Merge tag 'usb-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[deliverable/linux.git] / arch / sparc / kernel / smp_64.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
cf3d7c1e 3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
1da177e4
LT
4 */
5
066bcaca 6#include <linux/export.h>
1da177e4
LT
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
73fffc03 23#include <linux/bootmem.h>
4fd78a5f 24#include <linux/vmalloc.h>
9960e9e8 25#include <linux/ftrace.h>
82960b85 26#include <linux/cpu.h>
5a0e3ad6 27#include <linux/slab.h>
d3091298 28#include <linux/kgdb.h>
1da177e4
LT
29
30#include <asm/head.h>
31#include <asm/ptrace.h>
60063497 32#include <linux/atomic.h>
1da177e4
LT
33#include <asm/tlbflush.h>
34#include <asm/mmu_context.h>
35#include <asm/cpudata.h>
27a2ef38
DM
36#include <asm/hvtramp.h>
37#include <asm/io.h>
cf3d7c1e 38#include <asm/timer.h>
59dec13b 39#include <asm/setup.h>
1da177e4
LT
40
41#include <asm/irq.h>
6d24c8dc 42#include <asm/irq_regs.h>
1da177e4
LT
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/oplib.h>
46#include <asm/uaccess.h>
1da177e4
LT
47#include <asm/starfire.h>
48#include <asm/tlb.h>
56fb4df6 49#include <asm/sections.h>
07f8e5f3 50#include <asm/prom.h>
5cbc3073 51#include <asm/mdesc.h>
4f0234f4 52#include <asm/ldc.h>
e0204409 53#include <asm/hypervisor.h>
b62818e5 54#include <asm/pcr.h>
1da177e4 55
280ff974 56#include "cpumap.h"
a0c54a21 57#include "kernel.h"
280ff974 58
d5a7430d 59DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
f78eae2e
DM
60cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
4f0234f4 62
acc455cf 63cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
65
d5a7430d 66EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
4f0234f4 67EXPORT_SYMBOL(cpu_core_map);
acc455cf 68EXPORT_SYMBOL(cpu_core_sib_map);
4f0234f4 69
1da177e4 70static cpumask_t smp_commenced_mask;
1da177e4
LT
71
72void smp_info(struct seq_file *m)
73{
74 int i;
75
76 seq_printf(m, "State:\n");
394e3902
AM
77 for_each_online_cpu(i)
78 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
79}
80
81void smp_bogo(struct seq_file *m)
82{
83 int i;
84
394e3902
AM
85 for_each_online_cpu(i)
86 seq_printf(m,
394e3902 87 "Cpu%dClkTck\t: %016lx\n",
394e3902 88 i, cpu_data(i).clock_tick);
1da177e4
LT
89}
90
112f4871 91extern void setup_sparc64_timer(void);
1da177e4
LT
92
93static volatile unsigned long callin_flag = 0;
94
2066aadd 95void smp_callin(void)
1da177e4
LT
96{
97 int cpuid = hard_smp_processor_id();
98
56fb4df6 99 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 100
4a07e646 101 if (tlb_type == hypervisor)
490384e7 102 sun4v_ktsb_register();
481295f9 103
56fb4df6 104 __flush_tlb_all();
1da177e4 105
112f4871 106 setup_sparc64_timer();
1da177e4 107
816242da
DM
108 if (cheetah_pcache_forced_on)
109 cheetah_enable_pcache();
110
1da177e4
LT
111 callin_flag = 1;
112 __asm__ __volatile__("membar #Sync\n\t"
113 "flush %%g6" : : : "memory");
114
115 /* Clear this or we will die instantly when we
116 * schedule back to this idler...
117 */
db7d9a4e 118 current_thread_info()->new_child = 0;
1da177e4
LT
119
120 /* Attach to the address space of init_task. */
121 atomic_inc(&init_mm.mm_count);
122 current->active_mm = &init_mm;
123
82960b85
DM
124 /* inform the notifiers about the new cpu */
125 notify_cpu_starting(cpuid);
126
fb1fece5 127 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
4f07118f 128 rmb();
1da177e4 129
fb1fece5 130 set_cpu_online(cpuid, true);
5bfb5d69
NP
131
132 /* idle thread is expected to have preempt disabled */
133 preempt_disable();
87fa05ae 134
ce2521bf
KT
135 local_irq_enable();
136
87fa05ae 137 cpu_startup_entry(CPUHP_ONLINE);
1da177e4
LT
138}
139
140void cpu_panic(void)
141{
142 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
143 panic("SMP bolixed\n");
144}
145
1da177e4
LT
146/* This tick register synchronization scheme is taken entirely from
147 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
148 *
149 * The only change I've made is to rework it so that the master
150 * initiates the synchonization instead of the slave. -DaveM
151 */
152
153#define MASTER 0
154#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
155
156#define NUM_ROUNDS 64 /* magic value */
157#define NUM_ITERS 5 /* likewise */
158
49b6c01f 159static DEFINE_RAW_SPINLOCK(itc_sync_lock);
1da177e4
LT
160static unsigned long go[SLAVE + 1];
161
162#define DEBUG_TICK_SYNC 0
163
164static inline long get_delta (long *rt, long *master)
165{
166 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
167 unsigned long tcenter, t0, t1, tm;
168 unsigned long i;
169
170 for (i = 0; i < NUM_ITERS; i++) {
171 t0 = tick_ops->get_tick();
172 go[MASTER] = 1;
293666b7 173 membar_safe("#StoreLoad");
1da177e4 174 while (!(tm = go[SLAVE]))
4f07118f 175 rmb();
1da177e4 176 go[SLAVE] = 0;
4f07118f 177 wmb();
1da177e4
LT
178 t1 = tick_ops->get_tick();
179
180 if (t1 - t0 < best_t1 - best_t0)
181 best_t0 = t0, best_t1 = t1, best_tm = tm;
182 }
183
184 *rt = best_t1 - best_t0;
185 *master = best_tm - best_t0;
186
187 /* average best_t0 and best_t1 without overflow: */
188 tcenter = (best_t0/2 + best_t1/2);
189 if (best_t0 % 2 + best_t1 % 2 == 2)
190 tcenter++;
191 return tcenter - best_tm;
192}
193
194void smp_synchronize_tick_client(void)
195{
196 long i, delta, adj, adjust_latency = 0, done = 0;
c6fee081 197 unsigned long flags, rt, master_time_stamp;
1da177e4
LT
198#if DEBUG_TICK_SYNC
199 struct {
200 long rt; /* roundtrip time */
201 long master; /* master's timestamp */
202 long diff; /* difference between midpoint and master's timestamp */
