sparc64: find_node adjustment
[deliverable/linux.git] / arch / sparc / mm / init_64.c
CommitLineData
b00dc837 1/*
1da177e4
LT
2 * arch/sparc64/mm/init.c
3 *
4 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 */
7
c4bce90e 8#include <linux/module.h>
1da177e4
LT
9#include <linux/kernel.h>
10#include <linux/sched.h>
11#include <linux/string.h>
12#include <linux/init.h>
13#include <linux/bootmem.h>
14#include <linux/mm.h>
15#include <linux/hugetlb.h>
1da177e4
LT
16#include <linux/initrd.h>
17#include <linux/swap.h>
18#include <linux/pagemap.h>
c9cf5528 19#include <linux/poison.h>
1da177e4
LT
20#include <linux/fs.h>
21#include <linux/seq_file.h>
05e14cb3 22#include <linux/kprobes.h>
1ac4f5eb 23#include <linux/cache.h>
13edad7a 24#include <linux/sort.h>
f6d4fb5c 25#include <linux/ioport.h>
5cbc3073 26#include <linux/percpu.h>
95f72d1e 27#include <linux/memblock.h>
919ee677 28#include <linux/mmzone.h>
5a0e3ad6 29#include <linux/gfp.h>
1da177e4
LT
30
31#include <asm/head.h>
1da177e4
LT
32#include <asm/page.h>
33#include <asm/pgalloc.h>
34#include <asm/pgtable.h>
35#include <asm/oplib.h>
36#include <asm/iommu.h>
37#include <asm/io.h>
38#include <asm/uaccess.h>
39#include <asm/mmu_context.h>
40#include <asm/tlbflush.h>
41#include <asm/dma.h>
42#include <asm/starfire.h>
43#include <asm/tlb.h>
44#include <asm/spitfire.h>
45#include <asm/sections.h>
517af332 46#include <asm/tsb.h>
481295f9 47#include <asm/hypervisor.h>
372b07bb 48#include <asm/prom.h>
5cbc3073 49#include <asm/mdesc.h>
3d5ae6b6 50#include <asm/cpudata.h>
59dec13b 51#include <asm/setup.h>
4f70f7a9 52#include <asm/irq.h>
1da177e4 53
27137e52 54#include "init_64.h"
9cc3a1ac 55
4f93d21d 56unsigned long kern_linear_pte_xor[4] __read_mostly;
9cc3a1ac 57
4f93d21d
DM
58/* A bitmap, two bits for every 256MB of physical memory. These two
59 * bits determine what page size we use for kernel linear
60 * translations. They form an index into kern_linear_pte_xor[]. The
61 * value in the indexed slot is XOR'd with the TLB miss virtual
62 * address to form the resulting TTE. The mapping is:
63 *
64 * 0 ==> 4MB
65 * 1 ==> 256MB
66 * 2 ==> 2GB
67 * 3 ==> 16GB
68 *
69 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
70 * support 2GB pages, and hopefully future cpus will support the 16GB
71 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
72 * if these larger page sizes are not supported by the cpu.
73 *
74 * It would be nice to determine this from the machine description
75 * 'cpu' properties, but we need to have this table setup before the
76 * MDESC is initialized.
9cc3a1ac
DM
77 */
78unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
79
d1acb421 80#ifndef CONFIG_DEBUG_PAGEALLOC
4f93d21d
DM
81/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
2d9e2763
DM
84 */
85extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
d1acb421 86#endif
d7744a09 87
ce33fdc5
DM
88static unsigned long cpu_pgsz_mask;
89
13edad7a
DM
90#define MAX_BANKS 32
91
7c9503b8
GKH
92static struct linux_prom64_registers pavail[MAX_BANKS];
93static int pavail_ents;
13edad7a
DM
94
95static int cmp_p64(const void *a, const void *b)
96{
97 const struct linux_prom64_registers *x = a, *y = b;
98
99 if (x->phys_addr > y->phys_addr)
100 return 1;
101 if (x->phys_addr < y->phys_addr)
102 return -1;
103 return 0;
104}
105
106static void __init read_obp_memory(const char *property,
107 struct linux_prom64_registers *regs,
108 int *num_ents)
109{
8d125562 110 phandle node = prom_finddevice("/memory");
13edad7a
DM
111 int prop_size = prom_getproplen(node, property);
112 int ents, ret, i;
113
114 ents = prop_size / sizeof(struct linux_prom64_registers);
115 if (ents > MAX_BANKS) {
116 prom_printf("The machine has more %s property entries than "
117 "this kernel can support (%d).\n",
118 property, MAX_BANKS);
119 prom_halt();
120 }
121
122 ret = prom_getproperty(node, property, (char *) regs, prop_size);
123 if (ret == -1) {
5da444aa
AM
124 prom_printf("Couldn't get %s property from /memory.\n",
125 property);
13edad7a
DM
126 prom_halt();
127 }
128
13edad7a
DM
129 /* Sanitize what we got from the firmware, by page aligning
130 * everything.
131 */
132 for (i = 0; i < ents; i++) {
133 unsigned long base, size;
134
135 base = regs[i].phys_addr;
136 size = regs[i].reg_size;
10147570 137
13edad7a
DM
138 size &= PAGE_MASK;
139 if (base & ~PAGE_MASK) {
140 unsigned long new_base = PAGE_ALIGN(base);
141
142 size -= new_base - base;
143 if ((long) size < 0L)
144 size = 0UL;
145 base = new_base;
146 }
0015d3d6
DM
147 if (size == 0UL) {
148 /* If it is empty, simply get rid of it.
149 * This simplifies the logic of the other
150 * functions that process these arrays.
151 */
152 memmove(&regs[i], &regs[i + 1],
153 (ents - i - 1) * sizeof(regs[0]));
486ad10a 154 i--;
0015d3d6
DM
155 ents--;
156 continue;
486ad10a 157 }
0015d3d6
DM
158 regs[i].phys_addr = base;
159 regs[i].reg_size = size;
486ad10a
DM
160 }
161
162 *num_ents = ents;
163
c9c10830 164 sort(regs, ents, sizeof(struct linux_prom64_registers),
13edad7a
DM
165 cmp_p64, NULL);
166}
1da177e4 167
d8ed1d43
DM
168unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
169 sizeof(unsigned long)];
917c3660 170EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
1da177e4 171
d1112018 172/* Kernel physical address base and size in bytes. */
1ac4f5eb
DM
173unsigned long kern_base __read_mostly;
174unsigned long kern_size __read_mostly;
1da177e4 175
1da177e4
LT
176/* Initial ramdisk setup */
177extern unsigned long sparc_ramdisk_image64;
178extern unsigned int sparc_ramdisk_image;
179extern unsigned int sparc_ramdisk_size;
180
1ac4f5eb 181struct page *mem_map_zero __read_mostly;
35802c0b 182EXPORT_SYMBOL(mem_map_zero);
1da177e4 183
0835ae0f
DM
184unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
185
186unsigned long sparc64_kern_pri_context __read_mostly;
187unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
188unsigned long sparc64_kern_sec_context __read_mostly;
189
64658743 190int num_kernel_image_mappings;
1da177e4 191
1da177e4
LT
192#ifdef CONFIG_DEBUG_DCFLUSH
193atomic_t dcpage_flushes = ATOMIC_INIT(0);
194#ifdef CONFIG_SMP
195atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
196#endif
197#endif
198
7a591cfe 199inline void flush_dcache_page_impl(struct page *page)
1da177e4 200{
7a591cfe 201 BUG_ON(tlb_type == hypervisor);
1da177e4
LT
202#ifdef CONFIG_DEBUG_DCFLUSH
203 atomic_inc(&dcpage_flushes);
204#endif
205
206#ifdef DCACHE_ALIASING_POSSIBLE
207 __flush_dcache_page(page_address(page),
208 ((tlb_type == spitfire) &&
209 page_mapping(page) != NULL));
210#else
211 if (page_mapping(page) != NULL &&
212 tlb_type == spitfire)
213 __flush_icache_page(__pa(page_address(page)));
214#endif
215}
216
217#define PG_dcache_dirty PG_arch_1
22adb358
DM
218#define PG_dcache_cpu_shift 32UL
219#define PG_dcache_cpu_mask \
220 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
1da177e4
LT
221
222#define dcache_dirty_cpu(page) \
48b0e548 223 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
1da177e4 224
d979f179 225static inline void set_dcache_dirty(struct page *page, int this_cpu)
1da177e4
LT
226{
227 unsigned long mask = this_cpu;
48b0e548
DM
228 unsigned long non_cpu_bits;
229
230 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
231 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
232
1da177e4
LT
233 __asm__ __volatile__("1:\n\t"
234 "ldx [%2], %%g7\n\t"
235 "and %%g7, %1, %%g1\n\t"
236 "or %%g1, %0, %%g1\n\t"
237 "casx [%2], %%g7, %%g1\n\t"
238 "cmp %%g7, %%g1\n\t"
239 "bne,pn %%xcc, 1b\n\t"
b445e26c 240 " nop"
1da177e4
LT
241 : /* no outputs */
242 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
243 : "g1", "g7");
244}
245
d979f179 246static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
1da177e4
LT
247{
248 unsigned long mask = (1UL << PG_dcache_dirty);
249
250 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
251 "1:\n\t"
252 "ldx [%2], %%g7\n\t"
48b0e548 253 "srlx %%g7, %4, %%g1\n\t"
1da177e4
LT
254 "and %%g1, %3, %%g1\n\t"
255 "cmp %%g1, %0\n\t"
256 "bne,pn %%icc, 2f\n\t"
257 " andn %%g7, %1, %%g1\n\t"
258 "casx [%2], %%g7, %%g1\n\t"
259 "cmp %%g7, %%g1\n\t"
260 "bne,pn %%xcc, 1b\n\t"
b445e26c 261 " nop\n"
1da177e4
LT
262 "2:"
263 : /* no outputs */
264 : "r" (cpu), "r" (mask), "r" (&page->flags),
48b0e548
DM
265 "i" (PG_dcache_cpu_mask),
266 "i" (PG_dcache_cpu_shift)
1da177e4
LT
267 : "g1", "g7");
268}
269
517af332
DM
270static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
271{
272 unsigned long tsb_addr = (unsigned long) ent;
273
3b3ab2eb 274 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
517af332
DM
275 tsb_addr = __pa(tsb_addr);
276
277 __tsb_insert(tsb_addr, tag, pte);
278}
279
c4bce90e 280unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
c4bce90e 281
ff9aefbf 282static void flush_dcache(unsigned long pfn)
1da177e4 283{
ff9aefbf 284 struct page *page;
7a591cfe 285
ff9aefbf 286 page = pfn_to_page(pfn);
1a78cedb 287 if (page) {
7a591cfe 288 unsigned long pg_flags;
7a591cfe 289
ff9aefbf
SR
290 pg_flags = page->flags;
291 if (pg_flags & (1UL << PG_dcache_dirty)) {
7a591cfe
DM
292 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
293 PG_dcache_cpu_mask);
294 int this_cpu = get_cpu();
295
296 /* This is just to optimize away some function calls
297 * in the SMP case.
