sparc32: centralize all mmu context handling in srmmu.c
[deliverable/linux.git] / arch / sparc / mm / srmmu.c
CommitLineData
1da177e4
LT
1/*
2 * srmmu.c: SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
4a049b03 11#include <linux/seq_file.h>
1da177e4
LT
12#include <linux/spinlock.h>
13#include <linux/bootmem.h>
4a049b03
SR
14#include <linux/pagemap.h>
15#include <linux/vmalloc.h>
1eeb66a1 16#include <linux/kdebug.h>
4a049b03
SR
17#include <linux/kernel.h>
18#include <linux/init.h>
949e8274 19#include <linux/log2.h>
5a0e3ad6 20#include <linux/gfp.h>
4a049b03
SR
21#include <linux/fs.h>
22#include <linux/mm.h>
1da177e4 23
4a049b03
SR
24#include <asm/mmu_context.h>
25#include <asm/cacheflush.h>
26#include <asm/tlbflush.h>
27#include <asm/io-unit.h>
1da177e4
LT
28#include <asm/pgalloc.h>
29#include <asm/pgtable.h>
4a049b03 30#include <asm/bitext.h>
1da177e4 31#include <asm/vaddrs.h>
1da177e4 32#include <asm/cache.h>
4a049b03 33#include <asm/traps.h>
1da177e4 34#include <asm/oplib.h>
4a049b03
SR
35#include <asm/mbus.h>
36#include <asm/page.h>
1da177e4
LT
37#include <asm/asi.h>
38#include <asm/msi.h>
4a049b03
SR
39#include <asm/smp.h>
40#include <asm/io.h>
1da177e4
LT
41
42/* Now the cpu specific definitions. */
4a049b03 43#include <asm/turbosparc.h>
1da177e4 44#include <asm/tsunami.h>
4a049b03 45#include <asm/viking.h>
1da177e4 46#include <asm/swift.h>
75d9e346 47#include <asm/leon.h>
4a049b03
SR
48#include <asm/mxcc.h>
49#include <asm/ross.h>
1da177e4 50
accf032c
SR
51#include "srmmu.h"
52
1da177e4 53enum mbus_module srmmu_modtype;
50215d65 54static unsigned int hwbug_bitmask;
1da177e4
LT
55int vac_cache_size;
56int vac_line_size;
57
58extern struct resource sparc_iomap;
59
60extern unsigned long last_valid_pfn;
61
50215d65 62static pgd_t *srmmu_swapper_pg_dir;
1da177e4 63
5d83d666
DM
64const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
65
1da177e4 66#ifdef CONFIG_SMP
5d83d666
DM
67const struct sparc32_cachetlb_ops *local_ops;
68
1da177e4
LT
69#define FLUSH_BEGIN(mm)
70#define FLUSH_END
71#else
5d83d666 72#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
1da177e4
LT
73#define FLUSH_END }
74#endif
75
1da177e4
LT
76int flush_page_for_dma_global = 1;
77
1da177e4
LT
78char *srmmu_name;
79
80ctxd_t *srmmu_ctx_table_phys;
50215d65 81static ctxd_t *srmmu_context_table;
1da177e4
LT
82
83int viking_mxcc_present;
84static DEFINE_SPINLOCK(srmmu_context_spinlock);
85
50215d65 86static int is_hypersparc;
1da177e4 87
50215d65 88static int srmmu_cache_pagetables;
1da177e4
LT
89
90/* these will be initialized in srmmu_nocache_calcsize() */
50215d65
AB
91static unsigned long srmmu_nocache_size;
92static unsigned long srmmu_nocache_end;
1da177e4
LT
93
94/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
95#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
96
97/* The context table is a nocache user with the biggest alignment needs. */
98#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
99
100void *srmmu_nocache_pool;
101void *srmmu_nocache_bitmap;
102static struct bit_map srmmu_nocache_map;
103
1da177e4
LT
104static inline int srmmu_pmd_none(pmd_t pmd)
105{ return !(pmd_val(pmd) & 0xFFFFFFF); }
106
1da177e4
LT
107/* XXX should we hyper_flush_whole_icache here - Anton */
108static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
62875cff 109{ set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
1da177e4 110
642ea3ed 111void pmd_set(pmd_t *pmdp, pte_t *ptep)
1da177e4
LT
112{
113 unsigned long ptp; /* Physical address, shifted right by 4 */
114 int i;
115
116 ptp = __nocache_pa((unsigned long) ptep) >> 4;
117 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
62875cff 118 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
1da177e4
LT
119 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
120 }
121}
122
642ea3ed 123void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
1da177e4
LT
124{
125 unsigned long ptp; /* Physical address, shifted right by 4 */
126 int i;
127
128 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
129 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
62875cff 130 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
1da177e4
LT
131 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
132 }
133}
134
605ae962
SR
135/* Find an entry in the third-level page table.. */
136pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
1da177e4
LT
137{
138 void *pte;
139
140 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
141 return (pte_t *) pte +
142 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
143}
144
1da177e4
LT
145/*
146 * size: bytes to allocate in the nocache area.
147 * align: bytes, number to align at.
148 * Returns the virtual address of the allocated area.
149 */
f71a2aac 150static void *__srmmu_get_nocache(int size, int align)
1da177e4
LT
151{
152 int offset;
f71a2aac 153 unsigned long addr;
1da177e4
LT
154
155 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
f71a2aac
SR
156 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
157 size);
1da177e4
LT
158 size = SRMMU_NOCACHE_BITMAP_SHIFT;
159 }
f71a2aac
SR
160 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
161 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
162 size);
163 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
1da177e4
LT
164 }
165 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
166
167 offset = bit_map_string_get(&srmmu_nocache_map,
f71a2aac
SR
168 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
169 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
1da177e4 170 if (offset == -1) {
f71a2aac
SR
171 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
172 size, (int) srmmu_nocache_size,
173 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1da177e4
LT
174 return 0;
175 }
176
f71a2aac
SR
177 addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
178 return (void *)addr;
1da177e4
LT
179}
180
f71a2aac 181void *srmmu_get_nocache(int size, int align)
1da177e4 182{
f71a2aac 183 void *tmp;
1da177e4
LT
184
185 tmp = __srmmu_get_nocache(size, align);
186
187 if (tmp)
f71a2aac 188 memset(tmp, 0, size);
1da177e4
LT
189
190 return tmp;
191}
192
f71a2aac 193void srmmu_free_nocache(void *addr, int size)
1da177e4 194{
f71a2aac 195 unsigned long vaddr;
1da177e4
LT
196 int offset;
197
f71a2aac 198 vaddr = (unsigned long)addr;
1da177e4
LT
199 if (vaddr < SRMMU_NOCACHE_VADDR) {
200 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
201 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
202 BUG();
203 }
605ae962 204 if (vaddr + size > srmmu_nocache_end) {
1da177e4
LT
205 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
206 vaddr, srmmu_nocache_end);
207 BUG();
208 }
949e8274 209 if (!is_power_of_2(size)) {
1da177e4
LT
210 printk("Size 0x%x is not a power of 2\n", size);
211 BUG();
212 }
213 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
214 printk("Size 0x%x is too small\n", size);
215 BUG();
216 }
605ae962 217 if (vaddr & (size - 1)) {
1da177e4
LT
218 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
219 BUG();
220 }
221
222 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
223 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
224
225 bit_map_clear(&srmmu_nocache_map, offset, size);
226}
227
50215d65
AB
228static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
229 unsigned long end);
1da177e4
LT
230
231extern unsigned long probe_memory(void); /* in fault.c */
232
233/*
234 * Reserve nocache dynamically proportionally to the amount of
235 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
236 */
32442467 237static void __init srmmu_nocache_calcsize(void)
1da177e4
LT
238{
239 unsigned long sysmemavail = probe_memory() / 1024;
240 int srmmu_nocache_npages;
241
242 srmmu_nocache_npages =
243 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
244
245 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
246 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
247 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
248 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
249
250 /* anything above 1280 blows up */
251 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
252 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
253
254 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
255 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
256}
257
50215d65 258static void __init srmmu_nocache_init(void)
1da177e4
LT
259{
260 unsigned int bitmap_bits;
261 pgd_t *pgd;
262 pmd_t *pmd;
263 pte_t *pte;
264 unsigned long paddr, vaddr;
265 unsigned long pteval;
266
267 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
268
269 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
270 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
271 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
272
273 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
274 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
275
f71a2aac 276 srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
1da177e4
LT
277 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
278 init_mm.pgd = srmmu_swapper_pg_dir;
279
280 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
281
282 paddr = __pa((unsigned long)srmmu_nocache_pool);
283 vaddr = SRMMU_NOCACHE_VADDR;
284
285 while (vaddr < srmmu_nocache_end) {
286 pgd = pgd_offset_k(vaddr);
9701b264
SR
287 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
288 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
1da177e4
LT
289
290 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
291
292 if (srmmu_cache_pagetables)
293 pteval |= SRMMU_CACHE;
294
62875cff 295 set_pte(__nocache_fix(pte), __pte(pteval));
1da177e4
LT
296
297 vaddr += PAGE_SIZE;
298 paddr += PAGE_SIZE;
299 }
300
301 flush_cache_all();
302 flush_tlb_all();
303}
304
642ea3ed 305pgd_t *get_pgd_fast(void)
1da177e4
LT
306{
307 pgd_t *pgd = NULL;
308
f71a2aac 309 pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
1da177e4
LT
310 if (pgd) {
311 pgd_t *init = pgd_offset_k(0);
312 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
313 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
314 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
315 }
316
317 return pgd;
318}
319
1da177e4
LT
320/*
321 * Hardware needs alignment to 256 only, but we align to whole page size
322 * to reduce fragmentation problems due to the buddy principle.