203 long lat; /* estimate of itc adjustment latency */
204 } t[NUM_ROUNDS];
205#endif
206
207 go[MASTER] = 1;
208
209 while (go[MASTER])
4f07118f 210 rmb();
1da177e4
LT
211
212 local_irq_save(flags);
213 {
214 for (i = 0; i < NUM_ROUNDS; i++) {
215 delta = get_delta(&rt, &master_time_stamp);
c6fee081 216 if (delta == 0)
1da177e4 217 done = 1; /* let's lock on to this... */
1da177e4
LT
218
219 if (!done) {
220 if (i > 0) {
221 adjust_latency += -delta;
222 adj = -delta + adjust_latency/4;
223 } else
224 adj = -delta;
225
112f4871 226 tick_ops->add_tick(adj);
1da177e4
LT
227 }
228#if DEBUG_TICK_SYNC
229 t[i].rt = rt;
230 t[i].master = master_time_stamp;
231 t[i].diff = delta;
232 t[i].lat = adjust_latency/4;
233#endif
234 }
235 }
236 local_irq_restore(flags);
237
238#if DEBUG_TICK_SYNC
239 for (i = 0; i < NUM_ROUNDS; i++)
240 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
241 t[i].rt, t[i].master, t[i].diff, t[i].lat);
242#endif
243
519c4d2d
JP
244 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
245 "(last diff %ld cycles, maxerr %lu cycles)\n",
246 smp_processor_id(), delta, rt);
1da177e4
LT
247}
248
249static void smp_start_sync_tick_client(int cpu);
250
251static void smp_synchronize_one_tick(int cpu)
252{
253 unsigned long flags, i;
254
255 go[MASTER] = 0;
256
257 smp_start_sync_tick_client(cpu);
258
259 /* wait for client to be ready */
260 while (!go[MASTER])
4f07118f 261 rmb();
1da177e4
LT
262
263 /* now let the client proceed into his loop */
264 go[MASTER] = 0;
293666b7 265 membar_safe("#StoreLoad");
1da177e4 266
49b6c01f 267 raw_spin_lock_irqsave(&itc_sync_lock, flags);
1da177e4
LT
268 {
269 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
270 while (!go[MASTER])
4f07118f 271 rmb();
1da177e4 272 go[MASTER] = 0;
4f07118f 273 wmb();
1da177e4 274 go[SLAVE] = tick_ops->get_tick();
293666b7 275 membar_safe("#StoreLoad");
1da177e4
LT
276 }
277 }
49b6c01f 278 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
1da177e4
LT
279}
280
b14f5c10 281#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
2066aadd
PG
282static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
283 void **descrp)
b14f5c10
DM
284{
285 extern unsigned long sparc64_ttable_tl0;
286 extern unsigned long kern_locked_tte_data;
b14f5c10
DM
287 struct hvtramp_descr *hdesc;
288 unsigned long trampoline_ra;
289 struct trap_per_cpu *tb;
290 u64 tte_vaddr, tte_data;
291 unsigned long hv_err;
64658743 292 int i;
b14f5c10 293
64658743
DM
294 hdesc = kzalloc(sizeof(*hdesc) +
295 (sizeof(struct hvtramp_mapping) *
296 num_kernel_image_mappings - 1),
297 GFP_KERNEL);
b14f5c10 298 if (!hdesc) {
27a2ef38 299 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
b14f5c10
DM
300 "hvtramp_descr.\n");
301 return;
302 }
557fe0e8 303 *descrp = hdesc;
b14f5c10
DM
304
305 hdesc->cpu = cpu;
64658743 306 hdesc->num_mappings = num_kernel_image_mappings;
b14f5c10
DM
307
308 tb = &trap_block[cpu];
b14f5c10
DM
309
310 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
312
313 hdesc->thread_reg = thread_reg;
314
315 tte_vaddr = (unsigned long) KERNBASE;
316 tte_data = kern_locked_tte_data;
317
64658743
DM
318 for (i = 0; i < hdesc->num_mappings; i++) {
319 hdesc->maps[i].vaddr = tte_vaddr;
320 hdesc->maps[i].tte = tte_data;
b14f5c10
DM
321 tte_vaddr += 0x400000;
322 tte_data += 0x400000;
b14f5c10
DM
323 }
324
325 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
326
327 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328 kimage_addr_to_ra(&sparc64_ttable_tl0),
329 __pa(hdesc));
e0204409
DM
330 if (hv_err)
331 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332 "gives error %lu\n", hv_err);
b14f5c10
DM
333}
334#endif
335
1da177e4
LT
336extern unsigned long sparc64_cpu_startup;
337
338/* The OBP cpu startup callback truncates the 3rd arg cookie to
339 * 32-bits (I think) so to be safe we have it read the pointer
340 * contained here so we work on >4GB machines. -DaveM
341 */
342static struct thread_info *cpu_new_thread = NULL;
343
2066aadd 344static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
1da177e4
LT
345{
346 unsigned long entry =
347 (unsigned long)(&sparc64_cpu_startup);
348 unsigned long cookie =
349 (unsigned long)(&cpu_new_thread);
557fe0e8 350 void *descr = NULL;
7890f794 351 int timeout, ret;
1da177e4 352
1da177e4 353 callin_flag = 0;
f0a2bc7e 354 cpu_new_thread = task_thread_info(idle);
1da177e4 355
7890f794 356 if (tlb_type == hypervisor) {
b14f5c10 357#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
4f0234f4
DM
358 if (ldom_domaining_enabled)
359 ldom_startcpu_cpuid(cpu,
557fe0e8
DM
360 (unsigned long) cpu_new_thread,
361 &descr);
4f0234f4
DM
362 else
363#endif
364 prom_startcpu_cpuid(cpu, entry, cookie);
7890f794 365 } else {
5cbc3073 366 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 367
6016a363 368 prom_startcpu(dp->phandle, entry, cookie);
7890f794 369 }
1da177e4 370
4f0234f4 371 for (timeout = 0; timeout < 50000; timeout++) {
1da177e4
LT
372 if (callin_flag)
373 break;
374 udelay(100);
375 }
72aff53f 376
1da177e4
LT
377 if (callin_flag) {
378 ret = 0;
379 } else {
380 printk("Processor %d is stuck.\n", cpu);
1da177e4
LT
381 ret = -ENODEV;
382 }
383 cpu_new_thread = NULL;
384
557fe0e8 385 kfree(descr);
b37d40d1 386
1da177e4
LT
387 return ret;
388}
389
390static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
391{
392 u64 result, target;
393 int stuck, tmp;
394
395 if (this_is_starfire) {
396 /* map to real upaid */
397 cpu = (((cpu & 0x3c) << 1) |
398 ((cpu & 0x40) >> 4) |
399 (cpu & 0x3));
400 }
401
402 target = (cpu << 14) | 0x70;
403again:
404 /* Ok, this is the real Spitfire Errata #54.