298 */
299 if (cpu == this_cpu)
300 flush_dcache_page_impl(page);
301 else
302 smp_flush_dcache_page_impl(page, cpu);
303
304 clear_dcache_dirty_cpu(page, cpu);
305
306 put_cpu();
307 }
1da177e4 308 }
ff9aefbf
SR
309}
310
9e695d2e
DM
311/* mm->context.lock must be held */
312static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
313 unsigned long tsb_hash_shift, unsigned long address,
314 unsigned long tte)
315{
316 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
317 unsigned long tag;
318
bcd896ba
DM
319 if (unlikely(!tsb))
320 return;
321
9e695d2e
DM
322 tsb += ((address >> tsb_hash_shift) &
323 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
324 tag = (address >> 22UL);
325 tsb_insert(tsb, tag, tte);
326}
327
bcd896ba
DM
328#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
329static inline bool is_hugetlb_pte(pte_t pte)
330{
331 if ((tlb_type == hypervisor &&
332 (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
333 (tlb_type != hypervisor &&
334 (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
335 return true;
336 return false;
337}
338#endif
339
4b3073e1 340void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
ff9aefbf
SR
341{
342 struct mm_struct *mm;
bcd896ba 343 unsigned long flags;
4b3073e1 344 pte_t pte = *ptep;
ff9aefbf
SR
345
346 if (tlb_type != hypervisor) {
347 unsigned long pfn = pte_pfn(pte);
348
349 if (pfn_valid(pfn))
350 flush_dcache(pfn);
351 }
bd40791e
DM
352
353 mm = vma->vm_mm;
7a1ac526 354
18f38132
DM
355 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
356 if (!pte_accessible(mm, pte))
357 return;
358
7a1ac526
DM
359 spin_lock_irqsave(&mm->context.lock, flags);
360
9e695d2e 361#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
bcd896ba 362 if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
37b3a8ff 363 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
bcd896ba
DM
364 address, pte_val(pte));
365 else
dcc1e8dd 366#endif
bcd896ba
DM
367 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
368 address, pte_val(pte));
7a1ac526
DM
369
370 spin_unlock_irqrestore(&mm->context.lock, flags);
1da177e4
LT
371}
372
373void flush_dcache_page(struct page *page)
374{
a9546f59
DM
375 struct address_space *mapping;
376 int this_cpu;
1da177e4 377
7a591cfe
DM
378 if (tlb_type == hypervisor)
379 return;
380
a9546f59
DM
381 /* Do not bother with the expensive D-cache flush if it
382 * is merely the zero page. The 'bigcore' testcase in GDB
383 * causes this case to run millions of times.
384 */
385 if (page == ZERO_PAGE(0))
386 return;
387
388 this_cpu = get_cpu();
389
390 mapping = page_mapping(page);
1da177e4 391 if (mapping && !mapping_mapped(mapping)) {
a9546f59 392 int dirty = test_bit(PG_dcache_dirty, &page->flags);
1da177e4 393 if (dirty) {
a9546f59
DM
394 int dirty_cpu = dcache_dirty_cpu(page);
395
1da177e4
LT
396 if (dirty_cpu == this_cpu)
397 goto out;
398 smp_flush_dcache_page_impl(page, dirty_cpu);
399 }
400 set_dcache_dirty(page, this_cpu);
401 } else {
402 /* We could delay the flush for the !page_mapping
403 * case too. But that case is for exec env/arg
404 * pages and those are %99 certainly going to get
405 * faulted into the tlb (and thus flushed) anyways.
406 */
407 flush_dcache_page_impl(page);
408 }
409
410out:
411 put_cpu();
412}
917c3660 413EXPORT_SYMBOL(flush_dcache_page);
1da177e4 414
05e14cb3 415void __kprobes flush_icache_range(unsigned long start, unsigned long end)
1da177e4 416{
a43fe0e7 417 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
1da177e4
LT
418 if (tlb_type == spitfire) {
419 unsigned long kaddr;
420
a94aa253
DM
421 /* This code only runs on Spitfire cpus so this is
422 * why we can assume _PAGE_PADDR_4U.
423 */
424 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
425 unsigned long paddr, mask = _PAGE_PADDR_4U;
426
427 if (kaddr >= PAGE_OFFSET)
428 paddr = kaddr & mask;
429 else {
430 pgd_t *pgdp = pgd_offset_k(kaddr);
431 pud_t *pudp = pud_offset(pgdp, kaddr);
432 pmd_t *pmdp = pmd_offset(pudp, kaddr);
433 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
434
435 paddr = pte_val(*ptep) & mask;
436 }
437 __flush_icache_page(paddr);
438 }
1da177e4
LT
439 }
440}
917c3660 441EXPORT_SYMBOL(flush_icache_range);
1da177e4 442
1da177e4
LT
443void mmu_info(struct seq_file *m)
444{
ce33fdc5
DM
445 static const char *pgsz_strings[] = {
446 "8K", "64K", "512K", "4MB", "32MB",
447 "256MB", "2GB", "16GB",
448 };
449 int i, printed;
450
1da177e4
LT
451 if (tlb_type == cheetah)
452 seq_printf(m, "MMU Type\t: Cheetah\n");
453 else if (tlb_type == cheetah_plus)
454 seq_printf(m, "MMU Type\t: Cheetah+\n");
455 else if (tlb_type == spitfire)
456 seq_printf(m, "MMU Type\t: Spitfire\n");
a43fe0e7
DM
457 else if (tlb_type == hypervisor)
458 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
1da177e4
LT
459 else
460 seq_printf(m, "MMU Type\t: ???\n");
461
ce33fdc5
DM
462 seq_printf(m, "MMU PGSZs\t: ");
463 printed = 0;
464 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
465 if (cpu_pgsz_mask & (1UL << i)) {
466 seq_printf(m, "%s%s",
467 printed ? "," : "", pgsz_strings[i]);
468 printed++;
469 }
470 }
471 seq_putc(m, '\n');
472
1da177e4
LT
473#ifdef CONFIG_DEBUG_DCFLUSH
474 seq_printf(m, "DCPageFlushes\t: %d\n",
475 atomic_read(&dcpage_flushes));
476#ifdef CONFIG_SMP
477 seq_printf(m, "DCPageFlushesXC\t: %d\n",
478 atomic_read(&dcpage_flushes_xcall));
479#endif /* CONFIG_SMP */
480#endif /* CONFIG_DEBUG_DCFLUSH */
481}
482
a94aa253
DM
483struct linux_prom_translation prom_trans[512] __read_mostly;
484unsigned int prom_trans_ents __read_mostly;
485
1da177e4
LT
486unsigned long kern_locked_tte_data;
487
c9c10830
DM
488/* The obp translations are saved based on 8k pagesize, since obp can
489 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
74bf4312 490 * HI_OBP_ADDRESS range are handled in ktlb.S.
c9c10830 491 */
5085b4a5
DM
492static inline int in_obp_range(unsigned long vaddr)
493{
494 return (vaddr >= LOW_OBP_ADDRESS &&
495 vaddr < HI_OBP_ADDRESS);
496}
497
c9c10830 498static int cmp_ptrans(const void *a, const void *b)
405599bd 499{
c9c10830 500 const struct linux_prom_translation *x = a, *y = b;
405599bd 501
c9c10830
DM
502 if (x->virt > y->virt)
503 return 1;
504 if (x->virt < y->virt)
505 return -1;
506 return 0;
405599bd
DM
507}
508
c9c10830 509/* Read OBP translations property into 'prom_trans[]'. */
9ad98c5b 510static void __init read_obp_translations(void)
405599bd 511{
c9c10830 512 int n, node, ents, first, last, i;
1da177e4
LT
513
514 node = prom_finddevice("/virtual-memory");
515 n = prom_getproplen(node, "translations");
405599bd 516 if (unlikely(n == 0 || n == -1)) {
b206fc4c 517 prom_printf("prom_mappings: Couldn't get size.\n");
1da177e4
LT
518 prom_halt();
519 }
405599bd 520 if (unlikely(n > sizeof(prom_trans))) {
5da444aa 521 prom_printf("prom_mappings: Size %d is too big.\n", n);
1da177e4
LT
522 prom_halt();
523 }
405599bd 524
b206fc4c 525 if ((n = prom_getproperty(node, "translations",
405599bd
DM
526 (char *)&prom_trans[0],
527 sizeof(prom_trans))) == -1) {
b206fc4c 528 prom_printf("prom_mappings: Couldn't get property.\n");
1da177e4
LT
529 prom_halt();
530 }
9ad98c5b 531
b206fc4c 532 n = n / sizeof(struct linux_prom_translation);
9ad98c5b 533
c9c10830
DM
534 ents = n;
535
536 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
537 cmp_ptrans, NULL);
538
539 /* Now kick out all the non-OBP entries. */
540 for (i = 0; i < ents; i++) {
541 if (in_obp_range(prom_trans[i].virt))
542 break;
543 }
544 first = i;
545 for (; i < ents; i++) {
546 if (!in_obp_range(prom_trans[i].virt))
547 break;
548 }
549 last = i;
550
551 for (i = 0; i < (last - first); i++) {
552 struct linux_prom_translation *src = &prom_trans[i + first];
553 struct linux_prom_translation *dest = &prom_trans[i];
554
555 *dest = *src;
556 }
557 for (; i < ents; i++) {
558 struct linux_prom_translation *dest = &prom_trans[i];
559 dest->virt = dest->size = dest->data = 0x0UL;
560 }
561
562 prom_trans_ents = last - first;
563
564 if (tlb_type == spitfire) {
565 /* Clear diag TTE bits. */
566 for (i = 0; i < prom_trans_ents; i++)
567 prom_trans[i].data &= ~0x0003fe0000000000UL;
568 }
f4142cba
DM
569
570 /* Force execute bit on. */
571 for (i = 0; i < prom_trans_ents; i++)
572 prom_trans[i].data |= (tlb_type == hypervisor ?
573 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
405599bd 574}
1da177e4 575
d82ace7d
DM
576static void __init hypervisor_tlb_lock(unsigned long vaddr,
577 unsigned long pte,
578 unsigned long mmu)
579{
7db35f31
DM
580 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
581
582 if (ret != 0) {
5da444aa 583 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
7db35f31 584 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
12e126ad
DM
585 prom_halt();
586 }
d82ace7d
DM
587}
588
c4bce90e
DM
589static unsigned long kern_large_tte(unsigned long paddr);
590
898cf0ec 591static void __init remap_kernel(void)
405599bd
DM
592{
593 unsigned long phys_page, tte_vaddr, tte_data;
64658743 594 int i, tlb_ent = sparc64_highest_locked_tlbent();
405599bd 595
1da177e4 596 tte_vaddr = (unsigned long) KERNBASE;
0eef331a 597 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
c4bce90e 598 tte_data = kern_large_tte(phys_page);
1da177e4
LT
599
600 kern_locked_tte_data = tte_data;
601
d82ace7d
DM
602 /* Now lock us into the TLBs via Hypervisor or OBP. */
603 if (tlb_type == hypervisor) {
64658743 604 for (i = 0; i < num_kernel_image_mappings; i++) {
d82ace7d
DM
605 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
606 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
64658743
DM
607 tte_vaddr += 0x400000;
608 tte_data += 0x400000;
d82ace7d
DM
609 }
610 } else {
64658743
DM
611 for (i = 0; i < num_kernel_image_mappings; i++) {
612 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
613 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
614 tte_vaddr += 0x400000;
615 tte_data += 0x400000;
d82ace7d 616 }
64658743 617 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
1da177e4 618 }
0835ae0f
DM
619 if (tlb_type == cheetah_plus) {
620 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
621 CTX_CHEETAH_PLUS_NUC);
622 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
623 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
624 }
405599bd 625}
1da177e4 626
405599bd 627
c9c10830 628static void __init inherit_prom_mappings(void)
9ad98c5b 629{
405599bd 630 /* Now fixup OBP's idea about where we really are mapped. */
3c62a2d3 631 printk("Remapping the kernel... ");
405599bd 632 remap_kernel();
3c62a2d3 633 printk("done.\n");
1da177e4
LT
634}
635
1da177e4
LT
636void prom_world(int enter)
637{
1da177e4 638 if (!enter)
dff933da 639 set_fs(get_fs());
1da177e4 640
3487d1d4 641 __asm__ __volatile__("flushw");
1da177e4
LT
642}
643
1da177e4
LT
644void __flush_dcache_range(unsigned long start, unsigned long end)
645{
646 unsigned long va;
647
648 if (tlb_type == spitfire) {
649 int n = 0;
650
651 for (va = start; va < end; va += 32) {
652 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
653 if (++n >= 512)
654 break;
655 }
a43fe0e7 656 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
657 start = __pa(start);
658 end = __pa(end);
659 for (va = start; va < end; va += 32)
660 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
661 "membar #Sync"
662 : /* no outputs */
663 : "r" (va),
664 "i" (ASI_DCACHE_INVALIDATE));
665 }
666}
917c3660 667EXPORT_SYMBOL(__flush_dcache_range);
1da177e4 668
85f1e1f6
DM
669/* get_new_mmu_context() uses "cache + 1". */
670DEFINE_SPINLOCK(ctx_alloc_lock);
671unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
672#define MAX_CTX_NR (1UL << CTX_NR_BITS)
673#define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
674DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
675
1da177e4
LT
676/* Caller does TLB context flushing on local CPU if necessary.
