Linux 3.7-rc1
[deliverable/linux.git] / arch / sparc / kernel / perf_event.c
CommitLineData
cdd6c482 1/* Performance event support for sparc64.
59abbd1e 2 *
4f6dbe4a 3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
59abbd1e 4 *
cdd6c482 5 * This code is based almost entirely upon the x86 perf event
59abbd1e
DM
6 * code, which is:
7 *
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13 */
14
cdd6c482 15#include <linux/perf_event.h>
59abbd1e 16#include <linux/kprobes.h>
667f0cee 17#include <linux/ftrace.h>
59abbd1e
DM
18#include <linux/kernel.h>
19#include <linux/kdebug.h>
20#include <linux/mutex.h>
21
4f6dbe4a 22#include <asm/stacktrace.h>
59abbd1e 23#include <asm/cpudata.h>
4f6dbe4a 24#include <asm/uaccess.h>
60063497 25#include <linux/atomic.h>
59abbd1e
DM
26#include <asm/nmi.h>
27#include <asm/pcr.h>
d550bbd4 28#include <asm/cacheflush.h>
59abbd1e 29
cb1b8209 30#include "kernel.h"
4f6dbe4a
DM
31#include "kstack.h"
32
bab96bda
DM
33/* Two classes of sparc64 chips currently exist. All of which have
34 * 32-bit counters which can generate overflow interrupts on the
35 * transition from 0xffffffff to 0.
59abbd1e 36 *
bab96bda
DM
37 * All chips upto and including SPARC-T3 have two performance
38 * counters. The two 32-bit counters are accessed in one go using a
39 * single 64-bit register.
59abbd1e 40 *
bab96bda
DM
41 * On these older chips both counters are controlled using a single
42 * control register. The only way to stop all sampling is to clear
43 * all of the context (user, supervisor, hypervisor) sampling enable
44 * bits. But these bits apply to both counters, thus the two counters
45 * can't be enabled/disabled individually.
46 *
47 * Furthermore, the control register on these older chips have two
48 * event fields, one for each of the two counters. It's thus nearly
49 * impossible to have one counter going while keeping the other one
50 * stopped. Therefore it is possible to get overflow interrupts for
51 * counters not currently "in use" and that condition must be checked
52 * in the overflow interrupt handler.
59abbd1e
DM
53 *
54 * So we use a hack, in that we program inactive counters with the
55 * "sw_count0" and "sw_count1" events. These count how many times
56 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
57 * unusual way to encode a NOP and therefore will not trigger in
58 * normal code.
bab96bda
DM
59 *
60 * Starting with SPARC-T4 we have one control register per counter.
61 * And the counters are stored in individual registers. The registers
62 * for the counters are 64-bit but only a 32-bit counter is
63 * implemented. The event selections on SPARC-T4 lack any
64 * restrictions, therefore we can elide all of the complicated
65 * conflict resolution code we have for SPARC-T3 and earlier chips.
59abbd1e
DM
66 */
67
035ea28d
DM
68#define MAX_HWEVENTS 4
69#define MAX_PCRS 4
59abbd1e
DM
70#define MAX_PERIOD ((1UL << 32) - 1)
71
72#define PIC_UPPER_INDEX 0
73#define PIC_LOWER_INDEX 1
e7bef6b0 74#define PIC_NO_INDEX -1
59abbd1e 75
cdd6c482 76struct cpu_hw_events {
e7bef6b0
DM
77 /* Number of events currently scheduled onto this cpu.
78 * This tells how many entries in the arrays below
79 * are valid.
80 */
81 int n_events;
82
83 /* Number of new events added since the last hw_perf_disable().
84 * This works because the perf event layer always adds new
85 * events inside of a perf_{disable,enable}() sequence.
86 */
87 int n_added;
88
89 /* Array of events current scheduled on this cpu. */
90 struct perf_event *event[MAX_HWEVENTS];
91
92 /* Array of encoded longs, specifying the %pcr register
93 * encoding and the mask of PIC counters this even can
94 * be scheduled on. See perf_event_encode() et al.
95 */
96 unsigned long events[MAX_HWEVENTS];
97
98 /* The current counter index assigned to an event. When the
99 * event hasn't been programmed into the cpu yet, this will
100 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
101 * we ought to schedule the event.
102 */
103 int current_idx[MAX_HWEVENTS];
104
3f1a2097
DM
105 /* Software copy of %pcr register(s) on this cpu. */
106 u64 pcr[MAX_HWEVENTS];
e7bef6b0
DM
107
108 /* Enabled/disable state. */
d1751388 109 int enabled;
a13c3afd
LM
110
111 unsigned int group_flag;
59abbd1e 112};
cdd6c482 113DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
59abbd1e 114
e7bef6b0
DM
115/* An event map describes the characteristics of a performance
116 * counter event. In particular it gives the encoding as well as
117 * a mask telling which counters the event can be measured on.
bab96bda
DM
118 *
119 * The mask is unused on SPARC-T4 and later.
e7bef6b0 120 */
59abbd1e
DM
121struct perf_event_map {
122 u16 encoding;
123 u8 pic_mask;
124#define PIC_NONE 0x00
125#define PIC_UPPER 0x01
126#define PIC_LOWER 0x02
127};
128
e7bef6b0 129/* Encode a perf_event_map entry into a long. */
a72a8a5f
DM
130static unsigned long perf_event_encode(const struct perf_event_map *pmap)
131{
132 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
133}
134
e7bef6b0
DM
135static u8 perf_event_get_msk(unsigned long val)
136{
137 return val & 0xff;
138}
139
140static u64 perf_event_get_enc(unsigned long val)
a72a8a5f 141{
e7bef6b0 142 return val >> 16;
a72a8a5f
DM
143}
144
2ce4da2e
DM
145#define C(x) PERF_COUNT_HW_CACHE_##x
146
147#define CACHE_OP_UNSUPPORTED 0xfffe
148#define CACHE_OP_NONSENSE 0xffff
149
150typedef struct perf_event_map cache_map_t
151 [PERF_COUNT_HW_CACHE_MAX]
152 [PERF_COUNT_HW_CACHE_OP_MAX]
153 [PERF_COUNT_HW_CACHE_RESULT_MAX];
154
59abbd1e
DM
155struct sparc_pmu {
156 const struct perf_event_map *(*event_map)(int);
2ce4da2e 157 const cache_map_t *cache_map;
59abbd1e 158 int max_events;
5344303c
DM
159 u32 (*read_pmc)(int);
160 void (*write_pmc)(int, u64);
59abbd1e
DM
161 int upper_shift;
162 int lower_shift;
163 int event_mask;
7ac2ed28
DM
164 int user_bit;
165 int priv_bit;
91b9286d 166 int hv_bit;
496c07e3 167 int irq_bit;
660d1376
DM
168 int upper_nop;
169 int lower_nop;
b38e99f5
DM
170 unsigned int flags;
171#define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
172#define SPARC_PMU_HAS_CONFLICTS 0x00000002
59660495 173 int max_hw_events;
3f1a2097
DM
174 int num_pcrs;
175 int num_pic_regs;
59abbd1e
DM
176};
177
5344303c
DM
178static u32 sparc_default_read_pmc(int idx)
179{
180 u64 val;
181
182 val = pcr_ops->read_pic(0);
183 if (idx == PIC_UPPER_INDEX)
184 val >>= 32;
185
186 return val & 0xffffffff;
187}
188
189static void sparc_default_write_pmc(int idx, u64 val)
190{
191 u64 shift, mask, pic;
192
193 shift = 0;
194 if (idx == PIC_UPPER_INDEX)
195 shift = 32;
196
197 mask = ((u64) 0xffffffff) << shift;
198 val <<= shift;
199
200 pic = pcr_ops->read_pic(0);
201 pic &= ~mask;
202 pic |= val;
203 pcr_ops->write_pic(0, pic);
204}
205
28e8f9be 206static const struct perf_event_map ultra3_perfmon_event_map[] = {
59abbd1e
DM
207 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
208 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
209 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
210 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
211};
212
28e8f9be 213static const struct perf_event_map *ultra3_event_map(int event_id)
59abbd1e 214{
28e8f9be 215 return &ultra3_perfmon_event_map[event_id];
59abbd1e
DM
216}
217
28e8f9be 218static const cache_map_t ultra3_cache_map = {
2ce4da2e
DM
219[C(L1D)] = {
220 [C(OP_READ)] = {
221 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
222 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
223 },
224 [C(OP_WRITE)] = {
225 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
226 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
227 },
228 [C(OP_PREFETCH)] = {
229 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
230 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
231 },
232},
233[C(L1I)] = {
234 [C(OP_READ)] = {
235 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
236 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
237 },
238 [ C(OP_WRITE) ] = {
239 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
240 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
241 },
242 [ C(OP_PREFETCH) ] = {
243 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
244 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
245 },
246},
247[C(LL)] = {
248 [C(OP_READ)] = {
249 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
250 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
251 },
252 [C(OP_WRITE)] = {
253 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
254 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
255 },
256 [C(OP_PREFETCH)] = {
257 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
258 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
259 },
260},
261[C(DTLB)] = {
262 [C(OP_READ)] = {
263 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
264 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