405 * One must read back from a UDB internal register
406 * after writes to the UDB interrupt dispatch, but
407 * before the membar Sync for that write.
408 * So we use the high UDB control register (ASI 0x7f,
409 * ADDR 0x20) for the dummy read. -DaveM
410 */
411 tmp = 0x40;
412 __asm__ __volatile__(
413 "wrpr %1, %2, %%pstate\n\t"
414 "stxa %4, [%0] %3\n\t"
415 "stxa %5, [%0+%8] %3\n\t"
416 "add %0, %8, %0\n\t"
417 "stxa %6, [%0+%8] %3\n\t"
418 "membar #Sync\n\t"
419 "stxa %%g0, [%7] %3\n\t"
420 "membar #Sync\n\t"
421 "mov 0x20, %%g1\n\t"
422 "ldxa [%%g1] 0x7f, %%g0\n\t"
423 "membar #Sync"
424 : "=r" (tmp)
425 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
426 "r" (data0), "r" (data1), "r" (data2), "r" (target),
427 "r" (0x10), "0" (tmp)
428 : "g1");
429
430 /* NOTE: PSTATE_IE is still clear. */
431 stuck = 100000;
432 do {
433 __asm__ __volatile__("ldxa [%%g0] %1, %0"
434 : "=r" (result)
435 : "i" (ASI_INTR_DISPATCH_STAT));
436 if (result == 0) {
437 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
438 : : "r" (pstate));
439 return;
440 }
441 stuck -= 1;
442 if (stuck == 0)
443 break;
444 } while (result & 0x1);
445 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
446 : : "r" (pstate));
447 if (stuck == 0) {
90181136 448 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
1da177e4
LT
449 smp_processor_id(), result);
450 } else {
451 udelay(2);
452 goto again;
453 }
454}
455
90f7ae8a 456static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
1da177e4 457{
90f7ae8a
DM
458 u64 *mondo, data0, data1, data2;
459 u16 *cpu_list;
1da177e4
LT
460 u64 pstate;
461 int i;
462
463 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
90f7ae8a
DM
464 cpu_list = __va(tb->cpu_list_pa);
465 mondo = __va(tb->cpu_mondo_block_pa);
466 data0 = mondo[0];
467 data1 = mondo[1];
468 data2 = mondo[2];
469 for (i = 0; i < cnt; i++)
470 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
1da177e4
LT
471}
472
473/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
474 * packet, but we have no use for that. However we do take advantage of
475 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
476 */
90f7ae8a 477static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
1da177e4 478{
22adb358 479 int nack_busy_id, is_jbus, need_more;
90f7ae8a
DM
480 u64 *mondo, pstate, ver, busy_mask;
481 u16 *cpu_list;
1da177e4 482
90f7ae8a
DM
483 cpu_list = __va(tb->cpu_list_pa);
484 mondo = __va(tb->cpu_mondo_block_pa);
cd5bc89d 485
1da177e4
LT
486 /* Unfortunately, someone at Sun had the brilliant idea to make the
487 * busy/nack fields hard-coded by ITID number for this Ultra-III
488 * derivative processor.
489 */
490 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
491 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
492 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
493
494 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
495
496retry:
22adb358 497 need_more = 0;
1da177e4
LT
498 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
499 : : "r" (pstate), "i" (PSTATE_IE));
500
501 /* Setup the dispatch data registers. */
502 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
503 "stxa %1, [%4] %6\n\t"
504 "stxa %2, [%5] %6\n\t"
505 "membar #Sync\n\t"
506 : /* no outputs */
90f7ae8a 507 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
1da177e4
LT
508 "r" (0x40), "r" (0x50), "r" (0x60),
509 "i" (ASI_INTR_W));
510
511 nack_busy_id = 0;
0de56d1a 512 busy_mask = 0;
1da177e4
LT
513 {
514 int i;
515
90f7ae8a
DM
516 for (i = 0; i < cnt; i++) {
517 u64 target, nr;
518
519 nr = cpu_list[i];
520 if (nr == 0xffff)
521 continue;
1da177e4 522
90f7ae8a 523 target = (nr << 14) | 0x70;
0de56d1a 524 if (is_jbus) {
90f7ae8a 525 busy_mask |= (0x1UL << (nr * 2));
0de56d1a 526 } else {
1da177e4 527 target |= (nack_busy_id << 24);
0de56d1a
DM
528 busy_mask |= (0x1UL <<
529 (nack_busy_id * 2));
530 }
1da177e4
LT
531 __asm__ __volatile__(
532 "stxa %%g0, [%0] %1\n\t"
533 "membar #Sync\n\t"
534 : /* no outputs */
535 : "r" (target), "i" (ASI_INTR_W));
536 nack_busy_id++;
22adb358
DM
537 if (nack_busy_id == 32) {
538 need_more = 1;
539 break;
540 }
1da177e4
LT
541 }
542 }
543
544 /* Now, poll for completion. */
545 {
0de56d1a 546 u64 dispatch_stat, nack_mask;
1da177e4
LT
547 long stuck;
548
549 stuck = 100000 * nack_busy_id;
0de56d1a 550 nack_mask = busy_mask << 1;
1da177e4
LT
551 do {
552 __asm__ __volatile__("ldxa [%%g0] %1, %0"
553 : "=r" (dispatch_stat)
554 : "i" (ASI_INTR_DISPATCH_STAT));
0de56d1a 555 if (!(dispatch_stat & (busy_mask | nack_mask))) {
1da177e4
LT
556 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
557 : : "r" (pstate));
22adb358 558 if (unlikely(need_more)) {
90f7ae8a
DM
559 int i, this_cnt = 0;
560 for (i = 0; i < cnt; i++) {
561 if (cpu_list[i] == 0xffff)
562 continue;
563 cpu_list[i] = 0xffff;
564 this_cnt++;
565 if (this_cnt == 32)
22adb358
DM
566 break;
567 }
568 goto retry;
569 }
1da177e4
LT
570 return;
571 }
572 if (!--stuck)
573 break;
0de56d1a 574 } while (dispatch_stat & busy_mask);
1da177e4
LT
575
576 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
577 : : "r" (pstate));
578
0de56d1a 579 if (dispatch_stat & busy_mask) {
1da177e4
LT
580 /* Busy bits will not clear, continue instead
581 * of freezing up on this cpu.
582 */
90181136 583 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
1da177e4
LT
584 smp_processor_id(), dispatch_stat);
585 } else {
586 int i, this_busy_nack = 0;
587
588 /* Delay some random time with interrupts enabled
589 * to prevent deadlock.
590 */
591 udelay(2 * nack_busy_id);
592
593 /* Clear out the mask bits for cpus which did not
594 * NACK us.