677 * The caller also ensures that CTX_VALID(mm->context) is false.
678 *
679 * We must be careful about boundary cases so that we never
680 * let the user have CTX 0 (nucleus) or we ever use a CTX
681 * version of zero (and thus NO_CONTEXT would not be caught
682 * by version mis-match tests in mmu_context.h).
a0663a79
DM
683 *
684 * Always invoked with interrupts disabled.
1da177e4
LT
685 */
686void get_new_mmu_context(struct mm_struct *mm)
687{
688 unsigned long ctx, new_ctx;
689 unsigned long orig_pgsz_bits;
a0663a79 690 int new_version;
1da177e4 691
07df8418 692 spin_lock(&ctx_alloc_lock);
1da177e4
LT
693 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
694 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
695 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
a0663a79 696 new_version = 0;
1da177e4
LT
697 if (new_ctx >= (1 << CTX_NR_BITS)) {
698 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
699 if (new_ctx >= ctx) {
700 int i;
701 new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
702 CTX_FIRST_VERSION;
703 if (new_ctx == 1)
704 new_ctx = CTX_FIRST_VERSION;
705
706 /* Don't call memset, for 16 entries that's just
707 * plain silly...
708 */
709 mmu_context_bmap[0] = 3;
710 mmu_context_bmap[1] = 0;
711 mmu_context_bmap[2] = 0;
712 mmu_context_bmap[3] = 0;
713 for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
714 mmu_context_bmap[i + 0] = 0;
715 mmu_context_bmap[i + 1] = 0;
716 mmu_context_bmap[i + 2] = 0;
717 mmu_context_bmap[i + 3] = 0;
718 }
a0663a79 719 new_version = 1;
1da177e4
LT
720 goto out;
721 }
722 }
723 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
724 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
725out:
726 tlb_context_cache = new_ctx;
727 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
07df8418 728 spin_unlock(&ctx_alloc_lock);
a0663a79
DM
729
730 if (unlikely(new_version))
731 smp_new_mmu_context_version();
1da177e4
LT
732}
733
919ee677
DM
734static int numa_enabled = 1;
735static int numa_debug;
736
737static int __init early_numa(char *p)
1da177e4 738{
919ee677
DM
739 if (!p)
740 return 0;
741
742 if (strstr(p, "off"))
743 numa_enabled = 0;
d1112018 744
919ee677
DM
745 if (strstr(p, "debug"))
746 numa_debug = 1;
d1112018 747
919ee677 748 return 0;
d1112018 749}
919ee677
DM
750early_param("numa", early_numa);
751
752#define numadbg(f, a...) \
753do { if (numa_debug) \
754 printk(KERN_INFO f, ## a); \
755} while (0)
d1112018 756
4e82c9a6
DM
757static void __init find_ramdisk(unsigned long phys_base)
758{
759#ifdef CONFIG_BLK_DEV_INITRD
760 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
761 unsigned long ramdisk_image;
762
763 /* Older versions of the bootloader only supported a
764 * 32-bit physical address for the ramdisk image
765 * location, stored at sparc_ramdisk_image. Newer
766 * SILO versions set sparc_ramdisk_image to zero and
767 * provide a full 64-bit physical address at
768 * sparc_ramdisk_image64.
769 */
770 ramdisk_image = sparc_ramdisk_image;
771 if (!ramdisk_image)
772 ramdisk_image = sparc_ramdisk_image64;
773
774 /* Another bootloader quirk. The bootloader normalizes
775 * the physical address to KERNBASE, so we have to
776 * factor that back out and add in the lowest valid
777 * physical page address to get the true physical address.
778 */
779 ramdisk_image -= KERNBASE;
780 ramdisk_image += phys_base;
781
919ee677
DM
782 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
783 ramdisk_image, sparc_ramdisk_size);
784
4e82c9a6
DM
785 initrd_start = ramdisk_image;
786 initrd_end = ramdisk_image + sparc_ramdisk_size;
3b2a7e23 787
95f72d1e 788 memblock_reserve(initrd_start, sparc_ramdisk_size);
d45100f7
DM
789
790 initrd_start += PAGE_OFFSET;
791 initrd_end += PAGE_OFFSET;
4e82c9a6
DM
792 }
793#endif
794}
795
919ee677
DM
796struct node_mem_mask {
797 unsigned long mask;
798 unsigned long val;
919ee677
DM
799};
800static struct node_mem_mask node_masks[MAX_NUMNODES];
801static int num_node_masks;
802
48d37216
SR
803#ifdef CONFIG_NEED_MULTIPLE_NODES
804
919ee677
DM
805int numa_cpu_lookup_table[NR_CPUS];
806cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
807
919ee677
DM
808struct mdesc_mblock {
809 u64 base;
810 u64 size;
811 u64 offset; /* RA-to-PA */
812};
813static struct mdesc_mblock *mblocks;
814static int num_mblocks;
815
816static unsigned long ra_to_pa(unsigned long addr)
817{
818 int i;
819
820 for (i = 0; i < num_mblocks; i++) {
821 struct mdesc_mblock *m = &mblocks[i];
822
823 if (addr >= m->base &&
824 addr < (m->base + m->size)) {
825 addr += m->offset;
826 break;
827 }
828 }
829 return addr;
830}
831
832static int find_node(unsigned long addr)
833{
834 int i;
835
836 addr = ra_to_pa(addr);
837 for (i = 0; i < num_node_masks; i++) {
838 struct node_mem_mask *p = &node_masks[i];
839
840 if ((addr & p->mask) == p->val)
841 return i;
842 }
3dee9df5 843 /* The following condition has been observed on LDOM guests.*/
844 WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node"
845 " rule. Some physical memory will be owned by node 0.");
846 return 0;
919ee677
DM
847}
848
f9b18db3 849static u64 memblock_nid_range(u64 start, u64 end, int *nid)
919ee677
DM
850{
851 *nid = find_node(start);
852 start += PAGE_SIZE;
853 while (start < end) {
854 int n = find_node(start);
855
856 if (n != *nid)
857 break;
858 start += PAGE_SIZE;
859 }
860
c918dcce
DM
861 if (start > end)
862 start = end;
863
919ee677
DM
864 return start;
865}
919ee677
DM
866#endif
867
868/* This must be invoked after performing all of the necessary
2a4814df 869 * memblock_set_node() calls for 'nid'. We need to be able to get
919ee677 870 * correct data from get_pfn_range_for_nid().
f1cfdb55 871 */
919ee677
DM
872static void __init allocate_node_data(int nid)
873{
919ee677 874 struct pglist_data *p;
aa6f0790 875 unsigned long start_pfn, end_pfn;
919ee677 876#ifdef CONFIG_NEED_MULTIPLE_NODES
aa6f0790
PG
877 unsigned long paddr;
878
9d1e2492 879 paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
919ee677
DM
880 if (!paddr) {
881 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
882 prom_halt();
883 }
884 NODE_DATA(nid) = __va(paddr);
885 memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
886
625d693e 887 NODE_DATA(nid)->node_id = nid;
919ee677
DM
888#endif
889
890 p = NODE_DATA(nid);
891
892 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
893 p->node_start_pfn = start_pfn;
894 p->node_spanned_pages = end_pfn - start_pfn;
919ee677
DM
895}
896
897static void init_node_masks_nonnuma(void)
d1112018 898{
48d37216 899#ifdef CONFIG_NEED_MULTIPLE_NODES
1da177e4 900 int i;
48d37216 901#endif
1da177e4 902
919ee677 903 numadbg("Initializing tables for non-numa.\n");
6fc5bae7 904
919ee677
DM
905 node_masks[0].mask = node_masks[0].val = 0;
906 num_node_masks = 1;
d1112018 907
48d37216 908#ifdef CONFIG_NEED_MULTIPLE_NODES
919ee677
DM
909 for (i = 0; i < NR_CPUS; i++)
910 numa_cpu_lookup_table[i] = 0;
1da177e4 911
fb1fece5 912 cpumask_setall(&numa_cpumask_lookup_table[0]);
48d37216 913#endif
919ee677
DM
914}
915
916#ifdef CONFIG_NEED_MULTIPLE_NODES
917struct pglist_data *node_data[MAX_NUMNODES];
918
919EXPORT_SYMBOL(numa_cpu_lookup_table);
920EXPORT_SYMBOL(numa_cpumask_lookup_table);
921EXPORT_SYMBOL(node_data);
922
923struct mdesc_mlgroup {
924 u64 node;
925 u64 latency;
926 u64 match;
927 u64 mask;
928};
929static struct mdesc_mlgroup *mlgroups;
930static int num_mlgroups;
931
932static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
933 u32 cfg_handle)
934{
935 u64 arc;
936
937 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
938 u64 target = mdesc_arc_target(md, arc);
939 const u64 *val;
940
941 val = mdesc_get_property(md, target,
942 "cfg-handle", NULL);
943 if (val && *val == cfg_handle)
944 return 0;
945 }
946 return -ENODEV;
947}
948
949static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
950 u32 cfg_handle)
951{
952 u64 arc, candidate, best_latency = ~(u64)0;
953
954 candidate = MDESC_NODE_NULL;
955 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
956 u64 target = mdesc_arc_target(md, arc);
957 const char *name = mdesc_node_name(md, target);
958 const u64 *val;
959
960 if (strcmp(name, "pio-latency-group"))
961 continue;
962
963 val = mdesc_get_property(md, target, "latency", NULL);
964 if (!val)
965 continue;
966
967 if (*val < best_latency) {
968 candidate = target;
969 best_latency = *val;
970 }
971 }
972
973 if (candidate == MDESC_NODE_NULL)
974 return -ENODEV;
975
976 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
977}
978
979int of_node_to_nid(struct device_node *dp)
980{
981 const struct linux_prom64_registers *regs;
982 struct mdesc_handle *md;
983 u32 cfg_handle;
984 int count, nid;
985 u64 grp;
986
072bd413
DM
987 /* This is the right thing to do on currently supported
988 * SUN4U NUMA platforms as well, as the PCI controller does
989 * not sit behind any particular memory controller.