323 * XXX Provide actual fragmentation statistics in /proc.
324 *
325 * Alignments up to the page size are the same for physical and virtual
326 * addresses of the nocache area.
327 */
642ea3ed 328pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
1da177e4
LT
329{
330 unsigned long pte;
2f569afd 331 struct page *page;
1da177e4 332
642ea3ed 333 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
1da177e4 334 return NULL;
605ae962 335 page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
2f569afd
MS
336 pgtable_page_ctor(page);
337 return page;
1da177e4
LT
338}
339
642ea3ed 340void pte_free(struct mm_struct *mm, pgtable_t pte)
1da177e4
LT
341{
342 unsigned long p;
343
2f569afd 344 pgtable_page_dtor(pte);
1da177e4
LT
345 p = (unsigned long)page_address(pte); /* Cached address (for test) */
346 if (p == 0)
347 BUG();
348 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
f71a2aac
SR
349
350 /* free non cached virtual address*/
351 srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
1da177e4
LT
352}
353
b585e855
SR
354/* context handling - a dynamically sized pool is used */
355#define NO_CONTEXT -1
356
357struct ctx_list {
358 struct ctx_list *next;
359 struct ctx_list *prev;
360 unsigned int ctx_number;
361 struct mm_struct *ctx_mm;
362};
363
364static struct ctx_list *ctx_list_pool;
365static struct ctx_list ctx_free;
366static struct ctx_list ctx_used;
367
368/* At boot time we determine the number of contexts */
369static int num_contexts;
370
371static inline void remove_from_ctx_list(struct ctx_list *entry)
372{
373 entry->next->prev = entry->prev;
374 entry->prev->next = entry->next;
375}
376
377static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
378{
379 entry->next = head;
380 (entry->prev = head->prev)->next = entry;
381 head->prev = entry;
382}
383#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
384#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
385
386
1da177e4
LT
387static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
388{
389 struct ctx_list *ctxp;
390
391 ctxp = ctx_free.next;
605ae962 392 if (ctxp != &ctx_free) {
1da177e4
LT
393 remove_from_ctx_list(ctxp);
394 add_to_used_ctxlist(ctxp);
395 mm->context = ctxp->ctx_number;
396 ctxp->ctx_mm = mm;
397 return;
398 }
399 ctxp = ctx_used.next;
605ae962 400 if (ctxp->ctx_mm == old_mm)
1da177e4 401 ctxp = ctxp->next;
605ae962 402 if (ctxp == &ctx_used)
1da177e4
LT
403 panic("out of mmu contexts");
404 flush_cache_mm(ctxp->ctx_mm);
405 flush_tlb_mm(ctxp->ctx_mm);
406 remove_from_ctx_list(ctxp);
407 add_to_used_ctxlist(ctxp);
408 ctxp->ctx_mm->context = NO_CONTEXT;
409 ctxp->ctx_mm = mm;
410 mm->context = ctxp->ctx_number;
411}
412
413static inline void free_context(int context)
414{
415 struct ctx_list *ctx_old;
416
417 ctx_old = ctx_list_pool + context;
418 remove_from_ctx_list(ctx_old);
419 add_to_free_ctxlist(ctx_old);
420}
421
b585e855
SR
422static void __init sparc_context_init(int numctx)
423{
424 int ctx;
425 unsigned long size;
426
427 size = numctx * sizeof(struct ctx_list);
428 ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
429
430 for (ctx = 0; ctx < numctx; ctx++) {
431 struct ctx_list *clist;
432
433 clist = (ctx_list_pool + ctx);
434 clist->ctx_number = ctx;
435 clist->ctx_mm = NULL;
436 }
437 ctx_free.next = ctx_free.prev = &ctx_free;
438 ctx_used.next = ctx_used.prev = &ctx_used;
439 for (ctx = 0; ctx < numctx; ctx++)
440 add_to_free_ctxlist(ctx_list_pool + ctx);
441}
1da177e4 442
34d4accf
SR
443void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
444 struct task_struct *tsk)
1da177e4 445{
605ae962 446 if (mm->context == NO_CONTEXT) {
1da177e4
LT
447 spin_lock(&srmmu_context_spinlock);
448 alloc_context(old_mm, mm);
449 spin_unlock(&srmmu_context_spinlock);
450 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
451 }
452
75d9e346
KE
453 if (sparc_cpu_model == sparc_leon)
454 leon_switch_mm();
455
1da177e4
LT
456 if (is_hypersparc)
457 hyper_flush_whole_icache();
458
459 srmmu_set_context(mm->context);
460}
461
462/* Low level IO area allocation on the SRMMU. */
463static inline void srmmu_mapioaddr(unsigned long physaddr,
605ae962 464 unsigned long virt_addr, int bus_type)
1da177e4
LT
465{
466 pgd_t *pgdp;
467 pmd_t *pmdp;
468 pte_t *ptep;
469 unsigned long tmp;
470
471 physaddr &= PAGE_MASK;
472 pgdp = pgd_offset_k(virt_addr);
9701b264
SR
473 pmdp = pmd_offset(pgdp, virt_addr);
474 ptep = pte_offset_kernel(pmdp, virt_addr);
1da177e4
LT
475 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
476
605ae962 477 /* I need to test whether this is consistent over all
1da177e4
LT
478 * sun4m's. The bus_type represents the upper 4 bits of
479 * 36-bit physical address on the I/O space lines...
