by the breakpoint
1da177e4
LT
272 * instruction. To avoid the SMP problems that can occur when we
273 * temporarily put back the original opcode to single-step, we
274 * single-stepped a copy of the instruction. The address of this
f0882589 275 * copy is &p->ainsn.insn[0].
1da177e4
LT
276 *
277 * This function prepares to return from the post-single-step
278 * breakpoint trap.
279 */
f215d985
AM
280static void __kprobes resume_execution(struct kprobe *p,
281 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
1da177e4
LT
282{
283 u32 insn = p->ainsn.insn[0];
284
f0882589
DM
285 regs->tnpc = relbranch_fixup(insn, p, regs);
286
287 /* This assignment must occur after relbranch_fixup() */
f215d985 288 regs->tpc = kcb->kprobe_orig_tnpc;
f0882589 289
1da177e4
LT
290 retpc_fixup(regs, insn, (unsigned long) p->addr);
291
292 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
f215d985 293 kcb->kprobe_orig_tstate_pil);
1da177e4
LT
294}
295
07fab8da 296static int __kprobes post_kprobe_handler(struct pt_regs *regs)
1da177e4 297{
f215d985
AM
298 struct kprobe *cur = kprobe_running();
299 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
300
301 if (!cur)
1da177e4
LT
302 return 0;
303
f215d985
AM
304 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
305 kcb->kprobe_status = KPROBE_HIT_SSDONE;
306 cur->post_handler(cur, regs, 0);
e539c233 307 }
1da177e4 308
f215d985 309 resume_execution(cur, regs, kcb);
1da177e4 310
e539c233 311 /*Restore back the original saved kprobes variables and continue. */
f215d985
AM
312 if (kcb->kprobe_status == KPROBE_REENTER) {
313 restore_previous_kprobe(kcb);
e539c233
PP
314 goto out;
315 }
f215d985 316 reset_current_kprobe();
e539c233 317out:
1da177e4
LT
318 preempt_enable_no_resched();
319
320 return 1;
321}
322
127cda1e 323int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1da177e4 324{
f215d985
AM
325 struct kprobe *cur = kprobe_running();
326 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
b6700096
PP
327 const struct exception_table_entry *entry;
328
329 switch(kcb->kprobe_status) {
330 case KPROBE_HIT_SS:
331 case KPROBE_REENTER:
332 /*
333 * We are here because the instruction being single
334 * stepped caused a page fault. We reset the current
335 * kprobe and the tpc points back to the probe address
336 * and allow the page fault handler to continue as a
337 * normal page fault.
338 */
339 regs->tpc = (unsigned long)cur->addr;
340 regs->tnpc = kcb->kprobe_orig_tnpc;
341 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
342 kcb->kprobe_orig_tstate_pil);
343 if (kcb->kprobe_status == KPROBE_REENTER)
344 restore_previous_kprobe(kcb);
345 else
346 reset_current_kprobe();
347 preempt_enable_no_resched();
348 break;
349 case KPROBE_HIT_ACTIVE:
350 case KPROBE_HIT_SSDONE:
351 /*
352 * We increment the nmissed count for accounting,
353 * we can also use npre/npostfault count for accouting
354 * these specific fault cases.
355 */
356 kprobes_inc_nmissed_count(cur);
357
358 /*
359 * We come here because instructions in the pre/post
360 * handler caused the page_fault, this could happen
361 * if handler tries to access user space by
362 * copy_from_user(), get_user() etc. Let the
363 * user-specified handler try to fix it first.
364 */
365 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
366 return 1;
f215d985 367
b6700096
PP
368 /*
369 * In case the user-specified fault handler returned
370 * zero, try to fix up.
371 */
1da177e4 372
b6700096
PP
373 entry = search_exception_tables(regs->tpc);
374 if (entry) {
375 regs->tpc = entry->fixup;
376 regs->tnpc = regs->tpc + 4;
377 return 1;
378 }
1da177e4 379
b6700096
PP
380 /*
381 * fixup_exception() could not handle it,
382 * Let do_page_fault() fix it.
383 */
384 break;
385 default:
386 break;
1da177e4 387 }
b6700096 388
1da177e4
LT
389 return 0;
390}
391
392/*
393 * Wrapper routine to for handling exceptions.