990 */
919ee677
DM
991 if (!mlgroups)
992 return -1;
993
994 regs = of_get_property(dp, "reg", NULL);
995 if (!regs)
996 return -1;
997
998 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
999
1000 md = mdesc_grab();
1001
1002 count = 0;
1003 nid = -1;
1004 mdesc_for_each_node_by_name(md, grp, "group") {
1005 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1006 nid = count;
1007 break;
1008 }
1009 count++;
1010 }
1011
1012 mdesc_release(md);
1013
1014 return nid;
1015}
1016
01c45381 1017static void __init add_node_ranges(void)
919ee677 1018{
08b84798 1019 struct memblock_region *reg;
919ee677 1020
08b84798
BH
1021 for_each_memblock(memory, reg) {
1022 unsigned long size = reg->size;
919ee677
DM
1023 unsigned long start, end;
1024
08b84798 1025 start = reg->base;
919ee677
DM
1026 end = start + size;
1027 while (start < end) {
1028 unsigned long this_end;
1029 int nid;
1030
35a1f0bd 1031 this_end = memblock_nid_range(start, end, &nid);
919ee677 1032
2a4814df 1033 numadbg("Setting memblock NUMA node nid[%d] "
919ee677
DM
1034 "start[%lx] end[%lx]\n",
1035 nid, start, this_end);
1036
e7e8de59
TC
1037 memblock_set_node(start, this_end - start,
1038 &memblock.memory, nid);
919ee677
DM
1039 start = this_end;
1040 }
1041 }
1042}
1043
1044static int __init grab_mlgroups(struct mdesc_handle *md)
1045{
1046 unsigned long paddr;
1047 int count = 0;
1048 u64 node;
1049
1050 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1051 count++;
1052 if (!count)
1053 return -ENOENT;
1054
95f72d1e 1055 paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
919ee677
DM
1056 SMP_CACHE_BYTES);
1057 if (!paddr)
1058 return -ENOMEM;
1059
1060 mlgroups = __va(paddr);
1061 num_mlgroups = count;
1062
1063 count = 0;
1064 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1065 struct mdesc_mlgroup *m = &mlgroups[count++];
1066 const u64 *val;
1067
1068 m->node = node;
1069
1070 val = mdesc_get_property(md, node, "latency", NULL);
1071 m->latency = *val;
1072 val = mdesc_get_property(md, node, "address-match", NULL);
1073 m->match = *val;
1074 val = mdesc_get_property(md, node, "address-mask", NULL);
1075 m->mask = *val;
1076
90181136
SR
1077 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1078 "match[%llx] mask[%llx]\n",
919ee677
DM
1079 count - 1, m->node, m->latency, m->match, m->mask);
1080 }
1081
1082 return 0;
1083}
1084
1085static int __init grab_mblocks(struct mdesc_handle *md)
1086{
1087 unsigned long paddr;
1088 int count = 0;
1089 u64 node;
1090
1091 mdesc_for_each_node_by_name(md, node, "mblock")
1092 count++;
1093 if (!count)
1094 return -ENOENT;
1095
95f72d1e 1096 paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
919ee677
DM
1097 SMP_CACHE_BYTES);
1098 if (!paddr)
1099 return -ENOMEM;
1100
1101 mblocks = __va(paddr);
1102 num_mblocks = count;
1103
1104 count = 0;
1105 mdesc_for_each_node_by_name(md, node, "mblock") {
1106 struct mdesc_mblock *m = &mblocks[count++];
1107 const u64 *val;
1108
1109 val = mdesc_get_property(md, node, "base", NULL);
1110 m->base = *val;
1111 val = mdesc_get_property(md, node, "size", NULL);
1112 m->size = *val;
1113 val = mdesc_get_property(md, node,
1114 "address-congruence-offset", NULL);
771a37ff 1115
1116 /* The address-congruence-offset property is optional.
1117 * Explicity zero it be identifty this.
1118 */
1119 if (val)
1120 m->offset = *val;
1121 else
1122 m->offset = 0UL;
919ee677 1123
90181136 1124 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
919ee677
DM
1125 count - 1, m->base, m->size, m->offset);
1126 }
1127
1128 return 0;
1129}
1130
1131static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1132 u64 grp, cpumask_t *mask)
1133{
1134 u64 arc;
1135
fb1fece5 1136 cpumask_clear(mask);
919ee677
DM
1137
1138 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1139 u64 target = mdesc_arc_target(md, arc);
1140 const char *name = mdesc_node_name(md, target);
1141 const u64 *id;
1142
1143 if (strcmp(name, "cpu"))
1144 continue;
1145 id = mdesc_get_property(md, target, "id", NULL);
e305cb8f 1146 if (*id < nr_cpu_ids)
fb1fece5 1147 cpumask_set_cpu(*id, mask);
919ee677
DM
1148 }
1149}
1150
1151static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1152{
1153 int i;
1154
1155 for (i = 0; i < num_mlgroups; i++) {
1156 struct mdesc_mlgroup *m = &mlgroups[i];
1157 if (m->node == node)
1158 return m;
1159 }
1160 return NULL;
1161}
1162
1163static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1164 int index)
1165{
1166 struct mdesc_mlgroup *candidate = NULL;
1167 u64 arc, best_latency = ~(u64)0;
1168 struct node_mem_mask *n;
1169
1170 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1171 u64 target = mdesc_arc_target(md, arc);
1172 struct mdesc_mlgroup *m = find_mlgroup(target);
1173 if (!m)
1174 continue;
1175 if (m->latency < best_latency) {
1176 candidate = m;
1177 best_latency = m->latency;
1178 }
1179 }
1180 if (!candidate)
1181 return -ENOENT;
1182
1183 if (num_node_masks != index) {
1184 printk(KERN_ERR "Inconsistent NUMA state, "
1185 "index[%d] != num_node_masks[%d]\n",
1186 index, num_node_masks);
1187 return -EINVAL;
1188 }
1189
1190 n = &node_masks[num_node_masks++];
1191
1192 n->mask = candidate->mask;
1193 n->val = candidate->match;
1da177e4 1194
90181136 1195 numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
919ee677 1196 index, n->mask, n->val, candidate->latency);
1da177e4 1197
919ee677
DM
1198 return 0;
1199}
1200
1201static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1202 int index)
1203{
1204 cpumask_t mask;
1205 int cpu;
1206
1207 numa_parse_mdesc_group_cpus(md, grp, &mask);
1208
fb1fece5 1209 for_each_cpu(cpu, &mask)
919ee677 1210 numa_cpu_lookup_table[cpu] = index;
fb1fece5 1211 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
919ee677
DM
1212
1213 if (numa_debug) {
1214 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
fb1fece5 1215 for_each_cpu(cpu, &mask)
919ee677
DM
1216 printk("%d ", cpu);
1217 printk("]\n");
1218 }
1219
1220 return numa_attach_mlgroup(md, grp, index);
1221}
1222
1223static int __init numa_parse_mdesc(void)
1224{
1225 struct mdesc_handle *md = mdesc_grab();
1226 int i, err, count;
1227 u64 node;
1228
1229 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1230 if (node == MDESC_NODE_NULL) {
1231 mdesc_release(md);
1232 return -ENOENT;
1233 }
1234
1235 err = grab_mblocks(md);
1236 if (err < 0)
1237 goto out;
1238
1239 err = grab_mlgroups(md);
1240 if (err < 0)
1241 goto out;
1242
1243 count = 0;
1244 mdesc_for_each_node_by_name(md, node, "group") {
1245 err = numa_parse_mdesc_group(md, node, count);
1246 if (err < 0)
1247 break;
1248 count++;
1249 }
1250
1251 add_node_ranges();
1252
1253 for (i = 0; i < num_node_masks; i++) {
1254 allocate_node_data(i);
1255 node_set_online(i);
1256 }
1257
1258 err = 0;
1259out:
1260 mdesc_release(md);
1261 return err;
1262}
1263
072bd413
DM
1264static int __init numa_parse_jbus(void)
1265{
1266 unsigned long cpu, index;
1267
1268 /* NUMA node id is encoded in bits 36 and higher, and there is
1269 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1270 */
1271 index = 0;
1272 for_each_present_cpu(cpu) {
1273 numa_cpu_lookup_table[cpu] = index;
fb1fece5 1274 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
072bd413
DM
1275 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1276 node_masks[index].val = cpu << 36UL;
1277
1278 index++;
1279 }
1280 num_node_masks = index;
1281
1282 add_node_ranges();
1283
1284 for (index = 0; index < num_node_masks; index++) {
1285 allocate_node_data(index);
1286 node_set_online(index);
1287 }
1288
1289 return 0;
1290}
1291
919ee677
DM
1292static int __init numa_parse_sun4u(void)
1293{
072bd413
DM
1294 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1295 unsigned long ver;
1296
1297 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1298 if ((ver >> 32UL) == __JALAPENO_ID ||
1299 (ver >> 32UL) == __SERRANO_ID)
1300 return numa_parse_jbus();
1301 }
919ee677
DM
1302 return -1;
1303}
1304
1305static int __init bootmem_init_numa(void)
1306{
1307 int err = -1;
1308
1309 numadbg("bootmem_init_numa()\n");
1310
1311 if (numa_enabled) {
1312 if (tlb_type == hypervisor)
1313 err = numa_parse_mdesc();
1314 else
1315 err = numa_parse_sun4u();
1316 }
1317 return err;
1318}
1319
1320#else
1da177e4 1321
919ee677
DM
1322static int bootmem_init_numa(void)
1323{
1324 return -1;
1325}
1326
1327#endif
1328
1329static void __init bootmem_init_nonnuma(void)
1330{
95f72d1e
YL
1331 unsigned long top_of_ram = memblock_end_of_DRAM();
1332 unsigned long total_ram = memblock_phys_mem_size();
919ee677
DM
1333
1334 numadbg("bootmem_init_nonnuma()\n");
1335
1336 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1337 top_of_ram, total_ram);
1338 printk(KERN_INFO "Memory hole size: %ldMB\n",
1339 (top_of_ram - total_ram) >> 20);
1340
1341 init_node_masks_nonnuma();
e7e8de59 1342 memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
919ee677 1343 allocate_node_data(0);
919ee677
DM
1344 node_set_online(0);
1345}
1346
919ee677
DM
1347static unsigned long __init bootmem_init(unsigned long phys_base)
1348{
1349 unsigned long end_pfn;
919ee677 1350
95f72d1e 1351 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
919ee677
DM
1352 max_pfn = max_low_pfn = end_pfn;
1353 min_low_pfn = (phys_base >> PAGE_SHIFT);
1354
1355 if (bootmem_init_numa() < 0)
1356 bootmem_init_nonnuma();
1357
625d693e
DM
1358 /* Dump memblock with node info. */
1359 memblock_dump_all();
919ee677 1360
625d693e 1361 /* XXX cpu notifier XXX */
d1112018 1362
625d693e 1363 sparse_memory_present_with_active_regions(MAX_NUMNODES);
d1112018
DM
1364 sparse_init();
1365
1da177e4
LT
1366 return end_pfn;
1367}
1368
9cc3a1ac
DM
1369static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1370static int pall_ents __initdata;
1371
56425306 1372#ifdef CONFIG_DEBUG_PAGEALLOC
896aef43
SR
1373static unsigned long __ref kernel_map_range(unsigned long pstart,
1374 unsigned long pend, pgprot_t prot)
56425306
DM
1375{
1376 unsigned long vstart = PAGE_OFFSET + pstart;
1377 unsigned long vend = PAGE_OFFSET + pend;
1378 unsigned long alloc_bytes = 0UL;
1379
1380 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
13edad7a 1381 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
56425306
DM
1382 vstart, vend);
1383 prom_halt();
1384 }
1385
1386 while (vstart < vend) {
1387 unsigned long this_end, paddr = __pa(vstart);
1388 pgd_t *pgd = pgd_offset_k(vstart);
1389 pud_t *pud;
1390 pmd_t *pmd;
1391 pte_t *pte;
1392
1393 pud = pud_offset(pgd, vstart);
1394 if (pud_none(*pud)) {
1395 pmd_t *new;
1396
1397 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1398 alloc_bytes += PAGE_SIZE;
1399 pud_populate(&init_mm, pud, new);
1400 }
1401
1402 pmd = pmd_offset(pud, vstart);
1403 if (!pmd_present(*pmd)) {
1404 pte_t *new;
1405
1406 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1407 alloc_bytes += PAGE_SIZE;
1408 pmd_populate_kernel(&init_mm, pmd, new);
1409 }
1410
1411 pte = pte_offset_kernel(pmd, vstart);
1412 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1413 if (this_end > vend)
1414 this_end = vend;
1415
1416 while (vstart < this_end) {
1417 pte_val(*pte) = (paddr | pgprot_val(prot));
1418
1419 vstart += PAGE_SIZE;
1420 paddr += PAGE_SIZE;
1421 pte++;
1422 }
1423 }
1424
1425 return alloc_bytes;
1426}
1427
56425306 1428extern unsigned int kvmap_linear_patch[1];
9cc3a1ac
DM
1429#endif /* CONFIG_DEBUG_PAGEALLOC */
1430
4f93d21d 1431static void __init kpte_set_val(unsigned long index, unsigned long val)
9cc3a1ac 1432{