265 },
266 [ C(OP_WRITE) ] = {
267 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
268 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
269 },
270 [ C(OP_PREFETCH) ] = {
271 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
272 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
273 },
274},
275[C(ITLB)] = {
276 [C(OP_READ)] = {
277 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
278 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
279 },
280 [ C(OP_WRITE) ] = {
281 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
282 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
283 },
284 [ C(OP_PREFETCH) ] = {
285 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
286 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
287 },
288},
289[C(BPU)] = {
290 [C(OP_READ)] = {
291 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
292 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
293 },
294 [ C(OP_WRITE) ] = {
295 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
296 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
297 },
298 [ C(OP_PREFETCH) ] = {
299 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
300 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
301 },
302},
89d6c0b5
PZ
303[C(NODE)] = {
304 [C(OP_READ)] = {
305 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
306 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
307 },
308 [ C(OP_WRITE) ] = {
309 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
310 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
311 },
312 [ C(OP_PREFETCH) ] = {
313 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
314 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
315 },
316},
2ce4da2e
DM
317};
318
28e8f9be
DM
319static const struct sparc_pmu ultra3_pmu = {
320 .event_map = ultra3_event_map,
321 .cache_map = &ultra3_cache_map,
322 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
5344303c
DM
323 .read_pmc = sparc_default_read_pmc,
324 .write_pmc = sparc_default_write_pmc,
59abbd1e
DM
325 .upper_shift = 11,
326 .lower_shift = 4,
327 .event_mask = 0x3f,
7ac2ed28
DM
328 .user_bit = PCR_UTRACE,
329 .priv_bit = PCR_STRACE,
660d1376
DM
330 .upper_nop = 0x1c,
331 .lower_nop = 0x14,
b38e99f5
DM
332 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
333 SPARC_PMU_HAS_CONFLICTS),
59660495 334 .max_hw_events = 2,
3f1a2097
DM
335 .num_pcrs = 1,
336 .num_pic_regs = 1,
59abbd1e
DM
337};
338
7eebda60
DM
339/* Niagara1 is very limited. The upper PIC is hard-locked to count
340 * only instructions, so it is free running which creates all kinds of
6e804251 341 * problems. Some hardware designs make one wonder if the creator
7eebda60
DM
342 * even looked at how this stuff gets used by software.
343 */
344static const struct perf_event_map niagara1_perfmon_event_map[] = {
345 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
346 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
347 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
348 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
349};
350
351static const struct perf_event_map *niagara1_event_map(int event_id)
352{
353 return &niagara1_perfmon_event_map[event_id];
354}
355
356static const cache_map_t niagara1_cache_map = {
357[C(L1D)] = {
358 [C(OP_READ)] = {
359 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
360 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
361 },
362 [C(OP_WRITE)] = {
363 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
364 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
365 },
366 [C(OP_PREFETCH)] = {
367 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
368 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
369 },
370},
371[C(L1I)] = {
372 [C(OP_READ)] = {
373 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
374 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
375 },
376 [ C(OP_WRITE) ] = {
377 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
378 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
379 },
380 [ C(OP_PREFETCH) ] = {
381 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
382 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
383 },
384},
385[C(LL)] = {
386 [C(OP_READ)] = {
387 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
388 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
389 },
390 [C(OP_WRITE)] = {
391 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
392 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
393 },
394 [C(OP_PREFETCH)] = {
395 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
396 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
397 },
398},
399[C(DTLB)] = {
400 [C(OP_READ)] = {
401 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
402 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
403 },
404 [ C(OP_WRITE) ] = {
405 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
406 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
407 },
408 [ C(OP_PREFETCH) ] = {
409 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
410 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
411 },
412},
413[C(ITLB)] = {
414 [C(OP_READ)] = {
415 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
416 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
417 },
418 [ C(OP_WRITE) ] = {
419 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
420 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
421 },
422 [ C(OP_PREFETCH) ] = {
423 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
424 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
425 },
426},
427[C(BPU)] = {
428 [C(OP_READ)] = {
429 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
430 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
431 },
432 [ C(OP_WRITE) ] = {
433 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
434 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
435 },
436 [ C(OP_PREFETCH) ] = {
437 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
438 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
439 },
440},
89d6c0b5
PZ
441[C(NODE)] = {
442 [C(OP_READ)] = {
443 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
444 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
445 },
446 [ C(OP_WRITE) ] = {
447 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
448 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
449 },
450 [ C(OP_PREFETCH) ] = {
451 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
452 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
453 },
454},
7eebda60
DM
455};
456
457static const struct sparc_pmu niagara1_pmu = {
458 .event_map = niagara1_event_map,
459 .cache_map = &niagara1_cache_map,
460 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
5344303c
DM
461 .read_pmc = sparc_default_read_pmc,
462 .write_pmc = sparc_default_write_pmc,
7eebda60
DM
463 .upper_shift = 0,
464 .lower_shift = 4,
465 .event_mask = 0x7,
7ac2ed28
DM
466 .user_bit = PCR_UTRACE,
467 .priv_bit = PCR_STRACE,
7eebda60
DM
468 .upper_nop = 0x0,
469 .lower_nop = 0x0,
b38e99f5
DM
470 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
471 SPARC_PMU_HAS_CONFLICTS),
59660495 472 .max_hw_events = 2,
3f1a2097
DM
473 .num_pcrs = 1,
474 .num_pic_regs = 1,
7eebda60
DM
475};
476
b73d8847
DM
477static const struct perf_event_map niagara2_perfmon_event_map[] = {
478 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
479 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
480 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
481 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
482 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
483 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
484};
485
cdd6c482 486static const struct perf_event_map *niagara2_event_map(int event_id)
b73d8847 487{
cdd6c482 488 return &niagara2_perfmon_event_map[event_id];
b73d8847
DM
489}
490
d0b86480
DM
491static const cache_map_t niagara2_cache_map = {
492[C(L1D)] = {
493 [C(OP_READ)] = {
494 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
495 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
496 },
497 [C(OP_WRITE)] = {
498 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
499 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
500 },
501 [C(OP_PREFETCH)] = {
502 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
503 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
504 },
505},
506[C(L1I)] = {
507 [C(OP_READ)] = {
508 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
509 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
510 },
511 [ C(OP_WRITE) ] = {
512 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
513 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
514 },
515 [ C(OP_PREFETCH) ] = {
516 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
517 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
518 },
519},