595 */
90f7ae8a
DM
596 for (i = 0; i < cnt; i++) {
597 u64 check_mask, nr;
598
599 nr = cpu_list[i];
600 if (nr == 0xffff)
601 continue;
1da177e4 602
92704a1c 603 if (is_jbus)
90f7ae8a 604 check_mask = (0x2UL << (2*nr));
1da177e4
LT
605 else
606 check_mask = (0x2UL <<
607 this_busy_nack);
608 if ((dispatch_stat & check_mask) == 0)
90f7ae8a 609 cpu_list[i] = 0xffff;
1da177e4 610 this_busy_nack += 2;
22adb358
DM
611 if (this_busy_nack == 64)
612 break;
1da177e4
LT
613 }
614
615 goto retry;
616 }
617 }
618}
619
1d2f1f90 620/* Multi-cpu list version. */
90f7ae8a 621static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
a43fe0e7 622{
ed4d9c66 623 int retries, this_cpu, prev_sent, i, saw_cpu_error;
c02a5119 624 unsigned long status;
b830ab66 625 u16 *cpu_list;
17f34f0e 626
b830ab66 627 this_cpu = smp_processor_id();
1d2f1f90 628
b830ab66
DM
629 cpu_list = __va(tb->cpu_list_pa);
630
ed4d9c66 631 saw_cpu_error = 0;
1d2f1f90 632 retries = 0;
3cab0c3e 633 prev_sent = 0;
1d2f1f90 634 do {
3cab0c3e 635 int forward_progress, n_sent;
1d2f1f90 636
b830ab66
DM
637 status = sun4v_cpu_mondo_send(cnt,
638 tb->cpu_list_pa,
639 tb->cpu_mondo_block_pa);
640
641 /* HV_EOK means all cpus received the xcall, we're done. */
642 if (likely(status == HV_EOK))
1d2f1f90 643 break;
b830ab66 644
3cab0c3e
DM
645 /* First, see if we made any forward progress.
646 *
647 * The hypervisor indicates successful sends by setting
648 * cpu list entries to the value 0xffff.
b830ab66 649 */
3cab0c3e 650 n_sent = 0;
b830ab66 651 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
652 if (likely(cpu_list[i] == 0xffff))
653 n_sent++;
1d2f1f90
DM
654 }
655
3cab0c3e
DM
656 forward_progress = 0;
657 if (n_sent > prev_sent)
658 forward_progress = 1;
659
660 prev_sent = n_sent;
661
b830ab66
DM
662 /* If we get a HV_ECPUERROR, then one or more of the cpus
663 * in the list are in error state. Use the cpu_state()
664 * hypervisor call to find out which cpus are in error state.
665 */
666 if (unlikely(status == HV_ECPUERROR)) {
667 for (i = 0; i < cnt; i++) {
668 long err;
669 u16 cpu;
670
671 cpu = cpu_list[i];
672 if (cpu == 0xffff)
673 continue;
674
675 err = sun4v_cpu_state(cpu);
ed4d9c66
DM
676 if (err == HV_CPU_STATE_ERROR) {
677 saw_cpu_error = (cpu + 1);
3cab0c3e 678 cpu_list[i] = 0xffff;
b830ab66
DM
679 }
680 }
681 } else if (unlikely(status != HV_EWOULDBLOCK))
682 goto fatal_mondo_error;
683
3cab0c3e
DM
684 /* Don't bother rewriting the CPU list, just leave the
685 * 0xffff and non-0xffff entries in there and the
686 * hypervisor will do the right thing.
687 *
688 * Only advance timeout state if we didn't make any
689 * forward progress.
690 */
b830ab66
DM
691 if (unlikely(!forward_progress)) {
692 if (unlikely(++retries > 10000))
693 goto fatal_mondo_timeout;
694
695 /* Delay a little bit to let other cpus catch up
696 * on their cpu mondo queue work.
697 */
698 udelay(2 * cnt);
699 }
1d2f1f90
DM
700 } while (1);
701
ed4d9c66 702 if (unlikely(saw_cpu_error))
b830ab66
DM
703 goto fatal_mondo_cpu_error;
704
705 return;
706
707fatal_mondo_cpu_error:
708 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
ed4d9c66
DM
709 "(including %d) were in error state\n",
710 this_cpu, saw_cpu_error - 1);
b830ab66
DM
711 return;
712
713fatal_mondo_timeout:
b830ab66
DM
714 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
715 " progress after %d retries.\n",
716 this_cpu, retries);
717 goto dump_cpu_list_and_out;
718
719fatal_mondo_error:
b830ab66
DM
720 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
721 this_cpu, status);
722 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
723 "mondo_block_pa(%lx)\n",
724 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
725
726dump_cpu_list_and_out:
727 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
728 for (i = 0; i < cnt; i++)
729 printk("%u ", cpu_list[i]);
730 printk("]\n");
1d2f1f90 731}
a43fe0e7 732
90f7ae8a 733static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
deb16999
DM
734
735static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
736{
90f7ae8a
DM
737 struct trap_per_cpu *tb;
738 int this_cpu, i, cnt;
c02a5119 739 unsigned long flags;
90f7ae8a
DM
740 u16 *cpu_list;
741 u64 *mondo;
c02a5119
DM
742
743 /* We have to do this whole thing with interrupts fully disabled.
744 * Otherwise if we send an xcall from interrupt context it will
745 * corrupt both our mondo block and cpu list state.
746 *
747 * One consequence of this is that we cannot use timeout mechanisms
748 * that depend upon interrupts being delivered locally. So, for
749 * example, we cannot sample jiffies and expect it to advance.
750 *
751 * Fortunately, udelay() uses %stick/%tick so we can use that.
752 */
753 local_irq_save(flags);
90f7ae8a
DM
754
755 this_cpu = smp_processor_id();
756 tb = &trap_block[this_cpu];
757
758 mondo = __va(tb->cpu_mondo_block_pa);
759 mondo[0] = data0;
760 mondo[1] = data1;
761 mondo[2] = data2;
762 wmb();
763
764 cpu_list = __va(tb->cpu_list_pa);
765
766 /* Setup the initial cpu list. */
767 cnt = 0;
8e757281 768 for_each_cpu(i, mask) {
90f7ae8a
DM
769 if (i == this_cpu || !cpu_online(i))
770 continue;
771 cpu_list[cnt++] = i;
772 }
773
774 if (cnt)
775 xcall_deliver_impl(tb, cnt);
776
c02a5119 777 local_irq_restore(flags);
deb16999 778}
5e0797e5 779
91a4231c
DM
780/* Send cross call to all processors mentioned in MASK_P
781 * except self. Really, there are only two cases currently,
fb1fece5 782 * "cpu_online_mask" and "mm_cpumask(mm)".