4f93d21d 1433 unsigned long *ptr = kpte_linear_bitmap;
9cc3a1ac 1434
4f93d21d
DM
1435 val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1436 ptr += (index / (BITS_PER_LONG / 2));
9cc3a1ac 1437
4f93d21d
DM
1438 *ptr |= val;
1439}
f7c00338 1440
4f93d21d
DM
1441static const unsigned long kpte_shift_min = 28; /* 256MB */
1442static const unsigned long kpte_shift_max = 34; /* 16GB */
1443static const unsigned long kpte_shift_incr = 3;
9cc3a1ac 1444
4f93d21d
DM
1445static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1446 unsigned long shift)
1447{
1448 unsigned long size = (1UL << shift);
1449 unsigned long mask = (size - 1UL);
1450 unsigned long remains = end - start;
1451 unsigned long val;
9cc3a1ac 1452
4f93d21d
DM
1453 if (remains < size || (start & mask))
1454 return start;
9cc3a1ac 1455
4f93d21d
DM
1456 /* VAL maps:
1457 *
1458 * shift 28 --> kern_linear_pte_xor index 1
1459 * shift 31 --> kern_linear_pte_xor index 2
1460 * shift 34 --> kern_linear_pte_xor index 3
1461 */
1462 val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1463
1464 remains &= ~mask;
1465 if (shift != kpte_shift_max)
1466 remains = size;
1467
1468 while (remains) {
1469 unsigned long index = start >> kpte_shift_min;
1470
1471 kpte_set_val(index, val);
1472
1473 start += 1UL << kpte_shift_min;
1474 remains -= 1UL << kpte_shift_min;
1475 }
1476
1477 return start;
1478}
1479
1480static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1481{
1482 unsigned long smallest_size, smallest_mask;
1483 unsigned long s;
1484
1485 smallest_size = (1UL << kpte_shift_min);
1486 smallest_mask = (smallest_size - 1UL);
1487
1488 while (start < end) {
1489 unsigned long orig_start = start;
1490
1491 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1492 start = kpte_mark_using_shift(start, end, s);
1493
1494 if (start != orig_start)
1495 break;
9cc3a1ac 1496 }
4f93d21d
DM
1497
1498 if (start == orig_start)
1499 start = (start + smallest_size) & ~smallest_mask;
9cc3a1ac
DM
1500 }
1501}
56425306 1502
8f361453 1503static void __init init_kpte_bitmap(void)
56425306 1504{
9cc3a1ac 1505 unsigned long i;
13edad7a
DM
1506
1507 for (i = 0; i < pall_ents; i++) {
56425306
DM
1508 unsigned long phys_start, phys_end;
1509
13edad7a
DM
1510 phys_start = pall[i].phys_addr;
1511 phys_end = phys_start + pall[i].reg_size;
9cc3a1ac
DM
1512
1513 mark_kpte_bitmap(phys_start, phys_end);
8f361453
DM
1514 }
1515}
9cc3a1ac 1516
8f361453
DM
1517static void __init kernel_physical_mapping_init(void)
1518{
9cc3a1ac 1519#ifdef CONFIG_DEBUG_PAGEALLOC
8f361453
DM
1520 unsigned long i, mem_alloced = 0UL;
1521
1522 for (i = 0; i < pall_ents; i++) {
1523 unsigned long phys_start, phys_end;
1524
1525 phys_start = pall[i].phys_addr;
1526 phys_end = phys_start + pall[i].reg_size;
1527
56425306
DM
1528 mem_alloced += kernel_map_range(phys_start, phys_end,
1529 PAGE_KERNEL);
56425306
DM
1530 }
1531
1532 printk("Allocated %ld bytes for kernel page tables.\n",
1533 mem_alloced);
1534
1535 kvmap_linear_patch[0] = 0x01000000; /* nop */
1536 flushi(&kvmap_linear_patch[0]);
1537
1538 __flush_tlb_all();
9cc3a1ac 1539#endif
56425306
DM
1540}
1541
9cc3a1ac 1542#ifdef CONFIG_DEBUG_PAGEALLOC
56425306
DM
1543void kernel_map_pages(struct page *page, int numpages, int enable)
1544{
1545 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1546 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1547
1548 kernel_map_range(phys_start, phys_end,
1549 (enable ? PAGE_KERNEL : __pgprot(0)));
1550
74bf4312
DM
1551 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1552 PAGE_OFFSET + phys_end);
1553
56425306
DM
1554 /* we should perform an IPI and flush all tlbs,
1555 * but that can deadlock->flush only current cpu.
1556 */
1557 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1558 PAGE_OFFSET + phys_end);
1559}
1560#endif
1561
10147570
DM
1562unsigned long __init find_ecache_flush_span(unsigned long size)
1563{
0836a0eb
DM
1564 int i;
1565
13edad7a
DM
1566 for (i = 0; i < pavail_ents; i++) {
1567 if (pavail[i].reg_size >= size)
1568 return pavail[i].phys_addr;
0836a0eb
DM
1569 }
1570
13edad7a 1571 return ~0UL;
0836a0eb
DM
1572}
1573
b2d43834
DM
1574unsigned long PAGE_OFFSET;
1575EXPORT_SYMBOL(PAGE_OFFSET);
1576
1577static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits)
1578{
1579 unsigned long final_shift;
1580 unsigned int val = *insn;
1581 unsigned int cnt;
1582
1583 /* We are patching in ilog2(max_supported_phys_address), and
1584 * we are doing so in a manner similar to a relocation addend.
1585 * That is, we are adding the shift value to whatever value
1586 * is in the shift instruction count field already.
1587 */
1588 cnt = (val & 0x3f);
1589 val &= ~0x3f;
1590
1591 /* If we are trying to shift >= 64 bits, clear the destination
1592 * register. This can happen when phys_bits ends up being equal
1593 * to MAX_PHYS_ADDRESS_BITS.
1594 */
1595 final_shift = (cnt + (64 - phys_bits));
1596 if (final_shift >= 64) {
1597 unsigned int rd = (val >> 25) & 0x1f;
1598
1599 val = 0x80100000 | (rd << 25);
1600 } else {
1601 val |= final_shift;
1602 }
1603 *insn = val;
1604
1605 __asm__ __volatile__("flush %0"
1606 : /* no outputs */
1607 : "r" (insn));
1608}
1609
1610static void __init page_offset_shift_patch(unsigned long phys_bits)
1611{
1612 extern unsigned int __page_offset_shift_patch;
1613 extern unsigned int __page_offset_shift_patch_end;
1614 unsigned int *p;
1615
1616 p = &__page_offset_shift_patch;
1617 while (p < &__page_offset_shift_patch_end) {
1618 unsigned int *insn = (unsigned int *)(unsigned long)*p;
1619
1620 page_offset_shift_patch_one(insn, phys_bits);
1621
1622 p++;
1623 }
1624}
1625
1626static void __init setup_page_offset(void)
1627{
1628 unsigned long max_phys_bits = 40;
1629
1630 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1631 max_phys_bits = 42;
1632 } else if (tlb_type == hypervisor) {
1633 switch (sun4v_chip_type) {
1634 case SUN4V_CHIP_NIAGARA1:
1635 case SUN4V_CHIP_NIAGARA2:
1636 max_phys_bits = 39;
1637 break;
1638 case SUN4V_CHIP_NIAGARA3:
1639 max_phys_bits = 43;
1640 break;
1641 case SUN4V_CHIP_NIAGARA4:
1642 case SUN4V_CHIP_NIAGARA5:
1643 case SUN4V_CHIP_SPARC64X:
1644 default:
1645 max_phys_bits = 47;
1646 break;
1647 }
1648 }
1649
1650 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1651 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1652 max_phys_bits);
1653 prom_halt();
1654 }
1655
1656 PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits);
1657
1658 pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1659 PAGE_OFFSET, max_phys_bits);
1660
1661 page_offset_shift_patch(max_phys_bits);
1662}
1663
517af332
DM
1664static void __init tsb_phys_patch(void)
1665{
d257d5da 1666 struct tsb_ldquad_phys_patch_entry *pquad;
517af332
DM
1667 struct tsb_phys_patch_entry *p;
1668
d257d5da
DM
1669 pquad = &__tsb_ldquad_phys_patch;
1670 while (pquad < &__tsb_ldquad_phys_patch_end) {
1671 unsigned long addr = pquad->addr;
1672
1673 if (tlb_type == hypervisor)
1674 *(unsigned int *) addr = pquad->sun4v_insn;
1675 else
1676 *(unsigned int *) addr = pquad->sun4u_insn;
1677 wmb();
1678 __asm__ __volatile__("flush %0"
1679 : /* no outputs */
1680 : "r" (addr));
1681
1682 pquad++;
1683 }
1684
517af332
DM
1685 p = &__tsb_phys_patch;
1686 while (p < &__tsb_phys_patch_end) {
1687 unsigned long addr = p->addr;
1688
1689 *(unsigned int *) addr = p->insn;
1690 wmb();
1691 __asm__ __volatile__("flush %0"
1692 : /* no outputs */
1693 : "r" (addr));
1694
1695 p++;
1696 }
1697}
1698
490384e7 1699/* Don't mark as init, we give this to the Hypervisor. */
d1acb421
DM
1700#ifndef CONFIG_DEBUG_PAGEALLOC
1701#define NUM_KTSB_DESCR 2
1702#else
1703#define NUM_KTSB_DESCR 1
1704#endif
1705static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
490384e7
DM
1706extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1707
9076d0e7
DM
1708static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1709{
1710 pa >>= KTSB_PHYS_SHIFT;
1711
1712 while (start < end) {
1713 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1714
1715 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1716 __asm__ __volatile__("flush %0" : : "r" (ia));
1717
1718 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1719 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
1720
1721 start++;
1722 }
1723}
1724
1725static void ktsb_phys_patch(void)
1726{
1727 extern unsigned int __swapper_tsb_phys_patch;
1728 extern unsigned int __swapper_tsb_phys_patch_end;
9076d0e7
DM
1729 unsigned long ktsb_pa;
1730
1731 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1732 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1733 &__swapper_tsb_phys_patch_end, ktsb_pa);
1734#ifndef CONFIG_DEBUG_PAGEALLOC
0785a8e8
DM
1735 {
1736 extern unsigned int __swapper_4m_tsb_phys_patch;
1737 extern unsigned int __swapper_4m_tsb_phys_patch_end;
9076d0e7
DM
1738 ktsb_pa = (kern_base +
1739 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1740 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1741 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
0785a8e8 1742 }
9076d0e7
DM
1743#endif
1744}
1745
490384e7
DM
1746static void __init sun4v_ktsb_init(void)
1747{
1748 unsigned long ktsb_pa;
1749
d7744a09 1750 /* First KTSB for PAGE_SIZE mappings. */
490384e7
DM
1751 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1752
1753 switch (PAGE_SIZE) {
1754 case 8 * 1024:
1755 default:
1756 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1757 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1758 break;
1759
1760 case 64 * 1024:
1761 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1762 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1763 break;
1764
1765 case 512 * 1024:
1766 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1767 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1768 break;
1769
1770 case 4 * 1024 * 1024:
1771 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1772 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1773 break;
6cb79b3f 1774 }
490384e7 1775
3f19a84e 1776 ktsb_descr[0].assoc = 1;
490384e7
DM
1777 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1778 ktsb_descr[0].ctx_idx = 0;
1779 ktsb_descr[0].tsb_base = ktsb_pa;
1780 ktsb_descr[0].resv = 0;
1781
d1acb421 1782#ifndef CONFIG_DEBUG_PAGEALLOC
4f93d21d 1783 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
d7744a09
DM
1784 ktsb_pa = (kern_base +
1785 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1786
1787 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
c69ad0a3
DM
1788 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1789 HV_PGSZ_MASK_256MB |
1790 HV_PGSZ_MASK_2GB |
1791 HV_PGSZ_MASK_16GB) &
1792 cpu_pgsz_mask);
d7744a09
DM
1793 ktsb_descr[1].assoc = 1;
1794 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1795 ktsb_descr[1].ctx_idx = 0;
1796 ktsb_descr[1].tsb_base = ktsb_pa;
1797 ktsb_descr[1].resv = 0;
d1acb421 1798#endif
490384e7
DM
1799}
1800
2066aadd 1801void sun4v_ktsb_register(void)
490384e7 1802{
7db35f31 1803 unsigned long pa, ret;
490384e7
DM
1804
1805 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1806
7db35f31
DM
1807 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1808 if (ret != 0) {
1809 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1810 "errors with %lx\n", pa, ret);
1811 prom_halt();
1812 }
490384e7
DM
1813}
1814
c69ad0a3
DM
1815static void __init sun4u_linear_pte_xor_finalize(void)
1816{
1817#ifndef CONFIG_DEBUG_PAGEALLOC
1818 /* This is where we would add Panther support for
1819 * 32MB and 256MB pages.