520[C(LL)] = {
521 [C(OP_READ)] = {
522 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
523 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
524 },
525 [C(OP_WRITE)] = {
526 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
527 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
528 },
529 [C(OP_PREFETCH)] = {
530 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
531 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
532 },
533},
534[C(DTLB)] = {
535 [C(OP_READ)] = {
536 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
537 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
538 },
539 [ C(OP_WRITE) ] = {
540 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
541 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
542 },
543 [ C(OP_PREFETCH) ] = {
544 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
545 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
546 },
547},
548[C(ITLB)] = {
549 [C(OP_READ)] = {
550 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
551 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
552 },
553 [ C(OP_WRITE) ] = {
554 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
555 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
556 },
557 [ C(OP_PREFETCH) ] = {
558 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
559 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
560 },
561},
562[C(BPU)] = {
563 [C(OP_READ)] = {
564 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
565 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
566 },
567 [ C(OP_WRITE) ] = {
568 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
89d6c0b5
PZ
569 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
570 },
571 [ C(OP_PREFETCH) ] = {
572 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
573 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
574 },
575},
576[C(NODE)] = {
577 [C(OP_READ)] = {
578 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
579 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
580 },
581 [ C(OP_WRITE) ] = {
582 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
d0b86480
DM
583 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
584 },
585 [ C(OP_PREFETCH) ] = {
586 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
587 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
588 },
589},
590};
591
b73d8847
DM
592static const struct sparc_pmu niagara2_pmu = {
593 .event_map = niagara2_event_map,
d0b86480 594 .cache_map = &niagara2_cache_map,
b73d8847 595 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
5344303c
DM
596 .read_pmc = sparc_default_read_pmc,
597 .write_pmc = sparc_default_write_pmc,
b73d8847
DM
598 .upper_shift = 19,
599 .lower_shift = 6,
600 .event_mask = 0xfff,
7ac2ed28
DM
601 .user_bit = PCR_UTRACE,
602 .priv_bit = PCR_STRACE,
603 .hv_bit = PCR_N2_HTRACE,
de23cf3c 604 .irq_bit = 0x30,
b73d8847
DM
605 .upper_nop = 0x220,
606 .lower_nop = 0x220,
b38e99f5
DM
607 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
608 SPARC_PMU_HAS_CONFLICTS),
59660495 609 .max_hw_events = 2,
3f1a2097
DM
610 .num_pcrs = 1,
611 .num_pic_regs = 1,
b73d8847
DM
612};
613
035ea28d
DM
614static const struct perf_event_map niagara4_perfmon_event_map[] = {
615 [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
616 [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
617 [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
618 [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
619 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
620 [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
621};
622
623static const struct perf_event_map *niagara4_event_map(int event_id)
624{
625 return &niagara4_perfmon_event_map[event_id];
626}
627
628static const cache_map_t niagara4_cache_map = {
629[C(L1D)] = {
630 [C(OP_READ)] = {
631 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
632 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
633 },
634 [C(OP_WRITE)] = {
635 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
636 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
637 },
638 [C(OP_PREFETCH)] = {
639 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
640 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
641 },
642},
643[C(L1I)] = {
644 [C(OP_READ)] = {
645 [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
646 [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
647 },
648 [ C(OP_WRITE) ] = {
649 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
650 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
651 },
652 [ C(OP_PREFETCH) ] = {
653 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
654 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
655 },
656},
657[C(LL)] = {
658 [C(OP_READ)] = {
659 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
660 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
661 },
662 [C(OP_WRITE)] = {
663 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
664 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
665 },
666 [C(OP_PREFETCH)] = {
667 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
668 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
669 },
670},
671[C(DTLB)] = {
672 [C(OP_READ)] = {
673 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
674 [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
675 },
676 [ C(OP_WRITE) ] = {
677 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
678 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
679 },
680 [ C(OP_PREFETCH) ] = {
681 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
682 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
683 },
684},
685[C(ITLB)] = {
686 [C(OP_READ)] = {
687 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
688 [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
689 },
690 [ C(OP_WRITE) ] = {
691 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
692 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
693 },
694 [ C(OP_PREFETCH) ] = {
695 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
696 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
697 },
698},
699[C(BPU)] = {
700 [C(OP_READ)] = {
701 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
702 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
703 },
704 [ C(OP_WRITE) ] = {
705 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
706 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
707 },
708 [ C(OP_PREFETCH) ] = {
709 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
710 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
711 },
712},
713[C(NODE)] = {
714 [C(OP_READ)] = {
715 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
716 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
717 },
718 [ C(OP_WRITE) ] = {
719 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
720 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
721 },
722 [ C(OP_PREFETCH) ] = {
723 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
724 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
725 },
726},
727};
728
729static u32 sparc_vt_read_pmc(int idx)
730{
731 u64 val = pcr_ops->read_pic(idx);
732
733 return val & 0xffffffff;
734}
735
736static void sparc_vt_write_pmc(int idx, u64 val)
737{
738 u64 pcr;
739
740 /* There seems to be an internal latch on the overflow event
741 * on SPARC-T4 that prevents it from triggering unless you
742 * update the PIC exactly as we do here. The requirement
743 * seems to be that you have to turn off event counting in the
744 * PCR around the PIC update.
745 *
746 * For example, after the following sequence:
747 *
748 * 1) set PIC to -1
749 * 2) enable event counting and overflow reporting in PCR
750 * 3) overflow triggers, softint 15 handler invoked
751 * 4) clear OV bit in PCR
752 * 5) write PIC to -1
753 *
754 * a subsequent overflow event will not trigger. This
755 * sequence works on SPARC-T3 and previous chips.
756 */
757 pcr = pcr_ops->read_pcr(idx);
758 pcr_ops->write_pcr(idx, PCR_N4_PICNPT);
759
760 pcr_ops->write_pic(idx, val & 0xffffffff);
761
762 pcr_ops->write_pcr(idx, pcr);
763}
764
765static const struct sparc_pmu niagara4_pmu = {
766 .event_map = niagara4_event_map,
767 .cache_map = &niagara4_cache_map,
768 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
769 .read_pmc = sparc_vt_read_pmc,
770 .write_pmc = sparc_vt_write_pmc,
771 .upper_shift = 5,
772 .lower_shift = 5,
773 .event_mask = 0x7ff,
774 .user_bit = PCR_N4_UTRACE,
775 .priv_bit = PCR_N4_STRACE,
776
777 /* We explicitly don't support hypervisor tracing. The T4
778 * generates the overflow event for precise events via a trap
779 * which will not be generated (ie. it's completely lost) if
780 * we happen to be in the hypervisor when the event triggers.
781 * Essentially, the overflow event reporting is completely
782 * unusable when you have hypervisor mode tracing enabled.