480 */
481 tmp |= (bus_type << 28);
482 tmp |= SRMMU_PRIV;
483 __flush_page_to_ram(virt_addr);
62875cff 484 set_pte(ptep, __pte(tmp));
1da177e4
LT
485}
486
9701b264
SR
487void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
488 unsigned long xva, unsigned int len)
1da177e4
LT
489{
490 while (len != 0) {
491 len -= PAGE_SIZE;
492 srmmu_mapioaddr(xpa, xva, bus);
493 xva += PAGE_SIZE;
494 xpa += PAGE_SIZE;
495 }
496 flush_tlb_all();
497}
498
499static inline void srmmu_unmapioaddr(unsigned long virt_addr)
500{
501 pgd_t *pgdp;
502 pmd_t *pmdp;
503 pte_t *ptep;
504
505 pgdp = pgd_offset_k(virt_addr);
9701b264
SR
506 pmdp = pmd_offset(pgdp, virt_addr);
507 ptep = pte_offset_kernel(pmdp, virt_addr);
1da177e4
LT
508
509 /* No need to flush uncacheable page. */
a46d6056 510 __pte_clear(ptep);
1da177e4
LT
511}
512
9701b264 513void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
1da177e4
LT
514{
515 while (len != 0) {
516 len -= PAGE_SIZE;
517 srmmu_unmapioaddr(virt_addr);
518 virt_addr += PAGE_SIZE;
519 }
520 flush_tlb_all();
521}
522
1da177e4
LT
523/* tsunami.S */
524extern void tsunami_flush_cache_all(void);
525extern void tsunami_flush_cache_mm(struct mm_struct *mm);
526extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
527extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
528extern void tsunami_flush_page_to_ram(unsigned long page);
529extern void tsunami_flush_page_for_dma(unsigned long page);
530extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
531extern void tsunami_flush_tlb_all(void);
532extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
533extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
534extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
535extern void tsunami_setup_blockops(void);
536
1da177e4
LT
537/* swift.S */
538extern void swift_flush_cache_all(void);
539extern void swift_flush_cache_mm(struct mm_struct *mm);
540extern void swift_flush_cache_range(struct vm_area_struct *vma,
541 unsigned long start, unsigned long end);
542extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
543extern void swift_flush_page_to_ram(unsigned long page);
544extern void swift_flush_page_for_dma(unsigned long page);
545extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
546extern void swift_flush_tlb_all(void);
547extern void swift_flush_tlb_mm(struct mm_struct *mm);
548extern void swift_flush_tlb_range(struct vm_area_struct *vma,
549 unsigned long start, unsigned long end);
550extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
551
552#if 0 /* P3: deadwood to debug precise flushes on Swift. */
553void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
554{
555 int cctx, ctx1;
556
557 page &= PAGE_MASK;
558 if ((ctx1 = vma->vm_mm->context) != -1) {
559 cctx = srmmu_get_context();
560/* Is context # ever different from current context? P3 */
561 if (cctx != ctx1) {
562 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
563 srmmu_set_context(ctx1);
564 swift_flush_page(page);
565 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
566 "r" (page), "i" (ASI_M_FLUSH_PROBE));
567 srmmu_set_context(cctx);
568 } else {
569 /* Rm. prot. bits from virt. c. */
570 /* swift_flush_cache_all(); */
571 /* swift_flush_cache_page(vma, page); */
572 swift_flush_page(page);
573
574 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
575 "r" (page), "i" (ASI_M_FLUSH_PROBE));
576 /* same as above: srmmu_flush_tlb_page() */
577 }
578 }
579}
580#endif
581
582/*
583 * The following are all MBUS based SRMMU modules, and therefore could
584 * be found in a multiprocessor configuration. On the whole, these
585 * chips seems to be much more touchy about DVMA and page tables
586 * with respect to cache coherency.
587 */
588
1da177e4
LT
589/* viking.S */
590extern void viking_flush_cache_all(void);
591extern void viking_flush_cache_mm(struct mm_struct *mm);
592extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
593 unsigned long end);
594extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
595extern void viking_flush_page_to_ram(unsigned long page);
596extern void viking_flush_page_for_dma(unsigned long page);
597extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
598extern void viking_flush_page(unsigned long page);
599extern void viking_mxcc_flush_page(unsigned long page);
600extern void viking_flush_tlb_all(void);
601extern void viking_flush_tlb_mm(struct mm_struct *mm);
602extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
603 unsigned long end);
604extern void viking_flush_tlb_page(struct vm_area_struct *vma,
605 unsigned long page);
606extern void sun4dsmp_flush_tlb_all(void);
607extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
608extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
609 unsigned long end);
610extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
611 unsigned long page);
612
613/* hypersparc.S */
614extern void hypersparc_flush_cache_all(void);
615extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
616extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
617extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
618extern void hypersparc_flush_page_to_ram(unsigned long page);
619extern void hypersparc_flush_page_for_dma(unsigned long page);
620extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
621extern void hypersparc_flush_tlb_all(void);
622extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
623extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
624extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
625extern void hypersparc_setup_blockops(void);
626
627/*
628 * NOTE: All of this startup code assumes the low 16mb (approx.) of
629 * kernel mappings are done with one single contiguous chunk of
630 * ram. On small ram machines (classics mainly) we only get
631 * around 8mb mapped for us.
632 */
633
50215d65 634static void __init early_pgtable_allocfail(char *type)
1da177e4
LT
635{
636 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
637 prom_halt();
638}
639
50215d65
AB
640static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
641 unsigned long end)
1da177e4
LT
642{
643 pgd_t *pgdp;
644 pmd_t *pmdp;
645 pte_t *ptep;
646
605ae962 647 while (start < end) {
1da177e4 648 pgdp = pgd_offset_k(start);
7d9fa4aa 649 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
f71a2aac 650 pmdp = __srmmu_get_nocache(
1da177e4
LT
651 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
652 if (pmdp == NULL)
653 early_pgtable_allocfail("pmd");
654 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
642ea3ed 655 pgd_set(__nocache_fix(pgdp), pmdp);
1da177e4 656 }
9701b264 657 pmdp = pmd_offset(__nocache_fix(pgdp), start);
605ae962 658 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
f71a2aac 659 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1da177e4
LT
660 if (ptep == NULL)
661 early_pgtable_allocfail("pte");
662 memset(__nocache_fix(ptep), 0, PTE_SIZE);
642ea3ed 663 pmd_set(__nocache_fix(pmdp), ptep);
1da177e4
LT
664 }
665 if (start > (0xffffffffUL - PMD_SIZE))
666 break;
667 start = (start + PMD_SIZE) & PMD_MASK;
668 }
669}
670
50215d65
AB
671static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
672 unsigned long end)
1da177e4
LT
673{
674 pgd_t *pgdp;
675 pmd_t *pmdp;
676 pte_t *ptep;
677
605ae962 678 while (start < end) {
1da177e4 679 pgdp = pgd_offset_k(start);
7d9fa4aa 680 if (pgd_none(*pgdp)) {
f71a2aac 681 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
1da177e4
LT
682 if (pmdp == NULL)
683 early_pgtable_allocfail("pmd");
684 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
642ea3ed 685 pgd_set(pgdp, pmdp);
1da177e4 686 }
9701b264 687 pmdp = pmd_offset(pgdp, start);
605ae962 688 if (srmmu_pmd_none(*pmdp)) {
f71a2aac 689 ptep = __srmmu_get_nocache(PTE_SIZE,
1da177e4
LT
690 PTE_SIZE);
691 if (ptep == NULL)
692 early_pgtable_allocfail("pte");
693 memset(ptep, 0, PTE_SIZE);
642ea3ed 694 pmd_set(pmdp, ptep);
1da177e4
LT
695 }
696 if (start > (0xffffffffUL - PMD_SIZE))
697 break;
698 start = (start + PMD_SIZE) & PMD_MASK;
699 }
700}
701
805918f8
SR
702/* These flush types are not available on all chips... */
703static inline unsigned long srmmu_probe(unsigned long vaddr)
704{
705 unsigned long retval;
706
707 if (sparc_cpu_model != sparc_leon) {
708
709 vaddr &= PAGE_MASK;
710 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
711 "=r" (retval) :
712 "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
713 } else {
714 retval = leon_swprobe(vaddr, 0);
715 }
716 return retval;
717}
718
1da177e4
LT
719/*
720 * This is much cleaner than poking around physical address space
721 * looking at the prom's page table directly which is what most
722 * other OS's do. Yuck... this is much better.