1820 */
1821#endif
1822}
1823
1824static void __init sun4v_linear_pte_xor_finalize(void)
1825{
1826#ifndef CONFIG_DEBUG_PAGEALLOC
1827 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1828 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
922631b9 1829 PAGE_OFFSET;
c69ad0a3
DM
1830 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1831 _PAGE_P_4V | _PAGE_W_4V);
1832 } else {
1833 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1834 }
1835
1836 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1837 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
922631b9 1838 PAGE_OFFSET;
c69ad0a3
DM
1839 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1840 _PAGE_P_4V | _PAGE_W_4V);
1841 } else {
1842 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1843 }
1844
1845 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1846 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
922631b9 1847 PAGE_OFFSET;
c69ad0a3
DM
1848 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1849 _PAGE_P_4V | _PAGE_W_4V);
1850 } else {
1851 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1852 }
1853#endif
1854}
1855
1da177e4
LT
1856/* paging_init() sets up the page tables */
1857
1da177e4 1858static unsigned long last_valid_pfn;
2b77933c 1859pgd_t swapper_pg_dir[PTRS_PER_PGD];
1da177e4 1860
c4bce90e
DM
1861static void sun4u_pgprot_init(void);
1862static void sun4v_pgprot_init(void);
1863
1da177e4
LT
1864void __init paging_init(void)
1865{
919ee677 1866 unsigned long end_pfn, shift, phys_base;
0836a0eb 1867 unsigned long real_end, i;
aa6f0790 1868 int node;
0836a0eb 1869
b2d43834
DM
1870 setup_page_offset();
1871
22adb358
DM
1872 /* These build time checkes make sure that the dcache_dirty_cpu()
1873 * page->flags usage will work.
1874 *
1875 * When a page gets marked as dcache-dirty, we store the
1876 * cpu number starting at bit 32 in the page->flags. Also,
1877 * functions like clear_dcache_dirty_cpu use the cpu mask
1878 * in 13-bit signed-immediate instruction fields.
1879 */
9223b419
CL
1880
1881 /*
1882 * Page flags must not reach into upper 32 bits that are used
1883 * for the cpu number
1884 */
1885 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1886
1887 /*
1888 * The bit fields placed in the high range must not reach below
1889 * the 32 bit boundary. Otherwise we cannot place the cpu field
1890 * at the 32 bit boundary.
1891 */
22adb358 1892 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
9223b419
CL
1893 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1894
22adb358
DM
1895 BUILD_BUG_ON(NR_CPUS > 4096);
1896
0eef331a 1897 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
481295f9
DM
1898 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1899
d7744a09 1900 /* Invalidate both kernel TSBs. */
8b234274 1901 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
d1acb421 1902#ifndef CONFIG_DEBUG_PAGEALLOC
d7744a09 1903 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
d1acb421 1904#endif
8b234274 1905
c4bce90e
DM
1906 if (tlb_type == hypervisor)
1907 sun4v_pgprot_init();
1908 else
1909 sun4u_pgprot_init();
1910
d257d5da 1911 if (tlb_type == cheetah_plus ||
9076d0e7 1912 tlb_type == hypervisor) {
517af332 1913 tsb_phys_patch();
9076d0e7
DM
1914 ktsb_phys_patch();
1915 }
517af332 1916
c69ad0a3 1917 if (tlb_type == hypervisor)
d257d5da
DM
1918 sun4v_patch_tlb_handlers();
1919
a94a172d
DM
1920 /* Find available physical memory...
1921 *
1922 * Read it twice in order to work around a bug in openfirmware.
1923 * The call to grab this table itself can cause openfirmware to
1924 * allocate memory, which in turn can take away some space from
1925 * the list of available memory. Reading it twice makes sure
1926 * we really do get the final value.
1927 */
1928 read_obp_translations();
1929 read_obp_memory("reg", &pall[0], &pall_ents);
1930 read_obp_memory("available", &pavail[0], &pavail_ents);
13edad7a 1931 read_obp_memory("available", &pavail[0], &pavail_ents);
0836a0eb
DM
1932
1933 phys_base = 0xffffffffffffffffUL;
3b2a7e23 1934 for (i = 0; i < pavail_ents; i++) {
13edad7a 1935 phys_base = min(phys_base, pavail[i].phys_addr);
95f72d1e 1936 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
3b2a7e23
DM
1937 }
1938
95f72d1e 1939 memblock_reserve(kern_base, kern_size);
0836a0eb 1940
4e82c9a6
DM
1941 find_ramdisk(phys_base);
1942
95f72d1e 1943 memblock_enforce_memory_limit(cmdline_memory_size);
25b0c659 1944
1aadc056 1945 memblock_allow_resize();
95f72d1e 1946 memblock_dump_all();
3b2a7e23 1947
1da177e4
LT
1948 set_bit(0, mmu_context_bmap);
1949
2bdb3cb2
DM
1950 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1951
1da177e4 1952 real_end = (unsigned long)_end;
0eef331a 1953 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
64658743
DM
1954 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1955 num_kernel_image_mappings);
2bdb3cb2
DM
1956
1957 /* Set kernel pgd to upper alias so physical page computations
1da177e4
LT
1958 * work.
1959 */
1960 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1961
56425306 1962 memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1da177e4
LT
1963
1964 /* Now can init the kernel/bad page tables. */
1965 pud_set(pud_offset(&swapper_pg_dir[0], 0),
56425306 1966 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1da177e4 1967
c9c10830 1968 inherit_prom_mappings();
5085b4a5 1969
8f361453
DM
1970 init_kpte_bitmap();
1971
a8b900d8
DM
1972 /* Ok, we can use our TLB miss and window trap handlers safely. */
1973 setup_tba();
1da177e4 1974
c9c10830 1975 __flush_tlb_all();
9ad98c5b 1976
ad072004 1977 prom_build_devicetree();
b696fdc2 1978 of_populate_present_mask();
b99c6ebe
DM
1979#ifndef CONFIG_SMP
1980 of_fill_in_cpu_data();
1981#endif
ad072004 1982
890db403 1983 if (tlb_type == hypervisor) {
4a283339 1984 sun4v_mdesc_init();
6ac5c610 1985 mdesc_populate_present_mask(cpu_all_mask);
b99c6ebe
DM
1986#ifndef CONFIG_SMP
1987 mdesc_fill_in_cpu_data(cpu_all_mask);
1988#endif
ce33fdc5 1989 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
c69ad0a3
DM
1990
1991 sun4v_linear_pte_xor_finalize();
1992
1993 sun4v_ktsb_init();
1994 sun4v_ktsb_register();
ce33fdc5
DM
1995 } else {
1996 unsigned long impl, ver;
1997
1998 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1999 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2000
2001 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2002 impl = ((ver >> 32) & 0xffff);
2003 if (impl == PANTHER_IMPL)
2004 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2005 HV_PGSZ_MASK_256MB);
c69ad0a3
DM
2006
2007 sun4u_linear_pte_xor_finalize();
890db403 2008 }
4a283339 2009
c69ad0a3
DM
2010 /* Flush the TLBs and the 4M TSB so that the updated linear
2011 * pte XOR settings are realized for all mappings.
2012 */
2013 __flush_tlb_all();
2014#ifndef CONFIG_DEBUG_PAGEALLOC
2015 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2016#endif
2017 __flush_tlb_all();
2018
5ed56f1a
DM
2019 /* Setup bootmem... */
2020 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2021
4f70f7a9
DM
2022 /* Once the OF device tree and MDESC have been setup, we know
2023 * the list of possible cpus. Therefore we can allocate the
2024 * IRQ stacks.
2025 */
2026 for_each_possible_cpu(i) {
aa6f0790 2027 node = cpu_to_node(i);
5ed56f1a
DM
2028
2029 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2030 THREAD_SIZE,
2031 THREAD_SIZE, 0);
2032 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2033 THREAD_SIZE,
2034 THREAD_SIZE, 0);
4f70f7a9
DM
2035 }
2036
56425306 2037 kernel_physical_mapping_init();
56425306 2038
1da177e4 2039 {
919ee677 2040 unsigned long max_zone_pfns[MAX_NR_ZONES];
1da177e4 2041
919ee677 2042 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1da177e4 2043
919ee677 2044 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1da177e4 2045
919ee677 2046 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
2047 }
2048
3c62a2d3 2049 printk("Booting Linux...\n");
1da177e4
LT
2050}
2051
7c9503b8 2052int page_in_phys_avail(unsigned long paddr)
919ee677
DM
2053{
2054 int i;
2055
2056 paddr &= PAGE_MASK;
2057
2058 for (i = 0; i < pavail_ents; i++) {
2059 unsigned long start, end;
2060
2061 start = pavail[i].phys_addr;
2062 end = start + pavail[i].reg_size;
2063
2064 if (paddr >= start && paddr < end)
2065 return 1;
2066 }
2067 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2068 return 1;
2069#ifdef CONFIG_BLK_DEV_INITRD
2070 if (paddr >= __pa(initrd_start) &&
2071 paddr < __pa(PAGE_ALIGN(initrd_end)))
2072 return 1;
2073#endif
2074
2075 return 0;
2076}
2077
2078static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
2079static int pavail_rescan_ents __initdata;
2080
2081/* Certain OBP calls, such as fetching "available" properties, can
2082 * claim physical memory. So, along with initializing the valid
2083 * address bitmap, what we do here is refetch the physical available
2084 * memory list again, and make sure it provides at least as much
2085 * memory as 'pavail' does.