394 */
05e14cb3
PP
395int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
396 unsigned long val, void *data)
1da177e4
LT
397{
398 struct die_args *args = (struct die_args *)data;
66ff2d06
AM
399 int ret = NOTIFY_DONE;
400
2326c770 401 if (args->regs && user_mode(args->regs))
402 return ret;
403
1da177e4
LT
404 switch (val) {
405 case DIE_DEBUG:
406 if (kprobe_handler(args->regs))
66ff2d06 407 ret = NOTIFY_STOP;
1da177e4
LT
408 break;
409 case DIE_DEBUG_2:
410 if (post_kprobe_handler(args->regs))
66ff2d06 411 ret = NOTIFY_STOP;
1da177e4 412 break;
1da177e4
LT
413 default:
414 break;
415 }
66ff2d06 416 return ret;
1da177e4
LT
417}
418
05e14cb3
PP
419asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
420 struct pt_regs *regs)
1da177e4 421{
812cb83a
KT
422 enum ctx_state prev_state = exception_enter();
423
1da177e4
LT
424 BUG_ON(trap_level != 0x170 && trap_level != 0x171);
425
426 if (user_mode(regs)) {
427 local_irq_enable();
428 bad_trap(regs, trap_level);
812cb83a 429 goto out;
1da177e4
LT
430 }
431
432 /* trap_level == 0x170 --> ta 0x70
433 * trap_level == 0x171 --> ta 0x71
434 */
435 if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
436 (trap_level == 0x170) ? "debug" : "debug_2",
437 regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
438 bad_trap(regs, trap_level);
812cb83a
KT
439out:
440 exception_exit(prev_state);
1da177e4
LT
441}
442
443/* Jprobes support. */
05e14cb3 444int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
445{
446 struct jprobe *jp = container_of(p, struct jprobe, kp);
f215d985 447 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4 448
f215d985 449 memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
1da177e4 450
1da177e4
LT
451 regs->tpc = (unsigned long) jp->entry;
452 regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
453 regs->tstate |= TSTATE_PIL;
454
455 return 1;
456}
457
05e14cb3 458void __kprobes jprobe_return(void)
1da177e4 459{
f0882589
DM
460 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
461 register unsigned long orig_fp asm("g1");
462
463 orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
464 __asm__ __volatile__("\n"
465"1: cmp %%sp, %0\n\t"
466 "blu,a,pt %%xcc, 1b\n\t"
467 " restore\n\t"
468 ".globl jprobe_return_trap_instruction\n"
1da177e4 469"jprobe_return_trap_instruction:\n\t"
f0882589
DM
470 "ta 0x70"
471 : /* no outputs */
472 : "r" (orig_fp));
1da177e4
LT
473}
474
475extern void jprobe_return_trap_instruction(void);
476
05e14cb3 477int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
1da177e4
LT
478{
479 u32 *addr = (u32 *) regs->tpc;
f215d985 480 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1da177e4
LT
481
482 if (addr == (u32 *) jprobe_return_trap_instruction) {
f215d985 483 memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
d217d545 484 preempt_enable_no_resched();
1da177e4
LT
485 return 1;
486 }
487 return 0;
488}
e539c233 489
ef53d9c5
S
490/* The value stored in the return address register is actually 2
491 * instructions before where the callee will return to.
492 * Sequences usually look something like this
d38f1220
DM
493 *
494 * call some_function <--- return register points here
495 * nop <--- call delay slot
496 * whatever <--- where callee returns to
497 *
498 * To keep trampoline_probe_handler logic simpler, we normalize the
499 * value kept in ri->ret_addr so we don't need to keep adjusting it
500 * back and forth.
501 */
502void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
503 struct pt_regs *regs)
504{
505 ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
506
507 /* Replace the return addr with trampoline addr */
508 regs->u_regs[UREG_RETPC] =
509 ((unsigned long)kretprobe_trampoline) - 8;
510}
511
512/*
513 * Called when the probe at kretprobe trampoline is hit
514 */
515int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
516{
517 struct kretprobe_instance *ri = NULL;
518 struct hlist_head *head, empty_rp;
b67bfe0d 519 struct hlist_node *tmp;
d38f1220
DM
520 unsigned long flags, orig_ret_address = 0;
521 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
522
523 INIT_HLIST_HEAD(&empty_rp);
ef53d9c5 524 kretprobe_hash_lock(current, &head, &flags);
d38f1220
DM
525
526 /*
527 * It is possible to have multiple instances associated with a given
528 * task either because an multiple functions in the call path
025dfdaf 529 * have a return probe installed on them, and/or more than one return
d38f1220
DM
530 * return probe was registered for a target function.
531 *
532 * We can handle this because:
533 * - instances are always inserted at the head of the list
534 * - when multiple return probes are registered for the same
535 * function, the first instance's ret_addr will point to the
536 * real return address, and all the rest will point to
537 * kretprobe_trampoline
538 */
b67bfe0d 539 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
d38f1220
DM
540 if (ri->task != current)
541 /* another task is sharing our hash bucket */
542 continue;
543
544 if (ri->rp && ri->rp->handler)
545 ri->rp->handler(ri, regs);
546
547 orig_ret_address = (unsigned long)ri->ret_addr;
548 recycle_rp_inst(ri, &empty_rp);
549
550 if (orig_ret_address != trampoline_address)
551 /*
552 * This is the real return address. Any other
553 * instances associated with this task are for
554 * other calls deeper on the call stack
555 */
556 break;
557 }
558
559 kretprobe_assert(ri, orig_ret_address, trampoline_address);
560 regs->tpc = orig_ret_address;
561 regs->tnpc = orig_ret_address + 4;
562
563 reset_current_kprobe();
ef53d9c5 564 kretprobe_hash_unlock(current, &flags);
d38f1220
DM
565 preempt_enable_no_resched();
566
b67bfe0d 567 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
d38f1220
DM
568 hlist_del(&ri->hlist);
569 kfree(ri);
570 }
571 /*
572 * By returning a non-zero value, we are telling
573 * kprobe_handler() that we don't want the post_handler
574 * to run (and have re-enabled preemption)
575 */
576 return 1;
577}
578
579void kretprobe_trampoline_holder(void)
580{
581 asm volatile(".global kretprobe_trampoline\n"
582 "kretprobe_trampoline:\n"
583 "\tnop\n"
584 "\tnop\n");
585}
586static struct kprobe trampoline_p = {
587 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
588 .pre_handler = trampoline_probe_handler
589};
590
591int __init arch_init_kprobes(void)
6772926b 592{
d38f1220
DM
593 return register_kprobe(&trampoline_p);
594}
595
596int __kprobes arch_trampoline_kprobe(struct kprobe *p)
597{
598 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
599 return 1;
600
6772926b
RL
601 return 0;
602}
This page took 0.759659 seconds and 5 git commands to generate.