783 */
784 .hv_bit = 0,
785
786 .irq_bit = PCR_N4_TOE,
787 .upper_nop = 0,
788 .lower_nop = 0,
789 .flags = 0,
790 .max_hw_events = 4,
791 .num_pcrs = 4,
792 .num_pic_regs = 4,
793};
794
59abbd1e
DM
795static const struct sparc_pmu *sparc_pmu __read_mostly;
796
cdd6c482 797static u64 event_encoding(u64 event_id, int idx)
59abbd1e
DM
798{
799 if (idx == PIC_UPPER_INDEX)
cdd6c482 800 event_id <<= sparc_pmu->upper_shift;
59abbd1e 801 else
cdd6c482
IM
802 event_id <<= sparc_pmu->lower_shift;
803 return event_id;
59abbd1e
DM
804}
805
806static u64 mask_for_index(int idx)
807{
808 return event_encoding(sparc_pmu->event_mask, idx);
809}
810
811static u64 nop_for_index(int idx)
812{
813 return event_encoding(idx == PIC_UPPER_INDEX ?
660d1376
DM
814 sparc_pmu->upper_nop :
815 sparc_pmu->lower_nop, idx);
59abbd1e
DM
816}
817
d1751388 818static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
59abbd1e
DM
819{
820 u64 val, mask = mask_for_index(idx);
b4f061a4 821 int pcr_index = 0;
59abbd1e 822
b4f061a4
DM
823 if (sparc_pmu->num_pcrs > 1)
824 pcr_index = idx;
825
826 val = cpuc->pcr[pcr_index];
d1751388
DM
827 val &= ~mask;
828 val |= hwc->config;
b4f061a4 829 cpuc->pcr[pcr_index] = val;
d1751388 830
b4f061a4 831 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
59abbd1e
DM
832}
833
d1751388 834static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
59abbd1e
DM
835{
836 u64 mask = mask_for_index(idx);
837 u64 nop = nop_for_index(idx);
b4f061a4 838 int pcr_index = 0;
d1751388 839 u64 val;
59abbd1e 840
b4f061a4
DM
841 if (sparc_pmu->num_pcrs > 1)
842 pcr_index = idx;
843
844 val = cpuc->pcr[pcr_index];
d1751388
DM
845 val &= ~mask;
846 val |= nop;
b4f061a4 847 cpuc->pcr[pcr_index] = val;
d1751388 848
b4f061a4 849 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
59abbd1e
DM
850}
851
e7bef6b0
DM
852static u64 sparc_perf_event_update(struct perf_event *event,
853 struct hw_perf_event *hwc, int idx)
854{
855 int shift = 64 - 32;
856 u64 prev_raw_count, new_raw_count;
857 s64 delta;
858
859again:
e7850595 860 prev_raw_count = local64_read(&hwc->prev_count);
5344303c 861 new_raw_count = sparc_pmu->read_pmc(idx);
e7bef6b0 862
e7850595 863 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
e7bef6b0
DM
864 new_raw_count) != prev_raw_count)
865 goto again;
866
867 delta = (new_raw_count << shift) - (prev_raw_count << shift);
868 delta >>= shift;
869
e7850595
PZ
870 local64_add(delta, &event->count);
871 local64_sub(delta, &hwc->period_left);
e7bef6b0
DM
872
873 return new_raw_count;
874}
875
cdd6c482 876static int sparc_perf_event_set_period(struct perf_event *event,
d29862f0 877 struct hw_perf_event *hwc, int idx)
59abbd1e 878{
e7850595 879 s64 left = local64_read(&hwc->period_left);
59abbd1e
DM
880 s64 period = hwc->sample_period;
881 int ret = 0;
882
883 if (unlikely(left <= -period)) {
884 left = period;
e7850595 885 local64_set(&hwc->period_left, left);
59abbd1e
DM
886 hwc->last_period = period;
887 ret = 1;
888 }
889
890 if (unlikely(left <= 0)) {
891 left += period;
e7850595 892 local64_set(&hwc->period_left, left);
59abbd1e
DM
893 hwc->last_period = period;
894 ret = 1;
895 }
896 if (left > MAX_PERIOD)
897 left = MAX_PERIOD;
898
e7850595 899 local64_set(&hwc->prev_count, (u64)-left);
59abbd1e 900
5344303c 901 sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
59abbd1e 902
cdd6c482 903 perf_event_update_userpage(event);
59abbd1e
DM
904
905 return ret;
906}
907
7a37a0b8 908static void read_in_all_counters(struct cpu_hw_events *cpuc)
59abbd1e 909{
e7bef6b0 910 int i;
59abbd1e 911
e7bef6b0
DM
912 for (i = 0; i < cpuc->n_events; i++) {
913 struct perf_event *cp = cpuc->event[i];
59abbd1e 914
e7bef6b0
DM
915 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
916 cpuc->current_idx[i] != cp->hw.idx) {
917 sparc_perf_event_update(cp, &cp->hw,
918 cpuc->current_idx[i]);
919 cpuc->current_idx[i] = PIC_NO_INDEX;
920 }
921 }
7a37a0b8
DM
922}
923
924/* On this PMU all PICs are programmed using a single PCR. Calculate
925 * the combined control register value.
926 *
927 * For such chips we require that all of the events have the same
928 * configuration, so just fetch the settings from the first entry.
929 */
930static void calculate_single_pcr(struct cpu_hw_events *cpuc)
931{
932 int i;
933
934 if (!cpuc->n_added)
935 goto out;
59abbd1e 936
e7bef6b0
DM
937 /* Assign to counters all unassigned events. */
938 for (i = 0; i < cpuc->n_events; i++) {
939 struct perf_event *cp = cpuc->event[i];
940 struct hw_perf_event *hwc = &cp->hw;
941 int idx = hwc->idx;
942 u64 enc;
943
944 if (cpuc->current_idx[i] != PIC_NO_INDEX)
945 continue;
946
947 sparc_perf_event_set_period(cp, hwc, idx);
948 cpuc->current_idx[i] = idx;
949
950 enc = perf_event_get_enc(cpuc->events[i]);
7a37a0b8 951 cpuc->pcr[0] &= ~mask_for_index(idx);
a4eaf7f1 952 if (hwc->state & PERF_HES_STOPPED)
7a37a0b8 953 cpuc->pcr[0] |= nop_for_index(idx);
a4eaf7f1 954 else
7a37a0b8 955 cpuc->pcr[0] |= event_encoding(enc, idx);
e7bef6b0
DM
956 }
957out:
7a37a0b8
DM
958 cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
959}
960
961/* On this PMU each PIC has it's own PCR control register. */
962static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
963{
964 int i;
965
966 if (!cpuc->n_added)
967 goto out;
968
969 for (i = 0; i < cpuc->n_events; i++) {
970 struct perf_event *cp = cpuc->event[i];
971 struct hw_perf_event *hwc = &cp->hw;
972 int idx = hwc->idx;
973 u64 enc;
974
975 if (cpuc->current_idx[i] != PIC_NO_INDEX)
976 continue;
977
978 sparc_perf_event_set_period(cp, hwc, idx);
979 cpuc->current_idx[i] = idx;
980
981 enc = perf_event_get_enc(cpuc->events[i]);
982 cpuc->pcr[idx] &= ~mask_for_index(idx);
983 if (hwc->state & PERF_HES_STOPPED)
984 cpuc->pcr[idx] |= nop_for_index(idx);
985 else
986 cpuc->pcr[idx] |= event_encoding(enc, idx);
987 }
988out:
989 for (i = 0; i < cpuc->n_events; i++) {
990 struct perf_event *cp = cpuc->event[i];
991 int idx = cp->hw.idx;
992
993 cpuc->pcr[idx] |= cp->hw.config_base;
994 }
995}
996
997/* If performance event entries have been added, move existing events
998 * around (if necessary) and then assign new entries to counters.