2086 */
d8ed1d43 2087static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1da177e4 2088{
1da177e4
LT
2089 int i;
2090
13edad7a 2091 read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1da177e4 2092
13edad7a 2093 for (i = 0; i < pavail_ents; i++) {
1da177e4
LT
2094 unsigned long old_start, old_end;
2095
13edad7a 2096 old_start = pavail[i].phys_addr;
919ee677 2097 old_end = old_start + pavail[i].reg_size;
1da177e4
LT
2098 while (old_start < old_end) {
2099 int n;
2100
c2a5a46b 2101 for (n = 0; n < pavail_rescan_ents; n++) {
1da177e4
LT
2102 unsigned long new_start, new_end;
2103
13edad7a
DM
2104 new_start = pavail_rescan[n].phys_addr;
2105 new_end = new_start +
2106 pavail_rescan[n].reg_size;
1da177e4
LT
2107
2108 if (new_start <= old_start &&
2109 new_end >= (old_start + PAGE_SIZE)) {
0eef331a 2110 set_bit(old_start >> ILOG2_4MB, bitmap);
1da177e4
LT
2111 goto do_next_page;
2112 }
2113 }
919ee677
DM
2114
2115 prom_printf("mem_init: Lost memory in pavail\n");
2116 prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2117 pavail[i].phys_addr,
2118 pavail[i].reg_size);
2119 prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2120 pavail_rescan[i].phys_addr,
2121 pavail_rescan[i].reg_size);
2122 prom_printf("mem_init: Cannot continue, aborting.\n");
2123 prom_halt();
1da177e4
LT
2124
2125 do_next_page:
2126 old_start += PAGE_SIZE;
2127 }
2128 }
2129}
2130
d8ed1d43
DM
2131static void __init patch_tlb_miss_handler_bitmap(void)
2132{
2133 extern unsigned int valid_addr_bitmap_insn[];
2134 extern unsigned int valid_addr_bitmap_patch[];
2135
2136 valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2137 mb();
2138 valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2139 flushi(&valid_addr_bitmap_insn[0]);
2140}
2141
961f8fa0
YL
2142static void __init register_page_bootmem_info(void)
2143{
2144#ifdef CONFIG_NEED_MULTIPLE_NODES
2145 int i;
2146
2147 for_each_online_node(i)
2148 if (NODE_DATA(i)->node_spanned_pages)
2149 register_page_bootmem_info_node(NODE_DATA(i));
2150#endif
2151}
1da177e4
LT
2152void __init mem_init(void)
2153{
1da177e4 2154 unsigned long addr, last;
1da177e4
LT
2155
2156 addr = PAGE_OFFSET + kern_base;
2157 last = PAGE_ALIGN(kern_size) + addr;
2158 while (addr < last) {
0eef331a 2159 set_bit(__pa(addr) >> ILOG2_4MB, sparc64_valid_addr_bitmap);
1da177e4
LT
2160 addr += PAGE_SIZE;
2161 }
2162
d8ed1d43
DM
2163 setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2164 patch_tlb_miss_handler_bitmap();
1da177e4 2165
1da177e4
LT
2166 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2167
961f8fa0 2168 register_page_bootmem_info();
0c988534 2169 free_all_bootmem();
919ee677 2170
1da177e4
LT
2171 /*
2172 * Set up the zero page, mark it reserved, so that page count
2173 * is not manipulated when freeing the page from user ptes.
2174 */
2175 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2176 if (mem_map_zero == NULL) {
2177 prom_printf("paging_init: Cannot alloc zero page.\n");
2178 prom_halt();
2179 }
70affe45 2180 mark_page_reserved(mem_map_zero);
1da177e4 2181
dceccbe9 2182 mem_init_print_info(NULL);
1da177e4
LT
2183
2184 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2185 cheetah_ecache_flush_init();
2186}
2187
898cf0ec 2188void free_initmem(void)
1da177e4
LT
2189{
2190 unsigned long addr, initend;
f2b60794
DM
2191 int do_free = 1;
2192
2193 /* If the physical memory maps were trimmed by kernel command
2194 * line options, don't even try freeing this initmem stuff up.
2195 * The kernel image could have been in the trimmed out region
2196 * and if so the freeing below will free invalid page structs.
2197 */
2198 if (cmdline_memory_size)
2199 do_free = 0;
1da177e4
LT
2200
2201 /*
2202 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2203 */
2204 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2205 initend = (unsigned long)(__init_end) & PAGE_MASK;
2206 for (; addr < initend; addr += PAGE_SIZE) {
2207 unsigned long page;
1da177e4
LT
2208
2209 page = (addr +
2210 ((unsigned long) __va(kern_base)) -
2211 ((unsigned long) KERNBASE));
c9cf5528 2212 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
1da177e4 2213
70affe45
JL
2214 if (do_free)
2215 free_reserved_page(virt_to_page(page));
1da177e4
LT
2216 }
2217}
2218
2219#ifdef CONFIG_BLK_DEV_INITRD
2220void free_initrd_mem(unsigned long start, unsigned long end)
2221{
dceccbe9
JL
2222 free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2223 "initrd");
1da177e4
LT
2224}
2225#endif
c4bce90e 2226
c4bce90e
DM
2227#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2228#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2229#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2230#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2231#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2232#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2233
2234pgprot_t PAGE_KERNEL __read_mostly;
2235EXPORT_SYMBOL(PAGE_KERNEL);
2236
2237pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2238pgprot_t PAGE_COPY __read_mostly;
0f15952a
DM
2239
2240pgprot_t PAGE_SHARED __read_mostly;
2241EXPORT_SYMBOL(PAGE_SHARED);
2242
c4bce90e
DM
2243unsigned long pg_iobits __read_mostly;
2244
2245unsigned long _PAGE_IE __read_mostly;
987c74fc 2246EXPORT_SYMBOL(_PAGE_IE);
b2bef442 2247
c4bce90e 2248unsigned long _PAGE_E __read_mostly;
b2bef442
DM
2249EXPORT_SYMBOL(_PAGE_E);
2250
c4bce90e 2251unsigned long _PAGE_CACHE __read_mostly;
b2bef442 2252EXPORT_SYMBOL(_PAGE_CACHE);
c4bce90e 2253
46644c24 2254#ifdef CONFIG_SPARSEMEM_VMEMMAP
46644c24
DM
2255unsigned long vmemmap_table[VMEMMAP_SIZE];
2256
2856cc2e
DM
2257static long __meminitdata addr_start, addr_end;
2258static int __meminitdata node_start;
2259
0aad818b
JW
2260int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2261 int node)
46644c24 2262{
46644c24
DM
2263 unsigned long phys_start = (vstart - VMEMMAP_BASE);
2264 unsigned long phys_end = (vend - VMEMMAP_BASE);
2265 unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2266 unsigned long end = VMEMMAP_ALIGN(phys_end);
2267 unsigned long pte_base;
2268
2269 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2270 _PAGE_CP_4U | _PAGE_CV_4U |
2271 _PAGE_P_4U | _PAGE_W_4U);
2272 if (tlb_type == hypervisor)
2273 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2274 _PAGE_CP_4V | _PAGE_CV_4V |
2275 _PAGE_P_4V | _PAGE_W_4V);
2276
2277 for (; addr < end; addr += VMEMMAP_CHUNK) {
2278 unsigned long *vmem_pp =
2279 vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2280 void *block;
2281
2282 if (!(*vmem_pp & _PAGE_VALID)) {
0eef331a 2283 block = vmemmap_alloc_block(1UL << ILOG2_4MB, node);
46644c24
DM
2284 if (!block)
2285 return -ENOMEM;
2286
2287 *vmem_pp = pte_base | __pa(block);
2288
2856cc2e
DM
2289 /* check to see if we have contiguous blocks */
2290 if (addr_end != addr || node_start != node) {
2291 if (addr_start)
2292 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2293 addr_start, addr_end-1, node_start);
2294 addr_start = addr;
2295 node_start = node;
2296 }
2297 addr_end = addr + VMEMMAP_CHUNK;
46644c24
DM
2298 }
2299 }
2300 return 0;
2301}
2856cc2e
DM
2302
2303void __meminit vmemmap_populate_print_last(void)
2304{
2305 if (addr_start) {
2306 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2307 addr_start, addr_end-1, node_start);
2308 addr_start = 0;
2309 addr_end = 0;
2310 node_start = 0;
2311 }
2312}
46723bfa 2313
0aad818b 2314void vmemmap_free(unsigned long start, unsigned long end)
0197518c
TC
2315{
2316}
2317
46644c24
DM
2318#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2319
c4bce90e
DM
2320static void prot_init_common(unsigned long page_none,
2321 unsigned long page_shared,
2322 unsigned long page_copy,
2323 unsigned long page_readonly,
2324 unsigned long page_exec_bit)
2325{
2326 PAGE_COPY = __pgprot(page_copy);
0f15952a 2327 PAGE_SHARED = __pgprot(page_shared);
c4bce90e
DM
2328
2329 protection_map[0x0] = __pgprot(page_none);
2330 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2331 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2332 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2333 protection_map[0x4] = __pgprot(page_readonly);
2334 protection_map[0x5] = __pgprot(page_readonly);
2335 protection_map[0x6] = __pgprot(page_copy);
2336 protection_map[0x7] = __pgprot(page_copy);
2337 protection_map[0x8] = __pgprot(page_none);
2338 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2339 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2340 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2341 protection_map[0xc] = __pgprot(page_readonly);
2342 protection_map[0xd] = __pgprot(page_readonly);
2343 protection_map[0xe] = __pgprot(page_shared);
2344 protection_map[0xf] = __pgprot(page_shared);
2345}
2346
2347static void __init sun4u_pgprot_init(void)
2348{
2349 unsigned long page_none, page_shared, page_copy, page_readonly;
2350 unsigned long page_exec_bit;
4f93d21d 2351 int i;
c4bce90e
DM
2352
2353 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2354 _PAGE_CACHE_4U | _PAGE_P_4U |
2355 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2356 _PAGE_EXEC_4U);
2357 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2358 _PAGE_CACHE_4U | _PAGE_P_4U |
2359 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2360 _PAGE_EXEC_4U | _PAGE_L_4U);
c4bce90e
DM
2361
2362 _PAGE_IE = _PAGE_IE_4U;
2363 _PAGE_E = _PAGE_E_4U;
2364 _PAGE_CACHE = _PAGE_CACHE_4U;
2365
2366 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2367 __ACCESS_BITS_4U | _PAGE_E_4U);
2368
d1acb421 2369#ifdef CONFIG_DEBUG_PAGEALLOC
922631b9 2370 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
d1acb421 2371#else
9cc3a1ac 2372 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
922631b9 2373 PAGE_OFFSET;
d1acb421 2374#endif
9cc3a1ac
DM
2375 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2376 _PAGE_P_4U | _PAGE_W_4U);
2377
4f93d21d
DM
2378 for (i = 1; i < 4; i++)
2379 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
c4bce90e 2380
c4bce90e
DM
2381 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2382 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2383 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2384
2385
2386 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2387 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2388 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2389 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2390 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2391 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2392 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2393
2394 page_exec_bit = _PAGE_EXEC_4U;
2395
2396 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2397 page_exec_bit);
2398}
2399
2400static void __init sun4v_pgprot_init(void)
2401{
2402 unsigned long page_none, page_shared, page_copy, page_readonly;
2403 unsigned long page_exec_bit;
4f93d21d 2404 int i;
c4bce90e
DM
2405
2406 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2407 _PAGE_CACHE_4V | _PAGE_P_4V |
2408 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2409 _PAGE_EXEC_4V);
2410 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
c4bce90e
DM
2411
2412 _PAGE_IE = _PAGE_IE_4V;
2413 _PAGE_E = _PAGE_E_4V;
2414 _PAGE_CACHE = _PAGE_CACHE_4V;
2415
d1acb421 2416#ifdef CONFIG_DEBUG_PAGEALLOC
922631b9 2417 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
d1acb421 2418#else
9cc3a1ac 2419 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
922631b9 2420 PAGE_OFFSET;
d1acb421 2421#endif
9cc3a1ac
DM
2422 kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2423 _PAGE_P_4V | _PAGE_W_4V);
2424
c69ad0a3
DM
2425 for (i = 1; i < 4; i++)
2426 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
4f93d21d 2427
c4bce90e
DM
2428 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2429 __ACCESS_BITS_4V | _PAGE_E_4V);
2430
c4bce90e
DM
2431 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2432 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2433 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2434 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2435
2436 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2437 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2438 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2439 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2440 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2441 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2442 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2443
2444 page_exec_bit = _PAGE_EXEC_4V;
2445
2446 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2447 page_exec_bit);
2448}
2449
2450unsigned long pte_sz_bits(unsigned long sz)
2451{
2452 if (tlb_type == hypervisor) {
2453 switch (sz) {
2454 case 8 * 1024:
2455 default:
2456 return _PAGE_SZ8K_4V;
2457 case 64 * 1024:
2458 return _PAGE_SZ64K_4V;
2459 case 512 * 1024:
2460 return _PAGE_SZ512K_4V;
2461 case 4 * 1024 * 1024:
2462 return _PAGE_SZ4MB_4V;
6cb79b3f 2463 }
c4bce90e
DM
2464 } else {
2465 switch (sz) {
2466 case 8 * 1024:
2467 default:
2468 return _PAGE_SZ8K_4U;
2469 case 64 * 1024:
2470 return _PAGE_SZ64K_4U;
2471 case 512 * 1024:
2472 return _PAGE_SZ512K_4U;
2473 case 4 * 1024 * 1024:
2474 return _PAGE_SZ4MB_4U;
6cb79b3f 2475 }
c4bce90e
DM
2476 }
2477}
2478
2479pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2480{
2481 pte_t pte;
cf627156
DM
2482
2483 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
c4bce90e
DM
2484 pte_val(pte) |= (((unsigned long)space) << 32);
2485 pte_val(pte) |= pte_sz_bits(page_size);
c4bce90e 2486
cf627156 2487 return pte;
c4bce90e
DM
2488}
2489
2490static unsigned long kern_large_tte(unsigned long paddr)
2491{
2492 unsigned long val;
2493
2494 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2495 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2496 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2497 if (tlb_type == hypervisor)
2498 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2499 _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2500 _PAGE_EXEC_4V | _PAGE_W_4V);
2501
2502 return val | paddr;
2503}
2504
c4bce90e
DM
2505/* If not locked, zap it. */
2506void __flush_tlb_all(void)
2507{
2508 unsigned long pstate;
2509 int i;
2510
2511 __asm__ __volatile__("flushw\n\t"
2512 "rdpr %%pstate, %0\n\t"
2513 "wrpr %0, %1, %%pstate"
2514 : "=r" (pstate)
2515 : "i" (PSTATE_IE));
8f361453
DM
2516 if (tlb_type == hypervisor) {
2517 sun4v_mmu_demap_all();
2518 } else if (tlb_type == spitfire) {
c4bce90e
DM
2519 for (i = 0; i < 64; i++) {
2520 /* Spitfire Errata #32 workaround */
2521 /* NOTE: Always runs on spitfire, so no
2522 * cheetah+ page size encodings.