723 */
50215d65
AB
724static void __init srmmu_inherit_prom_mappings(unsigned long start,
725 unsigned long end)
1da177e4 726{
7cdfbc74
SR
727 unsigned long probed;
728 unsigned long addr;
1da177e4
LT
729 pgd_t *pgdp;
730 pmd_t *pmdp;
731 pte_t *ptep;
7cdfbc74 732 int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
1da177e4 733
605ae962 734 while (start <= end) {
1da177e4
LT
735 if (start == 0)
736 break; /* probably wrap around */
605ae962 737 if (start == 0xfef00000)
1da177e4 738 start = KADB_DEBUGGER_BEGVM;
7cdfbc74
SR
739 probed = srmmu_probe(start);
740 if (!probed) {
741 /* continue probing until we find an entry */
1da177e4
LT
742 start += PAGE_SIZE;
743 continue;
744 }
605ae962 745
1da177e4
LT
746 /* A red snapper, see what it really is. */
747 what = 0;
7cdfbc74 748 addr = start - PAGE_SIZE;
605ae962
SR
749
750 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
7cdfbc74 751 if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
1da177e4
LT
752 what = 1;
753 }
605ae962
SR
754
755 if (!(start & ~(SRMMU_PGDIR_MASK))) {
7cdfbc74 756 if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
1da177e4
LT
757 what = 2;
758 }
605ae962 759
1da177e4 760 pgdp = pgd_offset_k(start);
605ae962 761 if (what == 2) {
7cdfbc74 762 *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
1da177e4
LT
763 start += SRMMU_PGDIR_SIZE;
764 continue;
765 }
7d9fa4aa 766 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
7cdfbc74
SR
767 pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
768 SRMMU_PMD_TABLE_SIZE);
1da177e4
LT
769 if (pmdp == NULL)
770 early_pgtable_allocfail("pmd");
771 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
642ea3ed 772 pgd_set(__nocache_fix(pgdp), pmdp);
1da177e4 773 }
9701b264 774 pmdp = pmd_offset(__nocache_fix(pgdp), start);
605ae962 775 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
f71a2aac 776 ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
1da177e4
LT
777 if (ptep == NULL)
778 early_pgtable_allocfail("pte");
779 memset(__nocache_fix(ptep), 0, PTE_SIZE);
642ea3ed 780 pmd_set(__nocache_fix(pmdp), ptep);
1da177e4 781 }
605ae962
SR
782 if (what == 1) {
783 /* We bend the rule where all 16 PTPs in a pmd_t point
1da177e4
LT
784 * inside the same PTE page, and we leak a perfectly
785 * good hardware PTE piece. Alternatives seem worse.
786 */
787 unsigned int x; /* Index of HW PMD in soft cluster */
7cdfbc74 788 unsigned long *val;
1da177e4 789 x = (start >> PMD_SHIFT) & 15;
7cdfbc74
SR
790 val = &pmdp->pmdv[x];
791 *(unsigned long *)__nocache_fix(val) = probed;
1da177e4
LT
792 start += SRMMU_REAL_PMD_SIZE;
793 continue;
794 }
9701b264 795 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
7cdfbc74 796 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
1da177e4
LT
797 start += PAGE_SIZE;
798 }
799}
800
801#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
802
803/* Create a third-level SRMMU 16MB page mapping. */
804static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
805{
806 pgd_t *pgdp = pgd_offset_k(vaddr);
807 unsigned long big_pte;
808
809 big_pte = KERNEL_PTE(phys_base >> 4);
810 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
811}
812
813/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
814static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
815{
816 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
817 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
818 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
819 /* Map "low" memory only */
820 const unsigned long min_vaddr = PAGE_OFFSET;
821 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
822
823 if (vstart < min_vaddr || vstart >= max_vaddr)
824 return vstart;
605ae962 825
1da177e4
LT
826 if (vend > max_vaddr || vend < min_vaddr)
827 vend = max_vaddr;
828
605ae962 829 while (vstart < vend) {
1da177e4
LT
830 do_large_mapping(vstart, pstart);
831 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
832 }
833 return vstart;
834}
835
32442467 836static void __init map_kernel(void)
1da177e4
LT
837{
838 int i;
839
840 if (phys_base > 0) {
841 do_large_mapping(PAGE_OFFSET, phys_base);
842 }
843
844 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
845 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
846 }
1da177e4
LT
847}
848
409832f5 849void (*poke_srmmu)(void) __cpuinitdata = NULL;
1da177e4
LT
850
851extern unsigned long bootmem_init(unsigned long *pages_avail);
852
853void __init srmmu_paging_init(void)
854{
8d125562
AS
855 int i;
856 phandle cpunode;
1da177e4
LT
857 char node_str[128];
858 pgd_t *pgd;
859 pmd_t *pmd;
860 pte_t *pte;
861 unsigned long pages_avail;
862
b585e855 863 init_mm.context = (unsigned long) NO_CONTEXT;
1da177e4
LT
864 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
865
866 if (sparc_cpu_model == sun4d)
867 num_contexts = 65536; /* We know it is Viking */
868 else {
869 /* Find the number of contexts on the srmmu. */
870 cpunode = prom_getchild(prom_root_node);
871 num_contexts = 0;
605ae962 872 while (cpunode != 0) {
1da177e4 873 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
605ae962 874 if (!strcmp(node_str, "cpu")) {
1da177e4
LT
875 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
876 break;
877 }
878 cpunode = prom_getsibling(cpunode);
879 }
880 }
881
605ae962 882 if (!num_contexts) {
1da177e4
LT
883 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
884 prom_halt();
885 }
886
887 pages_avail = 0;
888 last_valid_pfn = bootmem_init(&pages_avail);
889
890 srmmu_nocache_calcsize();
891 srmmu_nocache_init();
f71a2aac 892 srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
1da177e4
LT
893 map_kernel();
894
895 /* ctx table has to be physically aligned to its size */
f71a2aac 896 srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
1da177e4
LT
897 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
898
605ae962 899 for (i = 0; i < num_contexts; i++)
1da177e4
LT
900 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
901
902 flush_cache_all();
903 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
a54123e2
BB
904#ifdef CONFIG_SMP
905 /* Stop from hanging here... */
5d83d666 906 local_ops->tlb_all();
a54123e2 907#else
1da177e4 908 flush_tlb_all();
a54123e2 909#endif
1da177e4
LT
910 poke_srmmu();
911
1da177e4
LT
912 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
913 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
1da177e4
LT
914
915 srmmu_allocate_ptable_skeleton(
916 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
917 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
918
919 pgd = pgd_offset_k(PKMAP_BASE);
9701b264
SR
920 pmd = pmd_offset(pgd, PKMAP_BASE);
921 pte = pte_offset_kernel(pmd, PKMAP_BASE);
1da177e4
LT
922 pkmap_page_table = pte;
923
924 flush_cache_all();
925 flush_tlb_all();
926
927 sparc_context_init(num_contexts);
928
929 kmap_init();
930
931 {
932 unsigned long zones_size[MAX_NR_ZONES];
933 unsigned long zholes_size[MAX_NR_ZONES];
934 unsigned long npages;
935 int znum;
936
937 for (znum = 0; znum < MAX_NR_ZONES; znum++)
938 zones_size[znum] = zholes_size[znum] = 0;
939
940 npages = max_low_pfn - pfn_base;
941
942 zones_size[ZONE_DMA] = npages;