1da177e4 783 */
ae583885 784static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
1da177e4
LT
785{
786 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
1da177e4 787
ae583885
DM
788 xcall_deliver(data0, data1, data2, mask);
789}
1da177e4 790
ae583885
DM
791/* Send cross call to all processors except self. */
792static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
793{
fb1fece5 794 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
1da177e4
LT
795}
796
797extern unsigned long xcall_sync_tick;
798
799static void smp_start_sync_tick_client(int cpu)
800{
24445a4a 801 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
fb1fece5 802 cpumask_of(cpu));
1da177e4
LT
803}
804
1da177e4
LT
805extern unsigned long xcall_call_function;
806
f46df02a 807void arch_send_call_function_ipi_mask(const struct cpumask *mask)
1da177e4 808{
f46df02a 809 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
d172ad18 810}
1da177e4 811
d172ad18 812extern unsigned long xcall_call_function_single;
1da177e4 813
d172ad18
DM
814void arch_send_call_function_single_ipi(int cpu)
815{
19926630 816 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
fb1fece5 817 cpumask_of(cpu));
1da177e4
LT
818}
819
9960e9e8 820void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
1da177e4 821{
d172ad18 822 clear_softint(1 << irq);
ab5c7809 823 irq_enter();
d172ad18 824 generic_smp_call_function_interrupt();
ab5c7809 825 irq_exit();
d172ad18 826}
1da177e4 827
9960e9e8 828void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
d172ad18 829{
1da177e4 830 clear_softint(1 << irq);
ab5c7809 831 irq_enter();
d172ad18 832 generic_smp_call_function_single_interrupt();
ab5c7809 833 irq_exit();
1da177e4
LT
834}
835
bd40791e
DM
836static void tsb_sync(void *info)
837{
6f25f398 838 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
839 struct mm_struct *mm = info;
840
42b2aa86 841 /* It is not valid to test "current->active_mm == mm" here.
6f25f398
DM
842 *
843 * The value of "current" is not changed atomically with
844 * switch_mm(). But that's OK, we just need to check the
845 * current cpu's trap block PGD physical address.
846 */
847 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
848 tsb_context_switch(mm);
849}
850
851void smp_tsb_sync(struct mm_struct *mm)
852{
81f1adf0 853 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
bd40791e
DM
854}
855
1da177e4 856extern unsigned long xcall_flush_tlb_mm;
f36391d2 857extern unsigned long xcall_flush_tlb_page;
1da177e4 858extern unsigned long xcall_flush_tlb_kernel_range;
93dae5b7 859extern unsigned long xcall_fetch_glob_regs;
916ca14a
DM
860extern unsigned long xcall_fetch_glob_pmu;
861extern unsigned long xcall_fetch_glob_pmu_n4;
1da177e4 862extern unsigned long xcall_receive_signal;
ee29074d 863extern unsigned long xcall_new_mmu_context_version;
e2fdd7fd
DM
864#ifdef CONFIG_KGDB
865extern unsigned long xcall_kgdb_capture;
866#endif
1da177e4
LT
867
868#ifdef DCACHE_ALIASING_POSSIBLE
869extern unsigned long xcall_flush_dcache_page_cheetah;
870#endif
871extern unsigned long xcall_flush_dcache_page_spitfire;
872
d979f179 873static inline void __local_flush_dcache_page(struct page *page)
1da177e4
LT
874{
875#ifdef DCACHE_ALIASING_POSSIBLE
876 __flush_dcache_page(page_address(page),
877 ((tlb_type == spitfire) &&
878 page_mapping(page) != NULL));
879#else
880 if (page_mapping(page) != NULL &&
881 tlb_type == spitfire)
882 __flush_icache_page(__pa(page_address(page)));
883#endif
884}
885
886void smp_flush_dcache_page_impl(struct page *page, int cpu)
887{
a43fe0e7
DM
888 int this_cpu;
889
890 if (tlb_type == hypervisor)
891 return;
1da177e4
LT
892
893#ifdef CONFIG_DEBUG_DCFLUSH
894 atomic_inc(&dcpage_flushes);
895#endif
a43fe0e7
DM
896
897 this_cpu = get_cpu();
898
1da177e4
LT
899 if (cpu == this_cpu) {
900 __local_flush_dcache_page(page);
901 } else if (cpu_online(cpu)) {
902 void *pg_addr = page_address(page);
622824db 903 u64 data0 = 0;
1da177e4
LT
904
905 if (tlb_type == spitfire) {
622824db 906 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1da177e4
LT
907 if (page_mapping(page) != NULL)
908 data0 |= ((u64)1 << 32);
a43fe0e7 909 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4 910#ifdef DCACHE_ALIASING_POSSIBLE
622824db 911 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
912#endif
913 }
622824db
DM
914 if (data0) {
915 xcall_deliver(data0, __pa(pg_addr),
fb1fece5 916 (u64) pg_addr, cpumask_of(cpu));
1da177e4 917#ifdef CONFIG_DEBUG_DCFLUSH
622824db 918 atomic_inc(&dcpage_flushes_xcall);
1da177e4 919#endif
622824db 920 }
1da177e4
LT
921 }
922
923 put_cpu();
924}
925
926void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
927{
622824db 928 void *pg_addr;
622824db 929 u64 data0;
a43fe0e7
DM
930
931 if (tlb_type == hypervisor)
932 return;
933
c6fee081 934 preempt_disable();
1da177e4 935
1da177e4
LT
936#ifdef CONFIG_DEBUG_DCFLUSH
937 atomic_inc(&dcpage_flushes);
938#endif
622824db
DM
939 data0 = 0;
940 pg_addr = page_address(page);
1da177e4
LT
941 if (tlb_type == spitfire) {
942 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
943 if (page_mapping(page) != NULL)
944 data0 |= ((u64)1 << 32);
a43fe0e7 945 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
946#ifdef DCACHE_ALIASING_POSSIBLE
947 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1da177e4
LT
948#endif
949 }
622824db
DM
950 if (data0) {
951 xcall_deliver(data0, __pa(pg_addr),
fb1fece5 952 (u64) pg_addr, cpu_online_mask);
1da177e4 953#ifdef CONFIG_DEBUG_DCFLUSH
622824db 954 atomic_inc(&dcpage_flushes_xcall);
1da177e4 955#endif
622824db 956 }
1da177e4
LT
957 __local_flush_dcache_page(page);
958
c6fee081 959 preempt_enable();
1da177e4
LT
960}
961
9960e9e8 962void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 963{
a0663a79 964 struct mm_struct *mm;
ee29074d 965 unsigned long flags;
a0663a79 966
1da177e4 967 clear_softint(1 << irq);
a0663a79
DM
968
969 /* See if we need to allocate a new TLB context because
970 * the version of the one we are using is now out of date.