2523 */
2524 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2525 "flush %%g6"
2526 : /* No outputs */
2527 : "r" (0),
2528 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2529
2530 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2531 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2532 "membar #Sync"
2533 : /* no outputs */
2534 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2535 spitfire_put_dtlb_data(i, 0x0UL);
2536 }
2537
2538 /* Spitfire Errata #32 workaround */
2539 /* NOTE: Always runs on spitfire, so no
2540 * cheetah+ page size encodings.
2541 */
2542 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2543 "flush %%g6"
2544 : /* No outputs */
2545 : "r" (0),
2546 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2547
2548 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2549 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2550 "membar #Sync"
2551 : /* no outputs */
2552 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2553 spitfire_put_itlb_data(i, 0x0UL);
2554 }
2555 }
2556 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2557 cheetah_flush_dtlb_all();
2558 cheetah_flush_itlb_all();
2559 }
2560 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2561 : : "r" (pstate));
2562}
c460bec7 2563
c460bec7
DM
2564pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2565 unsigned long address)
2566{
37b3a8ff
DM
2567 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2568 __GFP_REPEAT | __GFP_ZERO);
2569 pte_t *pte = NULL;
c460bec7 2570
c460bec7
DM
2571 if (page)
2572 pte = (pte_t *) page_address(page);
2573
2574 return pte;
2575}
2576
2577pgtable_t pte_alloc_one(struct mm_struct *mm,
2578 unsigned long address)
2579{
37b3a8ff
DM
2580 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2581 __GFP_REPEAT | __GFP_ZERO);
1ae9ae5f
KS
2582 if (!page)
2583 return NULL;
2584 if (!pgtable_page_ctor(page)) {
2585 free_hot_cold_page(page, 0);
2586 return NULL;
c460bec7 2587 }
1ae9ae5f 2588 return (pte_t *) page_address(page);
c460bec7
DM
2589}
2590
2591void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2592{
37b3a8ff 2593 free_page((unsigned long)pte);
c460bec7
DM
2594}
2595
2596static void __pte_free(pgtable_t pte)
2597{
2598 struct page *page = virt_to_page(pte);
37b3a8ff
DM
2599
2600 pgtable_page_dtor(page);
2601 __free_page(page);
c460bec7
DM
2602}
2603
2604void pte_free(struct mm_struct *mm, pgtable_t pte)
2605{
2606 __pte_free(pte);
2607}
2608
2609void pgtable_free(void *table, bool is_page)
2610{
2611 if (is_page)
2612 __pte_free(table);
2613 else
2614 kmem_cache_free(pgtable_cache, table);
2615}
9e695d2e
DM
2616
2617#ifdef CONFIG_TRANSPARENT_HUGEPAGE
9e695d2e
DM
2618void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2619 pmd_t *pmd)
2620{
2621 unsigned long pte, flags;
2622 struct mm_struct *mm;
2623 pmd_t entry = *pmd;
9e695d2e
DM
2624
2625 if (!pmd_large(entry) || !pmd_young(entry))
2626 return;
2627
a7b9403f 2628 pte = pmd_val(entry);
9e695d2e 2629
18f38132
DM
2630 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2631 if (!(pte & _PAGE_VALID))
2632 return;
2633
37b3a8ff
DM
2634 /* We are fabricating 8MB pages using 4MB real hw pages. */
2635 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
9e695d2e
DM
2636
2637 mm = vma->vm_mm;
2638
2639 spin_lock_irqsave(&mm->context.lock, flags);
2640
2641 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
37b3a8ff 2642 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
9e695d2e
DM
2643 addr, pte);
2644
2645 spin_unlock_irqrestore(&mm->context.lock, flags);
2646}
2647#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2648
2649#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2650static void context_reload(void *__data)
2651{
2652 struct mm_struct *mm = __data;
2653
2654 if (mm == current->mm)
2655 load_secondary_context(mm);
2656}
2657
0fbebed6 2658void hugetlb_setup(struct pt_regs *regs)
9e695d2e 2659{
0fbebed6
DM
2660 struct mm_struct *mm = current->mm;
2661 struct tsb_config *tp;
9e695d2e 2662
0fbebed6
DM
2663 if (in_atomic() || !mm) {
2664 const struct exception_table_entry *entry;
2665
2666 entry = search_exception_tables(regs->tpc);
2667 if (entry) {
2668 regs->tpc = entry->fixup;
2669 regs->tnpc = regs->tpc + 4;
2670 return;
2671 }
2672 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2673 die_if_kernel("HugeTSB in atomic", regs);
2674 }
2675
2676 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2677 if (likely(tp->tsb == NULL))
2678 tsb_grow(mm, MM_TSB_HUGE, 0);
9e695d2e 2679
9e695d2e
DM
2680 tsb_context_switch(mm);
2681 smp_tsb_sync(mm);
2682
2683 /* On UltraSPARC-III+ and later, configure the second half of
2684 * the Data-TLB for huge pages.
2685 */
2686 if (tlb_type == cheetah_plus) {
2687 unsigned long ctx;
2688
2689 spin_lock(&ctx_alloc_lock);
2690 ctx = mm->context.sparc64_ctx_val;
2691 ctx &= ~CTX_PGSZ_MASK;
2692 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2693 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2694
2695 if (ctx != mm->context.sparc64_ctx_val) {
2696 /* When changing the page size fields, we
2697 * must perform a context flush so that no
2698 * stale entries match. This flush must
2699 * occur with the original context register
2700 * settings.
2701 */
2702 do_flush_tlb_mm(mm);
2703
2704 /* Reload the context register of all processors
2705 * also executing in this address space.
2706 */
2707 mm->context.sparc64_ctx_val = ctx;
2708 on_each_cpu(context_reload, mm, 0);
2709 }
2710 spin_unlock(&ctx_alloc_lock);
2711 }
2712}
2713#endif
f6d4fb5c 2714
2715static struct resource code_resource = {
2716 .name = "Kernel code",
2717 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
2718};
2719
2720static struct resource data_resource = {
2721 .name = "Kernel data",
2722 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
2723};
2724
2725static struct resource bss_resource = {
2726 .name = "Kernel bss",
2727 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
2728};
2729
2730static inline resource_size_t compute_kern_paddr(void *addr)
2731{
2732 return (resource_size_t) (addr - KERNBASE + kern_base);
2733}
2734
2735static void __init kernel_lds_init(void)
2736{
2737 code_resource.start = compute_kern_paddr(_text);
2738 code_resource.end = compute_kern_paddr(_etext - 1);
2739 data_resource.start = compute_kern_paddr(_etext);
2740 data_resource.end = compute_kern_paddr(_edata - 1);
2741 bss_resource.start = compute_kern_paddr(__bss_start);
2742 bss_resource.end = compute_kern_paddr(_end - 1);
2743}
2744
2745static int __init report_memory(void)
2746{
2747 int i;
2748 struct resource *res;
2749
2750 kernel_lds_init();
2751
2752 for (i = 0; i < pavail_ents; i++) {
2753 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2754
2755 if (!res) {
2756 pr_warn("Failed to allocate source.\n");
2757 break;
2758 }
2759
2760 res->name = "System RAM";
2761 res->start = pavail[i].phys_addr;
2762 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2763 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
2764
2765 if (insert_resource(&iomem_resource, res) < 0) {
2766 pr_warn("Resource insertion failed.\n");
2767 break;
2768 }
2769
2770 insert_resource(res, &code_resource);
2771 insert_resource(res, &data_resource);
2772 insert_resource(res, &bss_resource);
2773 }
2774
2775 return 0;
2776}
2777device_initcall(report_memory);
e9011d08 2778
4ca9a237
DM
2779#ifdef CONFIG_SMP
2780#define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
2781#else
2782#define do_flush_tlb_kernel_range __flush_tlb_kernel_range
2783#endif
2784
2785void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2786{
2787 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2788 if (start < LOW_OBP_ADDRESS) {
2789 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2790 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2791 }
2792 if (end > HI_OBP_ADDRESS) {
2793 flush_tsb_kernel_range(end, HI_OBP_ADDRESS);
2794 do_flush_tlb_kernel_range(end, HI_OBP_ADDRESS);
2795 }
2796 } else {
2797 flush_tsb_kernel_range(start, end);
2798 do_flush_tlb_kernel_range(start, end);
2799 }
2800}
This page took 0.801973 seconds and 5 git commands to generate.