943 zholes_size[ZONE_DMA] = npages - pages_avail;
944
945 npages = highend_pfn - max_low_pfn;
946 zones_size[ZONE_HIGHMEM] = npages;
947 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
948
9109fb7b 949 free_area_init_node(0, zones_size, pfn_base, zholes_size);
1da177e4
LT
950 }
951}
952
9701b264 953void mmu_info(struct seq_file *m)
1da177e4 954{
605ae962 955 seq_printf(m,
1da177e4
LT
956 "MMU type\t: %s\n"
957 "contexts\t: %d\n"
958 "nocache total\t: %ld\n"
959 "nocache used\t: %d\n",
960 srmmu_name,
961 num_contexts,
962 srmmu_nocache_size,
963 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
964}
965
b585e855
SR
966int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
967{
968 mm->context = NO_CONTEXT;
969 return 0;
970}
971
b796c6da 972void destroy_context(struct mm_struct *mm)
1da177e4
LT
973{
974
605ae962 975 if (mm->context != NO_CONTEXT) {
1da177e4
LT
976 flush_cache_mm(mm);
977 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
978 flush_tlb_mm(mm);
979 spin_lock(&srmmu_context_spinlock);
980 free_context(mm->context);
981 spin_unlock(&srmmu_context_spinlock);
982 mm->context = NO_CONTEXT;
983 }
984}
985
986/* Init various srmmu chip types. */
987static void __init srmmu_is_bad(void)
988{
989 prom_printf("Could not determine SRMMU chip type.\n");
990 prom_halt();
991}
992
993static void __init init_vac_layout(void)
994{
8d125562
AS
995 phandle nd;
996 int cache_lines;
1da177e4
LT
997 char node_str[128];
998#ifdef CONFIG_SMP
999 int cpu = 0;
1000 unsigned long max_size = 0;
1001 unsigned long min_line_size = 0x10000000;
1002#endif
1003
1004 nd = prom_getchild(prom_root_node);
605ae962 1005 while ((nd = prom_getsibling(nd)) != 0) {
1da177e4 1006 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
605ae962 1007 if (!strcmp(node_str, "cpu")) {
1da177e4
LT
1008 vac_line_size = prom_getint(nd, "cache-line-size");
1009 if (vac_line_size == -1) {
605ae962 1010 prom_printf("can't determine cache-line-size, halting.\n");
1da177e4
LT
1011 prom_halt();
1012 }
1013 cache_lines = prom_getint(nd, "cache-nlines");
1014 if (cache_lines == -1) {
1015 prom_printf("can't determine cache-nlines, halting.\n");
1016 prom_halt();
1017 }
1018
1019 vac_cache_size = cache_lines * vac_line_size;
1020#ifdef CONFIG_SMP
605ae962 1021 if (vac_cache_size > max_size)
1da177e4 1022 max_size = vac_cache_size;
605ae962 1023 if (vac_line_size < min_line_size)
1da177e4 1024 min_line_size = vac_line_size;
a54123e2 1025 //FIXME: cpus not contiguous!!
1da177e4 1026 cpu++;
ec7c14bd 1027 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1da177e4
LT
1028 break;
1029#else
1030 break;
1031#endif
1032 }
1033 }
605ae962 1034 if (nd == 0) {
1da177e4
LT
1035 prom_printf("No CPU nodes found, halting.\n");
1036 prom_halt();
1037 }
1038#ifdef CONFIG_SMP
1039 vac_cache_size = max_size;
1040 vac_line_size = min_line_size;
1041#endif
1042 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1043 (int)vac_cache_size, (int)vac_line_size);
1044}
1045
409832f5 1046static void __cpuinit poke_hypersparc(void)
1da177e4
LT
1047{
1048 volatile unsigned long clear;
1049 unsigned long mreg = srmmu_get_mmureg();
1050
1051 hyper_flush_unconditional_combined();
1052
1053 mreg &= ~(HYPERSPARC_CWENABLE);
1054 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1055 mreg |= (HYPERSPARC_CMODE);
1056
1057 srmmu_set_mmureg(mreg);
1058
1059#if 0 /* XXX I think this is bad news... -DaveM */
1060 hyper_clear_all_tags();
1061#endif
1062
1063 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1064 hyper_flush_whole_icache();
1065 clear = srmmu_get_faddr();
1066 clear = srmmu_get_fstatus();
1067}
1068
5d83d666
DM
1069static const struct sparc32_cachetlb_ops hypersparc_ops = {
1070 .cache_all = hypersparc_flush_cache_all,
1071 .cache_mm = hypersparc_flush_cache_mm,
1072 .cache_page = hypersparc_flush_cache_page,
1073 .cache_range = hypersparc_flush_cache_range,
1074 .tlb_all = hypersparc_flush_tlb_all,
1075 .tlb_mm = hypersparc_flush_tlb_mm,
1076 .tlb_page = hypersparc_flush_tlb_page,
1077 .tlb_range = hypersparc_flush_tlb_range,
1078 .page_to_ram = hypersparc_flush_page_to_ram,
1079 .sig_insns = hypersparc_flush_sig_insns,
1080 .page_for_dma = hypersparc_flush_page_for_dma,
1081};
1082
1da177e4
LT
1083static void __init init_hypersparc(void)
1084{
1085 srmmu_name = "ROSS HyperSparc";
1086 srmmu_modtype = HyperSparc;
1087
1088 init_vac_layout();
1089
1090 is_hypersparc = 1;
5d83d666 1091 sparc32_cachetlb_ops = &hypersparc_ops;
1da177e4
LT
1092
1093 poke_srmmu = poke_hypersparc;
1094
1095 hypersparc_setup_blockops();
1096}
1097
409832f5 1098static void __cpuinit poke_swift(void)
1da177e4
LT
1099{
1100 unsigned long mreg;
1101
1102 /* Clear any crap from the cache or else... */
1103 swift_flush_cache_all();
1104
1105 /* Enable I & D caches */
1106 mreg = srmmu_get_mmureg();
1107 mreg |= (SWIFT_IE | SWIFT_DE);
1108 /*
1109 * The Swift branch folding logic is completely broken. At
1110 * trap time, if things are just right, if can mistakenly
1111 * think that a trap is coming from kernel mode when in fact
1112 * it is coming from user mode (it mis-executes the branch in
1113 * the trap code). So you see things like crashme completely
1114 * hosing your machine which is completely unacceptable. Turn
1115 * this shit off... nice job Fujitsu.
1116 */
1117 mreg &= ~(SWIFT_BF);
1118 srmmu_set_mmureg(mreg);
1119}
1120
5d83d666
DM
1121static const struct sparc32_cachetlb_ops swift_ops = {
1122 .cache_all = swift_flush_cache_all,
1123 .cache_mm = swift_flush_cache_mm,
1124 .cache_page = swift_flush_cache_page,
1125 .cache_range = swift_flush_cache_range,
1126 .tlb_all = swift_flush_tlb_all,
1127 .tlb_mm = swift_flush_tlb_mm,
1128 .tlb_page = swift_flush_tlb_page,
1129 .tlb_range = swift_flush_tlb_range,
1130 .page_to_ram = swift_flush_page_to_ram,
1131 .sig_insns = swift_flush_sig_insns,
1132 .page_for_dma = swift_flush_page_for_dma,
1133};
1134
1da177e4
LT
1135#define SWIFT_MASKID_ADDR 0x10003018
1136static void __init init_swift(void)
1137{
1138 unsigned long swift_rev;
1139
1140 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1141 "srl %0, 0x18, %0\n\t" :
1142 "=r" (swift_rev) :
1143 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1144 srmmu_name = "Fujitsu Swift";
605ae962 1145 switch (swift_rev) {
1da177e4
LT
1146 case 0x11:
1147 case 0x20:
1148 case 0x23:
1149 case 0x30:
1150 srmmu_modtype = Swift_lots_o_bugs;
1151 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1152 /*
1153 * Gee george, I wonder why Sun is so hush hush about
1154 * this hardware bug... really braindamage stuff going
1155 * on here. However I think we can find a way to avoid
1156 * all of the workaround overhead under Linux. Basically,
1157 * any page fault can cause kernel pages to become user
1158 * accessible (the mmu gets confused and clears some of
1159 * the ACC bits in kernel ptes). Aha, sounds pretty
1160 * horrible eh? But wait, after extensive testing it appears
1161 * that if you use pgd_t level large kernel pte's (like the
1162 * 4MB pages on the Pentium) the bug does not get tripped
1163 * at all. This avoids almost all of the major overhead.