999 */
1000static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1001{
1002 if (cpuc->n_added)
1003 read_in_all_counters(cpuc);
1004
1005 if (sparc_pmu->num_pcrs == 1) {
1006 calculate_single_pcr(cpuc);
1007 } else {
1008 calculate_multiple_pcrs(cpuc);
1009 }
59abbd1e
DM
1010}
1011
a4eaf7f1 1012static void sparc_pmu_enable(struct pmu *pmu)
59abbd1e 1013{
e7bef6b0 1014 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
7a37a0b8 1015 int i;
59abbd1e 1016
e7bef6b0
DM
1017 if (cpuc->enabled)
1018 return;
59abbd1e 1019
e7bef6b0
DM
1020 cpuc->enabled = 1;
1021 barrier();
59abbd1e 1022
7a37a0b8
DM
1023 if (cpuc->n_events)
1024 update_pcrs_for_enable(cpuc);
59abbd1e 1025
7a37a0b8
DM
1026 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1027 pcr_ops->write_pcr(i, cpuc->pcr[i]);
e7bef6b0
DM
1028}
1029
a4eaf7f1 1030static void sparc_pmu_disable(struct pmu *pmu)
e7bef6b0
DM
1031{
1032 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
3f1a2097 1033 int i;
e7bef6b0
DM
1034
1035 if (!cpuc->enabled)
1036 return;
1037
1038 cpuc->enabled = 0;
1039 cpuc->n_added = 0;
1040
3f1a2097
DM
1041 for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1042 u64 val = cpuc->pcr[i];
e7bef6b0 1043
3f1a2097
DM
1044 val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1045 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1046 cpuc->pcr[i] = val;
1047 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1048 }
59abbd1e
DM
1049}
1050
a4eaf7f1
PZ
1051static int active_event_index(struct cpu_hw_events *cpuc,
1052 struct perf_event *event)
1053{
1054 int i;
1055
1056 for (i = 0; i < cpuc->n_events; i++) {
1057 if (cpuc->event[i] == event)
1058 break;
1059 }
1060 BUG_ON(i == cpuc->n_events);
1061 return cpuc->current_idx[i];
1062}
1063
1064static void sparc_pmu_start(struct perf_event *event, int flags)
1065{
1066 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1067 int idx = active_event_index(cpuc, event);
1068
1069 if (flags & PERF_EF_RELOAD) {
1070 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1071 sparc_perf_event_set_period(event, &event->hw, idx);
1072 }
1073
1074 event->hw.state = 0;
1075
1076 sparc_pmu_enable_event(cpuc, &event->hw, idx);
1077}
1078
1079static void sparc_pmu_stop(struct perf_event *event, int flags)
1080{
1081 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1082 int idx = active_event_index(cpuc, event);
1083
1084 if (!(event->hw.state & PERF_HES_STOPPED)) {
1085 sparc_pmu_disable_event(cpuc, &event->hw, idx);
1086 event->hw.state |= PERF_HES_STOPPED;
1087 }
1088
1089 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1090 sparc_perf_event_update(event, &event->hw, idx);
1091 event->hw.state |= PERF_HES_UPTODATE;
1092 }
1093}
1094
1095static void sparc_pmu_del(struct perf_event *event, int _flags)
59abbd1e 1096{
cdd6c482 1097 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
e7bef6b0
DM
1098 unsigned long flags;
1099 int i;
59abbd1e 1100
e7bef6b0 1101 local_irq_save(flags);
33696fc0 1102 perf_pmu_disable(event->pmu);
e7bef6b0
DM
1103
1104 for (i = 0; i < cpuc->n_events; i++) {
1105 if (event == cpuc->event[i]) {
a4eaf7f1
PZ
1106 /* Absorb the final count and turn off the
1107 * event.
1108 */
1109 sparc_pmu_stop(event, PERF_EF_UPDATE);
e7bef6b0
DM
1110
1111 /* Shift remaining entries down into
1112 * the existing slot.
1113 */
1114 while (++i < cpuc->n_events) {
1115 cpuc->event[i - 1] = cpuc->event[i];
1116 cpuc->events[i - 1] = cpuc->events[i];
1117 cpuc->current_idx[i - 1] =
1118 cpuc->current_idx[i];
1119 }
1120
e7bef6b0 1121 perf_event_update_userpage(event);
59abbd1e 1122
e7bef6b0
DM
1123 cpuc->n_events--;
1124 break;
1125 }
1126 }
59abbd1e 1127
33696fc0 1128 perf_pmu_enable(event->pmu);
e7bef6b0
DM
1129 local_irq_restore(flags);
1130}
1131
cdd6c482 1132static void sparc_pmu_read(struct perf_event *event)
59abbd1e 1133{
e7bef6b0
DM
1134 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1135 int idx = active_event_index(cpuc, event);
cdd6c482 1136 struct hw_perf_event *hwc = &event->hw;
d1751388 1137
e7bef6b0 1138 sparc_perf_event_update(event, hwc, idx);
59abbd1e
DM
1139}
1140
cdd6c482 1141static atomic_t active_events = ATOMIC_INIT(0);
59abbd1e
DM
1142static DEFINE_MUTEX(pmc_grab_mutex);
1143
d1751388
DM
1144static void perf_stop_nmi_watchdog(void *unused)
1145{
1146 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
3f1a2097 1147 int i;
d1751388
DM
1148
1149 stop_nmi_watchdog(NULL);
3f1a2097
DM
1150 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1151 cpuc->pcr[i] = pcr_ops->read_pcr(i);
d1751388
DM
1152}
1153
cdd6c482 1154void perf_event_grab_pmc(void)
59abbd1e 1155{
cdd6c482 1156 if (atomic_inc_not_zero(&active_events))
59abbd1e
DM
1157 return;
1158
1159 mutex_lock(&pmc_grab_mutex);
cdd6c482 1160 if (atomic_read(&active_events) == 0) {
59abbd1e 1161 if (atomic_read(&nmi_active) > 0) {
d1751388 1162 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
59abbd1e
DM
1163 BUG_ON(atomic_read(&nmi_active) != 0);
1164 }
cdd6c482 1165 atomic_inc(&active_events);
59abbd1e
DM
1166 }
1167 mutex_unlock(&pmc_grab_mutex);
1168}
1169
cdd6c482 1170void perf_event_release_pmc(void)
59abbd1e 1171{
cdd6c482 1172 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
59abbd1e
DM
1173 if (atomic_read(&nmi_active) == 0)
1174 on_each_cpu(start_nmi_watchdog, NULL, 1);
1175 mutex_unlock(&pmc_grab_mutex);
1176 }
1177}
1178
2ce4da2e
DM
1179static const struct perf_event_map *sparc_map_cache_event(u64 config)
1180{
1181 unsigned int cache_type, cache_op, cache_result;
1182 const struct perf_event_map *pmap;
1183
1184 if (!sparc_pmu->cache_map)
1185 return ERR_PTR(-ENOENT);
1186
1187 cache_type = (config >> 0) & 0xff;
1188 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1189 return ERR_PTR(-EINVAL);
1190
1191 cache_op = (config >> 8) & 0xff;
1192 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1193 return ERR_PTR(-EINVAL);
1194
1195 cache_result = (config >> 16) & 0xff;
1196 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1197 return ERR_PTR(-EINVAL);
1198
1199 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1200
1201 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1202 return ERR_PTR(-ENOENT);
1203
1204 if (pmap->encoding == CACHE_OP_NONSENSE)
1205 return ERR_PTR(-EINVAL);
1206
1207 return pmap;
1208}
1209
cdd6c482 1210static void hw_perf_event_destroy(struct perf_event *event)
59abbd1e 1211{
cdd6c482 1212 perf_event_release_pmc();
59abbd1e
DM
1213}
1214
a72a8a5f
DM
1215/* Make sure all events can be scheduled into the hardware at
1216 * the same time. This is simplified by the fact that we only
1217 * need to support 2 simultaneous HW events.