971 */
972 mm = current->active_mm;
ee29074d
DM
973 if (unlikely(!mm || (mm == &init_mm)))
974 return;
a0663a79 975
ee29074d 976 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 977
ee29074d
DM
978 if (unlikely(!CTX_VALID(mm->context)))
979 get_new_mmu_context(mm);
aac0aadf 980
ee29074d 981 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 982
ee29074d
DM
983 load_secondary_context(mm);
984 __flush_tlb_mm(CTX_HWBITS(mm->context),
985 SECONDARY_CONTEXT);
a0663a79
DM
986}
987
988void smp_new_mmu_context_version(void)
989{
ee29074d 990 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
991}
992
e2fdd7fd
DM
993#ifdef CONFIG_KGDB
994void kgdb_roundup_cpus(unsigned long flags)
995{
996 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
997}
998#endif
999
93dae5b7
DM
1000void smp_fetch_global_regs(void)
1001{
1002 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1003}
93dae5b7 1004
916ca14a
DM
1005void smp_fetch_global_pmu(void)
1006{
1007 if (tlb_type == hypervisor &&
1008 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1009 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1010 else
1011 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1012}
1013
1da177e4
LT
1014/* We know that the window frames of the user have been flushed
1015 * to the stack before we get here because all callers of us
1016 * are flush_tlb_*() routines, and these run after flush_cache_*()
1017 * which performs the flushw.
1018 *
1019 * The SMP TLB coherency scheme we use works as follows:
1020 *
1021 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1022 * space has (potentially) executed on, this is the heuristic
1023 * we use to avoid doing cross calls.
1024 *
1025 * Also, for flushing from kswapd and also for clones, we
1026 * use cpu_vm_mask as the list of cpus to make run the TLB.
1027 *
1028 * 2) TLB context numbers are shared globally across all processors
1029 * in the system, this allows us to play several games to avoid
1030 * cross calls.
1031 *
1032 * One invariant is that when a cpu switches to a process, and
1033 * that processes tsk->active_mm->cpu_vm_mask does not have the
1034 * current cpu's bit set, that tlb context is flushed locally.
1035 *
1036 * If the address space is non-shared (ie. mm->count == 1) we avoid
1037 * cross calls when we want to flush the currently running process's
1038 * tlb state. This is done by clearing all cpu bits except the current
f9384d41 1039 * processor's in current->mm->cpu_vm_mask and performing the
1da177e4
LT
1040 * flush locally only. This will force any subsequent cpus which run
1041 * this task to flush the context from the local tlb if the process
1042 * migrates to another cpu (again).
1043 *
1044 * 3) For shared address spaces (threads) and swapping we bite the
1045 * bullet for most cases and perform the cross call (but only to
1046 * the cpus listed in cpu_vm_mask).
1047 *
1048 * The performance gain from "optimizing" away the cross call for threads is
1049 * questionable (in theory the big win for threads is the massive sharing of
1050 * address space state across processors).
1051 */
62dbec78
DM
1052
1053/* This currently is only used by the hugetlb arch pre-fault
1054 * hook on UltraSPARC-III+ and later when changing the pagesize
1055 * bits of the context register for an address space.
1056 */
1da177e4
LT
1057void smp_flush_tlb_mm(struct mm_struct *mm)
1058{
62dbec78
DM
1059 u32 ctx = CTX_HWBITS(mm->context);
1060 int cpu = get_cpu();
1da177e4 1061
62dbec78 1062 if (atomic_read(&mm->mm_users) == 1) {
81f1adf0 1063 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
62dbec78
DM
1064 goto local_flush_and_out;
1065 }
1da177e4 1066
62dbec78
DM
1067 smp_cross_call_masked(&xcall_flush_tlb_mm,
1068 ctx, 0, 0,
81f1adf0 1069 mm_cpumask(mm));
1da177e4 1070
62dbec78
DM
1071local_flush_and_out:
1072 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1073
62dbec78 1074 put_cpu();
1da177e4
LT
1075}
1076
f36391d2
DM
1077struct tlb_pending_info {
1078 unsigned long ctx;
1079 unsigned long nr;
1080 unsigned long *vaddrs;
1081};
1082
1083static void tlb_pending_func(void *info)
1084{
1085 struct tlb_pending_info *t = info;
1086
1087 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088}
1089
1da177e4
LT
1090void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091{
1092 u32 ctx = CTX_HWBITS(mm->context);
f36391d2 1093 struct tlb_pending_info info;
1da177e4
LT
1094 int cpu = get_cpu();
1095
f36391d2
DM
1096 info.ctx = ctx;
1097 info.nr = nr;
1098 info.vaddrs = vaddrs;
1099
f9384d41 1100 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
81f1adf0 1101 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
dedeb002 1102 else
f36391d2
DM
1103 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1104 &info, 1);
1da177e4 1105
1da177e4
LT
1106 __flush_tlb_pending(ctx, nr, vaddrs);
1107
1108 put_cpu();
1109}
1110
f36391d2
DM
1111void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1112{
1113 unsigned long context = CTX_HWBITS(mm->context);
1114 int cpu = get_cpu();
1115
1116 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1117 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1118 else
1119 smp_cross_call_masked(&xcall_flush_tlb_page,
1120 context, vaddr, 0,
1121 mm_cpumask(mm));
1122 __flush_tlb_page(context, vaddr);
1123
1124 put_cpu();
1125}
1126
1da177e4
LT
1127void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1128{
1129 start &= PAGE_MASK;
1130 end = PAGE_ALIGN(end);
1131 if (start != end) {
1132 smp_cross_call(&xcall_flush_tlb_kernel_range,
1133 0, start, end);
1134
1135 __flush_tlb_kernel_range(start, end);
1136 }
1137}
1138
1139/* CPU capture. */
1140/* #define CAPTURE_DEBUG */
1141extern unsigned long xcall_capture;
1142
1143static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1144static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1145static unsigned long penguins_are_doing_time;
1146
1147void smp_capture(void)
1148{
4f3316c2 1149 int result = atomic_add_return(1, &smp_capture_depth);
1da177e4
LT
1150
1151 if (result == 1) {
1152 int ncpus = num_online_cpus();
1153
1154#ifdef CAPTURE_DEBUG
1155 printk("CPU[%d]: Sending penguins to jail...",
1156 smp_processor_id());
1157#endif
1158 penguins_are_doing_time = 1;
1da177e4
LT
1159 atomic_inc(&smp_capture_registry);
1160 smp_cross_call(&xcall_capture, 0, 0, 0);
1161 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1162 rmb();
1da177e4
LT
1163#ifdef CAPTURE_DEBUG
1164 printk("done\n");
1165#endif
1166 }
1167}
1168
1169void smp_release(void)
1170{
1171 if (atomic_dec_and_test(&smp_capture_depth)) {
1172#ifdef CAPTURE_DEBUG
1173 printk("CPU[%d]: Giving pardon to "
1174 "imprisoned penguins\n",
1175 smp_processor_id());
1176#endif
1177 penguins_are_doing_time = 0;
293666b7 1178 membar_safe("#StoreLoad");
1da177e4
LT
1179 atomic_dec(&smp_capture_registry);
1180 }
1181}
1182
b4f4372f
DM
1183/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1184 * set, so they can service tlb flush xcalls...