1164 * Welcome to a world where your vendor tells you to,
1165 * "apply this kernel patch" instead of "sorry for the
1166 * broken hardware, send it back and we'll give you
1167 * properly functioning parts"
1168 */
1169 break;
1170 case 0x25:
1171 case 0x31:
1172 srmmu_modtype = Swift_bad_c;
1173 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1174 /*
1175 * You see Sun allude to this hardware bug but never
1176 * admit things directly, they'll say things like,
1177 * "the Swift chip cache problems" or similar.
1178 */
1179 break;
1180 default:
1181 srmmu_modtype = Swift_ok;
1182 break;
6cb79b3f 1183 }
1da177e4 1184
5d83d666 1185 sparc32_cachetlb_ops = &swift_ops;
1da177e4
LT
1186 flush_page_for_dma_global = 0;
1187
1188 /*
1189 * Are you now convinced that the Swift is one of the
1190 * biggest VLSI abortions of all time? Bravo Fujitsu!
1191 * Fujitsu, the !#?!%$'d up processor people. I bet if
1192 * you examined the microcode of the Swift you'd find
1193 * XXX's all over the place.
1194 */
1195 poke_srmmu = poke_swift;
1196}
1197
1198static void turbosparc_flush_cache_all(void)
1199{
1200 flush_user_windows();
1201 turbosparc_idflash_clear();
1202}
1203
1204static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1205{
1206 FLUSH_BEGIN(mm)
1207 flush_user_windows();
1208 turbosparc_idflash_clear();
1209 FLUSH_END
1210}
1211
1212static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1213{
1214 FLUSH_BEGIN(vma->vm_mm)
1215 flush_user_windows();
1216 turbosparc_idflash_clear();
1217 FLUSH_END
1218}
1219
1220static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1221{
1222 FLUSH_BEGIN(vma->vm_mm)
1223 flush_user_windows();
1224 if (vma->vm_flags & VM_EXEC)
1225 turbosparc_flush_icache();
1226 turbosparc_flush_dcache();
1227 FLUSH_END
1228}
1229
1230/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1231static void turbosparc_flush_page_to_ram(unsigned long page)
1232{
1233#ifdef TURBOSPARC_WRITEBACK
1234 volatile unsigned long clear;
1235
805918f8 1236 if (srmmu_probe(page))
1da177e4
LT
1237 turbosparc_flush_page_cache(page);
1238 clear = srmmu_get_fstatus();
1239#endif
1240}
1241
1242static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1243{
1244}
1245
1246static void turbosparc_flush_page_for_dma(unsigned long page)
1247{
1248 turbosparc_flush_dcache();
1249}
1250
1251static void turbosparc_flush_tlb_all(void)
1252{
1253 srmmu_flush_whole_tlb();
1254}
1255
1256static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1257{
1258 FLUSH_BEGIN(mm)
1259 srmmu_flush_whole_tlb();
1260 FLUSH_END
1261}
1262
1263static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1264{
1265 FLUSH_BEGIN(vma->vm_mm)
1266 srmmu_flush_whole_tlb();
1267 FLUSH_END
1268}
1269
1270static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1271{
1272 FLUSH_BEGIN(vma->vm_mm)
1273 srmmu_flush_whole_tlb();
1274 FLUSH_END
1275}
1276
1277
409832f5 1278static void __cpuinit poke_turbosparc(void)
1da177e4
LT
1279{
1280 unsigned long mreg = srmmu_get_mmureg();
1281 unsigned long ccreg;
1282
1283 /* Clear any crap from the cache or else... */
1284 turbosparc_flush_cache_all();
605ae962
SR
1285 /* Temporarily disable I & D caches */
1286 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1da177e4
LT
1287 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1288 srmmu_set_mmureg(mreg);
605ae962 1289
1da177e4
LT
1290 ccreg = turbosparc_get_ccreg();
1291
1292#ifdef TURBOSPARC_WRITEBACK
1293 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1294 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1295 /* Write-back D-cache, emulate VLSI
1296 * abortion number three, not number one */
1297#else
1298 /* For now let's play safe, optimize later */
1299 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1300 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1301 ccreg &= ~(TURBOSPARC_uS2);
1302 /* Emulate VLSI abortion number three, not number one */
1303#endif
1304
1305 switch (ccreg & 7) {
1306 case 0: /* No SE cache */
1307 case 7: /* Test mode */
1308 break;
1309 default:
1310 ccreg |= (TURBOSPARC_SCENABLE);
1311 }
605ae962 1312 turbosparc_set_ccreg(ccreg);
1da177e4
LT
1313
1314 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1315 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1316 srmmu_set_mmureg(mreg);
1317}
1318
5d83d666
DM
1319static const struct sparc32_cachetlb_ops turbosparc_ops = {
1320 .cache_all = turbosparc_flush_cache_all,
1321 .cache_mm = turbosparc_flush_cache_mm,
1322 .cache_page = turbosparc_flush_cache_page,
1323 .cache_range = turbosparc_flush_cache_range,
1324 .tlb_all = turbosparc_flush_tlb_all,
1325 .tlb_mm = turbosparc_flush_tlb_mm,
1326 .tlb_page = turbosparc_flush_tlb_page,
1327 .tlb_range = turbosparc_flush_tlb_range,
1328 .page_to_ram = turbosparc_flush_page_to_ram,
1329 .sig_insns = turbosparc_flush_sig_insns,
1330 .page_for_dma = turbosparc_flush_page_for_dma,
1331};
1332
1da177e4
LT
1333static void __init init_turbosparc(void)
1334{
1335 srmmu_name = "Fujitsu TurboSparc";
1336 srmmu_modtype = TurboSparc;
5d83d666 1337 sparc32_cachetlb_ops = &turbosparc_ops;
1da177e4
LT
1338 poke_srmmu = poke_turbosparc;
1339}
1340
409832f5 1341static void __cpuinit poke_tsunami(void)
1da177e4
LT
1342{
1343 unsigned long mreg = srmmu_get_mmureg();
1344
1345 tsunami_flush_icache();
1346 tsunami_flush_dcache();
1347 mreg &= ~TSUNAMI_ITD;
1348 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1349 srmmu_set_mmureg(mreg);
1350}
1351
5d83d666
DM
1352static const struct sparc32_cachetlb_ops tsunami_ops = {
1353 .cache_all = tsunami_flush_cache_all,
1354 .cache_mm = tsunami_flush_cache_mm,
1355 .cache_page = tsunami_flush_cache_page,
1356 .cache_range = tsunami_flush_cache_range,
1357 .tlb_all = tsunami_flush_tlb_all,
1358 .tlb_mm = tsunami_flush_tlb_mm,
1359 .tlb_page = tsunami_flush_tlb_page,
1360 .tlb_range = tsunami_flush_tlb_range,
1361 .page_to_ram = tsunami_flush_page_to_ram,
1362 .sig_insns = tsunami_flush_sig_insns,
1363 .page_for_dma = tsunami_flush_page_for_dma,
1364};
1365
1da177e4
LT
1366static void __init init_tsunami(void)
1367{
1368 /*
1369 * Tsunami's pretty sane, Sun and TI actually got it
1370 * somewhat right this time. Fujitsu should have
1371 * taken some lessons from them.