e7bef6b0
DM
1218 *
1219 * As a side effect, the evts[]->hw.idx values will be assigned
1220 * on success. These are pending indexes. When the events are
1221 * actually programmed into the chip, these values will propagate
1222 * to the per-cpu cpuc->current_idx[] slots, see the code in
1223 * maybe_change_configuration() for details.
a72a8a5f 1224 */
e7bef6b0
DM
1225static int sparc_check_constraints(struct perf_event **evts,
1226 unsigned long *events, int n_ev)
a72a8a5f 1227{
e7bef6b0
DM
1228 u8 msk0 = 0, msk1 = 0;
1229 int idx0 = 0;
1230
1231 /* This case is possible when we are invoked from
1232 * hw_perf_group_sched_in().
1233 */
1234 if (!n_ev)
1235 return 0;
1236
59660495 1237 if (n_ev > sparc_pmu->max_hw_events)
e7bef6b0
DM
1238 return -1;
1239
b38e99f5
DM
1240 if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1241 int i;
1242
1243 for (i = 0; i < n_ev; i++)
1244 evts[i]->hw.idx = i;
1245 return 0;
1246 }
1247
e7bef6b0
DM
1248 msk0 = perf_event_get_msk(events[0]);
1249 if (n_ev == 1) {
1250 if (msk0 & PIC_LOWER)
1251 idx0 = 1;
1252 goto success;
1253 }
1254 BUG_ON(n_ev != 2);
1255 msk1 = perf_event_get_msk(events[1]);
1256
1257 /* If both events can go on any counter, OK. */
1258 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1259 msk1 == (PIC_UPPER | PIC_LOWER))
1260 goto success;
1261
1262 /* If one event is limited to a specific counter,
1263 * and the other can go on both, OK.
1264 */
1265 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1266 msk1 == (PIC_UPPER | PIC_LOWER)) {
1267 if (msk0 & PIC_LOWER)
1268 idx0 = 1;
1269 goto success;
a72a8a5f
DM
1270 }
1271
e7bef6b0
DM
1272 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1273 msk0 == (PIC_UPPER | PIC_LOWER)) {
1274 if (msk1 & PIC_UPPER)
1275 idx0 = 1;
1276 goto success;
1277 }
1278
1279 /* If the events are fixed to different counters, OK. */
1280 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1281 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1282 if (msk0 & PIC_LOWER)
1283 idx0 = 1;
1284 goto success;
1285 }
1286
1287 /* Otherwise, there is a conflict. */
a72a8a5f 1288 return -1;
e7bef6b0
DM
1289
1290success:
1291 evts[0]->hw.idx = idx0;
1292 if (n_ev == 2)
1293 evts[1]->hw.idx = idx0 ^ 1;
1294 return 0;
a72a8a5f
DM
1295}
1296
01552f76
DM
1297static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1298{
1299 int eu = 0, ek = 0, eh = 0;
1300 struct perf_event *event;
1301 int i, n, first;
1302
b38e99f5
DM
1303 if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1304 return 0;
1305
01552f76
DM
1306 n = n_prev + n_new;
1307 if (n <= 1)
1308 return 0;
1309
1310 first = 1;
1311 for (i = 0; i < n; i++) {
1312 event = evts[i];
1313 if (first) {
1314 eu = event->attr.exclude_user;
1315 ek = event->attr.exclude_kernel;
1316 eh = event->attr.exclude_hv;
1317 first = 0;
1318 } else if (event->attr.exclude_user != eu ||
1319 event->attr.exclude_kernel != ek ||
1320 event->attr.exclude_hv != eh) {
1321 return -EAGAIN;
1322 }
1323 }
1324
1325 return 0;
1326}
1327
1328static int collect_events(struct perf_event *group, int max_count,
e7bef6b0
DM
1329 struct perf_event *evts[], unsigned long *events,
1330 int *current_idx)
01552f76
DM
1331{
1332 struct perf_event *event;
1333 int n = 0;
1334
1335 if (!is_software_event(group)) {
1336 if (n >= max_count)
1337 return -1;
1338 evts[n] = group;
e7bef6b0
DM
1339 events[n] = group->hw.event_base;
1340 current_idx[n++] = PIC_NO_INDEX;
01552f76
DM
1341 }
1342 list_for_each_entry(event, &group->sibling_list, group_entry) {
1343 if (!is_software_event(event) &&
1344 event->state != PERF_EVENT_STATE_OFF) {
1345 if (n >= max_count)
1346 return -1;
1347 evts[n] = event;
e7bef6b0
DM
1348 events[n] = event->hw.event_base;
1349 current_idx[n++] = PIC_NO_INDEX;
01552f76
DM
1350 }
1351 }
1352 return n;
1353}
1354
a4eaf7f1 1355static int sparc_pmu_add(struct perf_event *event, int ef_flags)
e7bef6b0
DM
1356{
1357 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1358 int n0, ret = -EAGAIN;
1359 unsigned long flags;
1360
1361 local_irq_save(flags);
33696fc0 1362 perf_pmu_disable(event->pmu);
e7bef6b0
DM
1363
1364 n0 = cpuc->n_events;
59660495 1365 if (n0 >= sparc_pmu->max_hw_events)
e7bef6b0
DM
1366 goto out;
1367
1368 cpuc->event[n0] = event;
1369 cpuc->events[n0] = event->hw.event_base;
1370 cpuc->current_idx[n0] = PIC_NO_INDEX;
1371
a4eaf7f1
PZ
1372 event->hw.state = PERF_HES_UPTODATE;
1373 if (!(ef_flags & PERF_EF_START))
1374 event->hw.state |= PERF_HES_STOPPED;
1375
a13c3afd
LM
1376 /*
1377 * If group events scheduling transaction was started,
25985edc 1378 * skip the schedulability test here, it will be performed
a13c3afd
LM
1379 * at commit time(->commit_txn) as a whole
1380 */
8d2cacbb 1381 if (cpuc->group_flag & PERF_EVENT_TXN)
a13c3afd
LM
1382 goto nocheck;
1383
e7bef6b0
DM
1384 if (check_excludes(cpuc->event, n0, 1))
1385 goto out;
1386 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1387 goto out;
1388
a13c3afd 1389nocheck:
e7bef6b0
DM
1390 cpuc->n_events++;
1391 cpuc->n_added++;
1392
1393 ret = 0;
1394out:
33696fc0 1395 perf_pmu_enable(event->pmu);
e7bef6b0
DM
1396 local_irq_restore(flags);
1397 return ret;
1398}
1399
b0a873eb 1400static int sparc_pmu_event_init(struct perf_event *event)
59abbd1e 1401{
cdd6c482 1402 struct perf_event_attr *attr = &event->attr;
01552f76 1403 struct perf_event *evts[MAX_HWEVENTS];
cdd6c482 1404 struct hw_perf_event *hwc = &event->hw;
a72a8a5f 1405 unsigned long events[MAX_HWEVENTS];
e7bef6b0 1406 int current_idx_dmy[MAX_HWEVENTS];
59abbd1e 1407 const struct perf_event_map *pmap;
01552f76 1408 int n;
59abbd1e
DM
1409
1410 if (atomic_read(&nmi_active) < 0)
1411 return -ENODEV;
1412
2481c5fa
SE
1413 /* does not support taken branch sampling */
1414 if (has_branch_stack(event))
1415 return -EOPNOTSUPP;
1416
b0a873eb
PZ
1417 switch (attr->type) {
1418 case PERF_TYPE_HARDWARE:
2ce4da2e
DM
1419 if (attr->config >= sparc_pmu->max_events)
1420 return -EINVAL;
1421 pmap = sparc_pmu->event_map(attr->config);
b0a873eb
PZ
1422 break;
1423
1424 case PERF_TYPE_HW_CACHE:
2ce4da2e
DM
1425 pmap = sparc_map_cache_event(attr->config);
1426 if (IS_ERR(pmap))
1427 return PTR_ERR(pmap);
b0a873eb
PZ
1428 break;
1429
1430 case PERF_TYPE_RAW:
d0303d71
IM
1431 pmap = NULL;
1432 break;
59abbd1e 1433
b0a873eb
PZ
1434 default:
1435 return -ENOENT;
1436
1437 }
1438
b343ae51
DM
1439 if (pmap) {
1440 hwc->event_base = perf_event_encode(pmap);
1441 } else {
d0303d71
IM
1442 /*
1443 * User gives us "(encoding << 16) | pic_mask" for
b343ae51
DM
1444 * PERF_TYPE_RAW events.