1da177e4
LT
1185 */
1186extern void prom_world(int);
96c6e0d8 1187
9960e9e8 1188void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1da177e4 1189{
1da177e4
LT
1190 clear_softint(1 << irq);
1191
1192 preempt_disable();
1193
1194 __asm__ __volatile__("flushw");
1da177e4
LT
1195 prom_world(1);
1196 atomic_inc(&smp_capture_registry);
293666b7 1197 membar_safe("#StoreLoad");
1da177e4 1198 while (penguins_are_doing_time)
4f07118f 1199 rmb();
1da177e4
LT
1200 atomic_dec(&smp_capture_registry);
1201 prom_world(0);
1202
1203 preempt_enable();
1204}
1205
1da177e4 1206/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1207int setup_profiling_timer(unsigned int multiplier)
1208{
777a4475 1209 return -EINVAL;
1da177e4
LT
1210}
1211
1212void __init smp_prepare_cpus(unsigned int max_cpus)
1213{
1da177e4
LT
1214}
1215
7c9503b8 1216void smp_prepare_boot_cpu(void)
7abea921 1217{
7abea921
DM
1218}
1219
5e0797e5
DM
1220void __init smp_setup_processor_id(void)
1221{
1222 if (tlb_type == spitfire)
deb16999 1223 xcall_deliver_impl = spitfire_xcall_deliver;
5e0797e5 1224 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
deb16999 1225 xcall_deliver_impl = cheetah_xcall_deliver;
5e0797e5 1226 else
deb16999 1227 xcall_deliver_impl = hypervisor_xcall_deliver;
5e0797e5
DM
1228}
1229
7c9503b8 1230void smp_fill_in_sib_core_maps(void)
1da177e4 1231{
5cbc3073
DM
1232 unsigned int i;
1233
e0204409 1234 for_each_present_cpu(i) {
5cbc3073
DM
1235 unsigned int j;
1236
fb1fece5 1237 cpumask_clear(&cpu_core_map[i]);
5cbc3073 1238 if (cpu_data(i).core_id == 0) {
fb1fece5 1239 cpumask_set_cpu(i, &cpu_core_map[i]);
5cbc3073
DM
1240 continue;
1241 }
1242
e0204409 1243 for_each_present_cpu(j) {
5cbc3073
DM
1244 if (cpu_data(i).core_id ==
1245 cpu_data(j).core_id)
fb1fece5 1246 cpumask_set_cpu(j, &cpu_core_map[i]);
f78eae2e
DM
1247 }
1248 }
1249
acc455cf 1250 for_each_present_cpu(i) {
1251 unsigned int j;
1252
1253 for_each_present_cpu(j) {
1254 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1255 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1256 }
1257 }
1258
e0204409 1259 for_each_present_cpu(i) {
f78eae2e
DM
1260 unsigned int j;
1261
fb1fece5 1262 cpumask_clear(&per_cpu(cpu_sibling_map, i));
f78eae2e 1263 if (cpu_data(i).proc_id == -1) {
fb1fece5 1264 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
f78eae2e
DM
1265 continue;
1266 }
1267
e0204409 1268 for_each_present_cpu(j) {
f78eae2e
DM
1269 if (cpu_data(i).proc_id ==
1270 cpu_data(j).proc_id)
fb1fece5 1271 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
5cbc3073
DM
1272 }
1273 }
1da177e4
LT
1274}
1275
2066aadd 1276int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1da177e4 1277{
f0a2bc7e 1278 int ret = smp_boot_one_cpu(cpu, tidle);
1da177e4
LT
1279
1280 if (!ret) {
fb1fece5
KM
1281 cpumask_set_cpu(cpu, &smp_commenced_mask);
1282 while (!cpu_online(cpu))
1da177e4 1283 mb();
fb1fece5 1284 if (!cpu_online(cpu)) {
1da177e4
LT
1285 ret = -ENODEV;
1286 } else {
02fead75
DM
1287 /* On SUN4V, writes to %tick and %stick are
1288 * not allowed.
1289 */
1290 if (tlb_type != hypervisor)
1291 smp_synchronize_one_tick(cpu);
1da177e4
LT
1292 }
1293 }
1294 return ret;
1295}
1296
4f0234f4 1297#ifdef CONFIG_HOTPLUG_CPU
e0204409
DM
1298void cpu_play_dead(void)
1299{
1300 int cpu = smp_processor_id();
1301 unsigned long pstate;
1302
1303 idle_task_exit();
1304
1305 if (tlb_type == hypervisor) {
1306 struct trap_per_cpu *tb = &trap_block[cpu];
1307
1308 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1309 tb->cpu_mondo_pa, 0);
1310 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1311 tb->dev_mondo_pa, 0);
1312 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1313 tb->resum_mondo_pa, 0);
1314 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1315 tb->nonresum_mondo_pa, 0);
1316 }
1317
fb1fece5 1318 cpumask_clear_cpu(cpu, &smp_commenced_mask);
e0204409
DM
1319 membar_safe("#Sync");
1320
1321 local_irq_disable();
1322
1323 __asm__ __volatile__(
1324 "rdpr %%pstate, %0\n\t"
1325 "wrpr %0, %1, %%pstate"
1326 : "=r" (pstate)
1327 : "i" (PSTATE_IE));
1328
1329 while (1)
1330 barrier();
1331}
1332
4f0234f4
DM
1333int __cpu_disable(void)
1334{
e0204409
DM
1335 int cpu = smp_processor_id();
1336 cpuinfo_sparc *c;
1337 int i;
1338
fb1fece5
KM
1339 for_each_cpu(i, &cpu_core_map[cpu])
1340 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1341 cpumask_clear(&cpu_core_map[cpu]);
e0204409 1342
fb1fece5
KM
1343 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1344 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1345 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
e0204409
DM
1346
1347 c = &cpu_data(cpu);
1348
1349 c->core_id = 0;
1350 c->proc_id = -1;
1351
e0204409
DM
1352 smp_wmb();
1353
1354 /* Make sure no interrupts point to this cpu. */
1355 fixup_irqs();
1356
1357 local_irq_enable();
1358 mdelay(1);
1359 local_irq_disable();
1360
fb1fece5 1361 set_cpu_online(cpu, false);
4d084617 1362
280ff974
HP
1363 cpu_map_rebuild();
1364
e0204409 1365 return 0;
4f0234f4
DM
1366}
1367
1368void __cpu_die(unsigned int cpu)
1369{
e0204409
DM
1370 int i;
1371
1372 for (i = 0; i < 100; i++) {
1373 smp_rmb();
fb1fece5 1374 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
e0204409
DM
1375 break;
1376 msleep(100);
1377 }
fb1fece5 1378 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