1372 */
1373
1374 srmmu_name = "TI Tsunami";
1375 srmmu_modtype = Tsunami;
5d83d666 1376 sparc32_cachetlb_ops = &tsunami_ops;
1da177e4
LT
1377 poke_srmmu = poke_tsunami;
1378
1379 tsunami_setup_blockops();
1380}
1381
409832f5 1382static void __cpuinit poke_viking(void)
1da177e4
LT
1383{
1384 unsigned long mreg = srmmu_get_mmureg();
1385 static int smp_catch;
1386
5d83d666 1387 if (viking_mxcc_present) {
1da177e4
LT
1388 unsigned long mxcc_control = mxcc_get_creg();
1389
1390 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1391 mxcc_control &= ~(MXCC_CTL_RRC);
1392 mxcc_set_creg(mxcc_control);
1393
1394 /*
1395 * We don't need memory parity checks.
1396 * XXX This is a mess, have to dig out later. ecd.
1397 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1398 */
1399
1400 /* We do cache ptables on MXCC. */
1401 mreg |= VIKING_TCENABLE;
1402 } else {
1403 unsigned long bpreg;
1404
1405 mreg &= ~(VIKING_TCENABLE);
605ae962 1406 if (smp_catch++) {
1da177e4
LT
1407 /* Must disable mixed-cmd mode here for other cpu's. */
1408 bpreg = viking_get_bpreg();
1409 bpreg &= ~(VIKING_ACTION_MIX);
1410 viking_set_bpreg(bpreg);
1411
1412 /* Just in case PROM does something funny. */
1413 msi_set_sync();
1414 }
1415 }
1416
1417 mreg |= VIKING_SPENABLE;
1418 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1419 mreg |= VIKING_SBENABLE;
1420 mreg &= ~(VIKING_ACENABLE);
1421 srmmu_set_mmureg(mreg);
1da177e4
LT
1422}
1423
5d83d666
DM
1424static struct sparc32_cachetlb_ops viking_ops = {
1425 .cache_all = viking_flush_cache_all,
1426 .cache_mm = viking_flush_cache_mm,
1427 .cache_page = viking_flush_cache_page,
1428 .cache_range = viking_flush_cache_range,
1429 .tlb_all = viking_flush_tlb_all,
1430 .tlb_mm = viking_flush_tlb_mm,
1431 .tlb_page = viking_flush_tlb_page,
1432 .tlb_range = viking_flush_tlb_range,
1433 .page_to_ram = viking_flush_page_to_ram,
1434 .sig_insns = viking_flush_sig_insns,
1435 .page_for_dma = viking_flush_page_for_dma,
1436};
1437
1438#ifdef CONFIG_SMP
1439/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1440 * perform the local TLB flush and all the other cpus will see it.
1441 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1442 * that requires that we add some synchronization to these flushes.
1443 *
1444 * The bug is that the fifo which keeps track of all the pending TLB
1445 * broadcasts in the system is an entry or two too small, so if we
1446 * have too many going at once we'll overflow that fifo and lose a TLB
1447 * flush resulting in corruption.
1448 *
1449 * Our workaround is to take a global spinlock around the TLB flushes,
1450 * which guarentees we won't ever have too many pending. It's a big
1451 * hammer, but a semaphore like system to make sure we only have N TLB
1452 * flushes going at once will require SMP locking anyways so there's
1453 * no real value in trying any harder than this.
1454 */
1455static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1456 .cache_all = viking_flush_cache_all,
1457 .cache_mm = viking_flush_cache_mm,
1458 .cache_page = viking_flush_cache_page,
1459 .cache_range = viking_flush_cache_range,
1460 .tlb_all = sun4dsmp_flush_tlb_all,
1461 .tlb_mm = sun4dsmp_flush_tlb_mm,
1462 .tlb_page = sun4dsmp_flush_tlb_page,
1463 .tlb_range = sun4dsmp_flush_tlb_range,
1464 .page_to_ram = viking_flush_page_to_ram,
1465 .sig_insns = viking_flush_sig_insns,
1466 .page_for_dma = viking_flush_page_for_dma,
1467};
1468#endif
1469
1da177e4
LT
1470static void __init init_viking(void)
1471{
1472 unsigned long mreg = srmmu_get_mmureg();
1473
1474 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
605ae962 1475 if (mreg & VIKING_MMODE) {
1da177e4
LT
1476 srmmu_name = "TI Viking";
1477 viking_mxcc_present = 0;
1478 msi_set_sync();
1479
1da177e4
LT
1480 /*
1481 * We need this to make sure old viking takes no hits
1482 * on it's cache for dma snoops to workaround the
1483 * "load from non-cacheable memory" interrupt bug.
1484 * This is only necessary because of the new way in
1485 * which we use the IOMMU.
1486 */
5d83d666
DM
1487 viking_ops.page_for_dma = viking_flush_page;
1488#ifdef CONFIG_SMP
1489 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1490#endif
1da177e4
LT
1491 flush_page_for_dma_global = 0;
1492 } else {
1493 srmmu_name = "TI Viking/MXCC";
1494 viking_mxcc_present = 1;
1da177e4 1495 srmmu_cache_pagetables = 1;
1da177e4
LT
1496 }
1497
5d83d666
DM
1498 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1499 &viking_ops;
1da177e4 1500#ifdef CONFIG_SMP
5d83d666
DM
1501 if (sparc_cpu_model == sun4d)
1502 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1503 &viking_sun4d_smp_ops;
1da177e4 1504#endif
1da177e4
LT
1505
1506 poke_srmmu = poke_viking;
1507}
1508
1509/* Probe for the srmmu chip version. */
1510static void __init get_srmmu_type(void)
1511{
1512 unsigned long mreg, psr;
1513 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1514
1515 srmmu_modtype = SRMMU_INVAL_MOD;
1516 hwbug_bitmask = 0;
1517
1518 mreg = srmmu_get_mmureg(); psr = get_psr();
1519 mod_typ = (mreg & 0xf0000000) >> 28;
1520 mod_rev = (mreg & 0x0f000000) >> 24;
1521 psr_typ = (psr >> 28) & 0xf;
1522 psr_vers = (psr >> 24) & 0xf;
1523
75d9e346
KE
1524 /* First, check for sparc-leon. */
1525 if (sparc_cpu_model == sparc_leon) {
75d9e346
KE
1526 init_leon();
1527 return;
1528 }
1529
1530 /* Second, check for HyperSparc or Cypress. */
605ae962
SR
1531 if (mod_typ == 1) {
1532 switch (mod_rev) {
1da177e4
LT
1533 case 7:
1534 /* UP or MP Hypersparc */
1535 init_hypersparc();
1536 break;
1537 case 0:
1538 case 2:
1da177e4
LT
1539 case 10:
1540 case 11:
1541 case 12:
1da177e4
LT
1542 case 13:
1543 case 14:
1544 case 15:
1da177e4 1545 default:
c7020eb4
DM
1546 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1547 prom_halt();
1da177e4 1548 break;
6cb79b3f 1549 }
1da177e4
LT
1550 return;
1551 }
605ae962
SR
1552
1553 /* Now Fujitsu TurboSparc. It might happen that it is
1da177e4
LT
1554 * in Swift emulation mode, so we will check later...