1445 */
1446 hwc->event_base = attr->config;
1447 }
1448
e7bef6b0 1449 /* We save the enable bits in the config_base. */
496c07e3 1450 hwc->config_base = sparc_pmu->irq_bit;
59abbd1e 1451 if (!attr->exclude_user)
7ac2ed28 1452 hwc->config_base |= sparc_pmu->user_bit;
59abbd1e 1453 if (!attr->exclude_kernel)
7ac2ed28 1454 hwc->config_base |= sparc_pmu->priv_bit;
91b9286d
DM
1455 if (!attr->exclude_hv)
1456 hwc->config_base |= sparc_pmu->hv_bit;
59abbd1e 1457
01552f76
DM
1458 n = 0;
1459 if (event->group_leader != event) {
1460 n = collect_events(event->group_leader,
59660495 1461 sparc_pmu->max_hw_events - 1,
e7bef6b0 1462 evts, events, current_idx_dmy);
01552f76
DM
1463 if (n < 0)
1464 return -EINVAL;
1465 }
a72a8a5f 1466 events[n] = hwc->event_base;
01552f76
DM
1467 evts[n] = event;
1468
1469 if (check_excludes(evts, n, 1))
1470 return -EINVAL;
1471
e7bef6b0 1472 if (sparc_check_constraints(evts, events, n + 1))
a72a8a5f
DM
1473 return -EINVAL;
1474
e7bef6b0
DM
1475 hwc->idx = PIC_NO_INDEX;
1476
01552f76
DM
1477 /* Try to do all error checking before this point, as unwinding
1478 * state after grabbing the PMC is difficult.
1479 */
1480 perf_event_grab_pmc();
1481 event->destroy = hw_perf_event_destroy;
1482
59abbd1e
DM
1483 if (!hwc->sample_period) {
1484 hwc->sample_period = MAX_PERIOD;
1485 hwc->last_period = hwc->sample_period;
e7850595 1486 local64_set(&hwc->period_left, hwc->sample_period);
59abbd1e
DM
1487 }
1488
59abbd1e
DM
1489 return 0;
1490}
1491
a13c3afd
LM
1492/*
1493 * Start group events scheduling transaction
1494 * Set the flag to make pmu::enable() not perform the
1495 * schedulability test, it will be performed at commit time
1496 */
51b0fe39 1497static void sparc_pmu_start_txn(struct pmu *pmu)
a13c3afd
LM
1498{
1499 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1500
33696fc0 1501 perf_pmu_disable(pmu);
8d2cacbb 1502 cpuhw->group_flag |= PERF_EVENT_TXN;
a13c3afd
LM
1503}
1504
1505/*
1506 * Stop group events scheduling transaction
1507 * Clear the flag and pmu::enable() will perform the
1508 * schedulability test.
1509 */
51b0fe39 1510static void sparc_pmu_cancel_txn(struct pmu *pmu)
a13c3afd
LM
1511{
1512 struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1513
8d2cacbb 1514 cpuhw->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1515 perf_pmu_enable(pmu);
a13c3afd
LM
1516}
1517
1518/*
1519 * Commit group events scheduling transaction
1520 * Perform the group schedulability test as a whole
1521 * Return 0 if success
1522 */
51b0fe39 1523static int sparc_pmu_commit_txn(struct pmu *pmu)
a13c3afd
LM
1524{
1525 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1526 int n;
1527
1528 if (!sparc_pmu)
1529 return -EINVAL;
1530
1531 cpuc = &__get_cpu_var(cpu_hw_events);
1532 n = cpuc->n_events;
1533 if (check_excludes(cpuc->event, 0, n))
1534 return -EINVAL;
1535 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1536 return -EAGAIN;
1537
8d2cacbb 1538 cpuc->group_flag &= ~PERF_EVENT_TXN;
33696fc0 1539 perf_pmu_enable(pmu);
a13c3afd
LM
1540 return 0;
1541}
1542
51b0fe39 1543static struct pmu pmu = {
a4eaf7f1
PZ
1544 .pmu_enable = sparc_pmu_enable,
1545 .pmu_disable = sparc_pmu_disable,
b0a873eb 1546 .event_init = sparc_pmu_event_init,
a4eaf7f1
PZ
1547 .add = sparc_pmu_add,
1548 .del = sparc_pmu_del,
1549 .start = sparc_pmu_start,
1550 .stop = sparc_pmu_stop,
59abbd1e 1551 .read = sparc_pmu_read,
a13c3afd
LM
1552 .start_txn = sparc_pmu_start_txn,
1553 .cancel_txn = sparc_pmu_cancel_txn,
1554 .commit_txn = sparc_pmu_commit_txn,
59abbd1e
DM
1555};
1556
cdd6c482 1557void perf_event_print_debug(void)
59abbd1e
DM
1558{
1559 unsigned long flags;
3f1a2097 1560 int cpu, i;
59abbd1e
DM
1561
1562 if (!sparc_pmu)
1563 return;
1564
1565 local_irq_save(flags);
1566
1567 cpu = smp_processor_id();
1568
59abbd1e 1569 pr_info("\n");
3f1a2097
DM
1570 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1571 pr_info("CPU#%d: PCR%d[%016llx]\n",
1572 cpu, i, pcr_ops->read_pcr(i));
1573 for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1574 pr_info("CPU#%d: PIC%d[%016llx]\n",
1575 cpu, i, pcr_ops->read_pic(i));
59abbd1e
DM
1576
1577 local_irq_restore(flags);
1578}
1579
cdd6c482 1580static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
d29862f0 1581 unsigned long cmd, void *__args)
59abbd1e
DM
1582{
1583 struct die_args *args = __args;
1584 struct perf_sample_data data;
cdd6c482 1585 struct cpu_hw_events *cpuc;
59abbd1e 1586 struct pt_regs *regs;
e7bef6b0 1587 int i;
59abbd1e 1588
cdd6c482 1589 if (!atomic_read(&active_events))
59abbd1e
DM
1590 return NOTIFY_DONE;
1591
1592 switch (cmd) {
1593 case DIE_NMI:
1594 break;
1595
1596 default:
1597 return NOTIFY_DONE;
1598 }
1599
1600 regs = args->regs;
1601
cdd6c482 1602 cpuc = &__get_cpu_var(cpu_hw_events);
e04ed38d
DM
1603
1604 /* If the PMU has the TOE IRQ enable bits, we need to do a
1605 * dummy write to the %pcr to clear the overflow bits and thus
1606 * the interrupt.