e0204409
DM
1379 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1380 } else {
1381#if defined(CONFIG_SUN_LDOMS)
1382 unsigned long hv_err;
1383 int limit = 100;
1384
1385 do {
1386 hv_err = sun4v_cpu_stop(cpu);
1387 if (hv_err == HV_EOK) {
fb1fece5 1388 set_cpu_present(cpu, false);
e0204409
DM
1389 break;
1390 }
1391 } while (--limit > 0);
1392 if (limit <= 0) {
1393 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1394 hv_err);
1395 }
1396#endif
1397 }
4f0234f4
DM
1398}
1399#endif
1400
1da177e4
LT
1401void __init smp_cpus_done(unsigned int max_cpus)
1402{
1da177e4
LT
1403}
1404
1da177e4
LT
1405void smp_send_reschedule(int cpu)
1406{
1a36265b
KT
1407 if (cpu == smp_processor_id()) {
1408 WARN_ON_ONCE(preemptible());
1409 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1410 } else {
1411 xcall_deliver((u64) &xcall_receive_signal,
1412 0, 0, cpumask_of(cpu));
1413 }
19926630
DM
1414}
1415
9960e9e8 1416void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
19926630
DM
1417{
1418 clear_softint(1 << irq);
184748cc 1419 scheduler_ipi();
1da177e4
LT
1420}
1421
94ab5990
DK
1422static void stop_this_cpu(void *dummy)
1423{
1424 prom_stopself();
1425}
1426
1da177e4
LT
1427void smp_send_stop(void)
1428{
94ab5990
DK
1429 int cpu;
1430
1431 if (tlb_type == hypervisor) {
1432 for_each_online_cpu(cpu) {
1433 if (cpu == smp_processor_id())
1434 continue;
1435#ifdef CONFIG_SUN_LDOMS
1436 if (ldom_domaining_enabled) {
1437 unsigned long hv_err;
1438 hv_err = sun4v_cpu_stop(cpu);
1439 if (hv_err)
1440 printk(KERN_ERR "sun4v_cpu_stop() "
1441 "failed err=%lu\n", hv_err);
1442 } else
1443#endif
1444 prom_stopcpu_cpuid(cpu);
1445 }
1446 } else
1447 smp_call_function(stop_this_cpu, NULL, 0);
1da177e4
LT
1448}
1449
4fd78a5f
DM
1450/**
1451 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1452 * @cpu: cpu to allocate for
1453 * @size: size allocation in bytes
1454 * @align: alignment
1455 *
1456 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1457 * does the right thing for NUMA regardless of the current
1458 * configuration.
1459 *
1460 * RETURNS:
1461 * Pointer to the allocated area on success, NULL on failure.
1462 */
bcb2107f
TH
1463static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1464 size_t align)
4fd78a5f
DM
1465{
1466 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1467#ifdef CONFIG_NEED_MULTIPLE_NODES
1468 int node = cpu_to_node(cpu);
1469 void *ptr;
1470
1471 if (!node_online(node) || !NODE_DATA(node)) {
1472 ptr = __alloc_bootmem(size, align, goal);
1473 pr_info("cpu %d has no node %d or node-local memory\n",
1474 cpu, node);
1475 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1476 cpu, size, __pa(ptr));
1477 } else {
1478 ptr = __alloc_bootmem_node(NODE_DATA(node),
1479 size, align, goal);
1480 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1481 "%016lx\n", cpu, size, node, __pa(ptr));
1482 }
1483 return ptr;
1484#else
1485 return __alloc_bootmem(size, align, goal);
1486#endif
1487}
1488
bcb2107f 1489static void __init pcpu_free_bootmem(void *ptr, size_t size)
4fd78a5f 1490{
bcb2107f
TH
1491 free_bootmem(__pa(ptr), size);
1492}
4fd78a5f 1493
a70c6913 1494static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
bcb2107f
TH
1495{
1496 if (cpu_to_node(from) == cpu_to_node(to))
1497 return LOCAL_DISTANCE;
1498 else
1499 return REMOTE_DISTANCE;
4fd78a5f
DM
1500}
1501
a70c6913
TH
1502static void __init pcpu_populate_pte(unsigned long addr)
1503{
1504 pgd_t *pgd = pgd_offset_k(addr);
1505 pud_t *pud;
1506 pmd_t *pmd;
1507
ac55c768
DM
1508 if (pgd_none(*pgd)) {
1509 pud_t *new;
1510
1511 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1512 pgd_populate(&init_mm, pgd, new);
1513 }
1514
a70c6913
TH
1515 pud = pud_offset(pgd, addr);
1516 if (pud_none(*pud)) {
1517 pmd_t *new;
1518
1519 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1520 pud_populate(&init_mm, pud, new);
1521 }
1522
1523 pmd = pmd_offset(pud, addr);
1524 if (!pmd_present(*pmd)) {
1525 pte_t *new;
1526
1527 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1528 pmd_populate_kernel(&init_mm, pmd, new);
1529 }
1530}
1531
73fffc03 1532void __init setup_per_cpu_areas(void)
1da177e4 1533{
bcb2107f
TH
1534 unsigned long delta;
1535 unsigned int cpu;
a70c6913
TH
1536 int rc = -EINVAL;
1537
1538 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541 pcpu_cpu_distance,
1542 pcpu_alloc_bootmem,
1543 pcpu_free_bootmem);
1544 if (rc)
1545 pr_warning("PERCPU: %s allocator failed (%d), "
1546 "falling back to page size\n",
1547 pcpu_fc_names[pcpu_chosen_fc], rc);
1548 }
1549 if (rc < 0)
1550 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1551 pcpu_alloc_bootmem,
1552 pcpu_free_bootmem,
1553 pcpu_populate_pte);
1554 if (rc < 0)
1555 panic("cannot initialize percpu area (err=%d)", rc);
5a089006 1556
4fd78a5f 1557 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
fb435d52
TH
1558 for_each_possible_cpu(cpu)
1559 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
951bc82c
DM
1560
1561 /* Setup %g5 for the boot cpu. */
1562 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
b696fdc2
DM
1563
1564 of_fill_in_cpu_data();
1565 if (tlb_type == hypervisor)
6ac5c610 1566 mdesc_fill_in_cpu_data(cpu_all_mask);
1da177e4 1567}
This page took 1.078006 seconds and 5 git commands to generate.