1555 */
1556 if (psr_typ == 0 && psr_vers == 5) {
1557 init_turbosparc();
1558 return;
1559 }
1560
1561 /* Next check for Fujitsu Swift. */
605ae962 1562 if (psr_typ == 0 && psr_vers == 4) {
8d125562 1563 phandle cpunode;
1da177e4
LT
1564 char node_str[128];
1565
1566 /* Look if it is not a TurboSparc emulating Swift... */
1567 cpunode = prom_getchild(prom_root_node);
605ae962 1568 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1da177e4 1569 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
605ae962 1570 if (!strcmp(node_str, "cpu")) {
1da177e4
LT
1571 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1572 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1573 init_turbosparc();
1574 return;
1575 }
1576 break;
1577 }
1578 }
605ae962 1579
1da177e4
LT
1580 init_swift();
1581 return;
1582 }
1583
1584 /* Now the Viking family of srmmu. */
605ae962 1585 if (psr_typ == 4 &&
1da177e4
LT
1586 ((psr_vers == 0) ||
1587 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1588 init_viking();
1589 return;
1590 }
1591
1592 /* Finally the Tsunami. */
605ae962 1593 if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1da177e4
LT
1594 init_tsunami();
1595 return;
1596 }
1597
1598 /* Oh well */
1599 srmmu_is_bad();
1600}
1601
1da177e4
LT
1602#ifdef CONFIG_SMP
1603/* Local cross-calls. */
1604static void smp_flush_page_for_dma(unsigned long page)
1605{
5d83d666
DM
1606 xc1((smpfunc_t) local_ops->page_for_dma, page);
1607 local_ops->page_for_dma(page);
1608}
1609
1610static void smp_flush_cache_all(void)
1611{
1612 xc0((smpfunc_t) local_ops->cache_all);
1613 local_ops->cache_all();
1614}
1615
1616static void smp_flush_tlb_all(void)
1617{
1618 xc0((smpfunc_t) local_ops->tlb_all);
1619 local_ops->tlb_all();
1620}
1621
1622static void smp_flush_cache_mm(struct mm_struct *mm)
1623{
1624 if (mm->context != NO_CONTEXT) {
1625 cpumask_t cpu_mask;
1626 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1627 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1628 if (!cpumask_empty(&cpu_mask))
1629 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1630 local_ops->cache_mm(mm);
1631 }
1632}
1633
1634static void smp_flush_tlb_mm(struct mm_struct *mm)
1635{
1636 if (mm->context != NO_CONTEXT) {
1637 cpumask_t cpu_mask;
1638 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1639 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1640 if (!cpumask_empty(&cpu_mask)) {
1641 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1642 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1643 cpumask_copy(mm_cpumask(mm),
1644 cpumask_of(smp_processor_id()));
1645 }
1646 local_ops->tlb_mm(mm);
1647 }
1648}
1649
1650static void smp_flush_cache_range(struct vm_area_struct *vma,
1651 unsigned long start,
1652 unsigned long end)
1653{
1654 struct mm_struct *mm = vma->vm_mm;
1655
1656 if (mm->context != NO_CONTEXT) {
1657 cpumask_t cpu_mask;
1658 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1659 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1660 if (!cpumask_empty(&cpu_mask))
1661 xc3((smpfunc_t) local_ops->cache_range,
1662 (unsigned long) vma, start, end);
1663 local_ops->cache_range(vma, start, end);
1664 }
1665}
1666
1667static void smp_flush_tlb_range(struct vm_area_struct *vma,
1668 unsigned long start,
1669 unsigned long end)
1670{
1671 struct mm_struct *mm = vma->vm_mm;
1672
1673 if (mm->context != NO_CONTEXT) {
1674 cpumask_t cpu_mask;
1675 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1676 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1677 if (!cpumask_empty(&cpu_mask))
1678 xc3((smpfunc_t) local_ops->tlb_range,
1679 (unsigned long) vma, start, end);
1680 local_ops->tlb_range(vma, start, end);
1681 }
1da177e4
LT
1682}
1683
5d83d666
DM
1684static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1685{
1686 struct mm_struct *mm = vma->vm_mm;
1687
1688 if (mm->context != NO_CONTEXT) {
1689 cpumask_t cpu_mask;
1690 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1691 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1692 if (!cpumask_empty(&cpu_mask))
1693 xc2((smpfunc_t) local_ops->cache_page,
1694 (unsigned long) vma, page);
1695 local_ops->cache_page(vma, page);
1696 }
1697}
1698
1699static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1700{
1701 struct mm_struct *mm = vma->vm_mm;
1702
1703 if (mm->context != NO_CONTEXT) {
1704 cpumask_t cpu_mask;
1705 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1706 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1707 if (!cpumask_empty(&cpu_mask))
1708 xc2((smpfunc_t) local_ops->tlb_page,
1709 (unsigned long) vma, page);
1710 local_ops->tlb_page(vma, page);
1711 }
1712}
1713
1714static void smp_flush_page_to_ram(unsigned long page)
1715{
1716 /* Current theory is that those who call this are the one's
1717 * who have just dirtied their cache with the pages contents
1718 * in kernel space, therefore we only run this on local cpu.
1719 *
1720 * XXX This experiment failed, research further... -DaveM
1721 */
1722#if 1
1723 xc1((smpfunc_t) local_ops->page_to_ram, page);
1724#endif
1725 local_ops->page_to_ram(page);
1726}
1727
1728static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1729{
1730 cpumask_t cpu_mask;
1731 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1732 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1733 if (!cpumask_empty(&cpu_mask))
1734 xc2((smpfunc_t) local_ops->sig_insns,
1735 (unsigned long) mm, insn_addr);
1736 local_ops->sig_insns(mm, insn_addr);
1737}
1738
1739static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1740 .cache_all = smp_flush_cache_all,
1741 .cache_mm = smp_flush_cache_mm,
1742 .cache_page = smp_flush_cache_page,
1743 .cache_range = smp_flush_cache_range,
1744 .tlb_all = smp_flush_tlb_all,
1745 .tlb_mm = smp_flush_tlb_mm,
1746 .tlb_page = smp_flush_tlb_page,
1747 .tlb_range = smp_flush_tlb_range,
1748 .page_to_ram = smp_flush_page_to_ram,
1749 .sig_insns = smp_flush_sig_insns,
1750 .page_for_dma = smp_flush_page_for_dma,
1751};
1da177e4
LT
1752#endif
1753
1da177e4 1754/* Load up routines and constants for sun4m and sun4d mmu */
a3c5c663 1755void __init load_mmu(void)
1da177e4
LT
1756{
1757 extern void ld_mmu_iommu(void);
1758 extern void ld_mmu_iounit(void);
1da177e4 1759
1da177e4 1760 /* Functions */
1da177e4 1761 get_srmmu_type();
1da177e4
LT
1762
1763#ifdef CONFIG_SMP
1764 /* El switcheroo... */
5d83d666 1765 local_ops = sparc32_cachetlb_ops;
1da177e4 1766
5d83d666
DM
1767 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1768 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1769 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1770 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1771 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1da177e4 1772 }
64273d08
DM
1773
1774 if (poke_srmmu == poke_viking) {
1775 /* Avoid unnecessary cross calls. */
5d83d666
DM
1776 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1777 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1778 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1779 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1780
1781 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1782 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1783 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
64273d08 1784 }
5d83d666
DM
1785
1786 /* It really is const after this point. */
1787 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1788 &smp_cachetlb_ops;
1da177e4
LT
1789#endif
1790
1791 if (sparc_cpu_model == sun4d)
1792 ld_mmu_iounit();
1793 else
1794 ld_mmu_iommu();
1795#ifdef CONFIG_SMP
1796 if (sparc_cpu_model == sun4d)
1797 sun4d_init_smp();
8401707f
KE
1798 else if (sparc_cpu_model == sparc_leon)
1799 leon_init_smp();
1da177e4
LT
1800 else
1801 sun4m_init_smp();
1802#endif
1803}
This page took 0.686819 seconds and 5 git commands to generate.