1607 *
1608 * Do this before we peek at the counters to determine
1609 * overflow so we don't lose any events.
1610 */
3f1a2097
DM
1611 if (sparc_pmu->irq_bit &&
1612 sparc_pmu->num_pcrs == 1)
1613 pcr_ops->write_pcr(0, cpuc->pcr[0]);
e04ed38d 1614
e7bef6b0
DM
1615 for (i = 0; i < cpuc->n_events; i++) {
1616 struct perf_event *event = cpuc->event[i];
1617 int idx = cpuc->current_idx[i];
cdd6c482 1618 struct hw_perf_event *hwc;
59abbd1e
DM
1619 u64 val;
1620
3f1a2097
DM
1621 if (sparc_pmu->irq_bit &&
1622 sparc_pmu->num_pcrs > 1)
1623 pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1624
cdd6c482
IM
1625 hwc = &event->hw;
1626 val = sparc_perf_event_update(event, hwc, idx);
59abbd1e
DM
1627 if (val & (1ULL << 31))
1628 continue;
1629
fd0d000b 1630 perf_sample_data_init(&data, 0, hwc->last_period);
cdd6c482 1631 if (!sparc_perf_event_set_period(event, hwc, idx))
59abbd1e
DM
1632 continue;
1633
a8b0ca17 1634 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1635 sparc_pmu_stop(event, 0);
59abbd1e
DM
1636 }
1637
1638 return NOTIFY_STOP;
1639}
1640
cdd6c482
IM
1641static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1642 .notifier_call = perf_event_nmi_handler,
59abbd1e
DM
1643};
1644
1645static bool __init supported_pmu(void)
1646{
28e8f9be
DM
1647 if (!strcmp(sparc_pmu_type, "ultra3") ||
1648 !strcmp(sparc_pmu_type, "ultra3+") ||
1649 !strcmp(sparc_pmu_type, "ultra3i") ||
1650 !strcmp(sparc_pmu_type, "ultra4+")) {
1651 sparc_pmu = &ultra3_pmu;
59abbd1e
DM
1652 return true;
1653 }
7eebda60
DM
1654 if (!strcmp(sparc_pmu_type, "niagara")) {
1655 sparc_pmu = &niagara1_pmu;
1656 return true;
1657 }
4ba991d3
DM
1658 if (!strcmp(sparc_pmu_type, "niagara2") ||
1659 !strcmp(sparc_pmu_type, "niagara3")) {
b73d8847
DM
1660 sparc_pmu = &niagara2_pmu;
1661 return true;
1662 }
035ea28d
DM
1663 if (!strcmp(sparc_pmu_type, "niagara4")) {
1664 sparc_pmu = &niagara4_pmu;
1665 return true;
1666 }
59abbd1e
DM
1667 return false;
1668}
1669
004417a6 1670int __init init_hw_perf_events(void)
59abbd1e 1671{
cdd6c482 1672 pr_info("Performance events: ");
59abbd1e
DM
1673
1674 if (!supported_pmu()) {
1675 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
004417a6 1676 return 0;
59abbd1e
DM
1677 }
1678
1679 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1680
2e80a82a 1681 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
cdd6c482 1682 register_die_notifier(&perf_event_nmi_notifier);
004417a6
PZ
1683
1684 return 0;
59abbd1e 1685}
efc70d24 1686early_initcall(init_hw_perf_events);
4f6dbe4a 1687
56962b44
FW
1688void perf_callchain_kernel(struct perf_callchain_entry *entry,
1689 struct pt_regs *regs)
4f6dbe4a
DM
1690{
1691 unsigned long ksp, fp;
667f0cee
DM
1692#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1693 int graph = 0;
1694#endif
4f6dbe4a 1695
56962b44
FW
1696 stack_trace_flush();
1697
70791ce9 1698 perf_callchain_store(entry, regs->tpc);
4f6dbe4a
DM
1699
1700 ksp = regs->u_regs[UREG_I6];
1701 fp = ksp + STACK_BIAS;
1702 do {
1703 struct sparc_stackf *sf;
1704 struct pt_regs *regs;
1705 unsigned long pc;
1706
1707 if (!kstack_valid(current_thread_info(), fp))
1708 break;
1709
1710 sf = (struct sparc_stackf *) fp;
1711 regs = (struct pt_regs *) (sf + 1);
1712
1713 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1714 if (user_mode(regs))
1715 break;
1716 pc = regs->tpc;
1717 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1718 } else {
1719 pc = sf->callers_pc;
1720 fp = (unsigned long)sf->fp + STACK_BIAS;
1721 }
70791ce9 1722 perf_callchain_store(entry, pc);
667f0cee
DM
1723#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1724 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1725 int index = current->curr_ret_stack;
1726 if (current->ret_stack && index >= graph) {
1727 pc = current->ret_stack[index - graph].ret;
70791ce9 1728 perf_callchain_store(entry, pc);
667f0cee
DM
1729 graph++;
1730 }
1731 }
1732#endif
4f6dbe4a
DM
1733 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1734}
1735
56962b44
FW
1736static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1737 struct pt_regs *regs)
4f6dbe4a
DM
1738{
1739 unsigned long ufp;
1740
70791ce9 1741 perf_callchain_store(entry, regs->tpc);
4f6dbe4a
DM
1742
1743 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1744 do {
1745 struct sparc_stackf *usf, sf;
1746 unsigned long pc;
1747
1748 usf = (struct sparc_stackf *) ufp;
1749 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1750 break;
1751
1752 pc = sf.callers_pc;
1753 ufp = (unsigned long)sf.fp + STACK_BIAS;
70791ce9 1754 perf_callchain_store(entry, pc);
4f6dbe4a
DM
1755 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1756}
1757
56962b44
FW
1758static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1759 struct pt_regs *regs)
4f6dbe4a
DM
1760{
1761 unsigned long ufp;
1762
70791ce9 1763 perf_callchain_store(entry, regs->tpc);
4f6dbe4a 1764
9e8307ec 1765 ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
4f6dbe4a
DM
1766 do {
1767 struct sparc_stackf32 *usf, sf;
1768 unsigned long pc;
1769
1770 usf = (struct sparc_stackf32 *) ufp;
1771 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1772 break;
1773
1774 pc = sf.callers_pc;
1775 ufp = (unsigned long)sf.fp;
70791ce9 1776 perf_callchain_store(entry, pc);
4f6dbe4a
DM
1777 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1778}
1779
56962b44
FW
1780void
1781perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
4f6dbe4a 1782{
56962b44
FW
1783 flushw_user();
1784 if (test_thread_flag(TIF_32BIT))
1785 perf_callchain_user_32(entry, regs);
1786 else
1787 perf_callchain_user_64(entry, regs);
4f6dbe4a 1788}
This page took 0.285467 seconds and 5 git commands to generate.