r8169: enable internal ASPM and clock request settings
[deliverable/linux.git] / arch / sparc / net / bpf_jit_comp.c
CommitLineData
2809a208
DM
1#include <linux/moduleloader.h>
2#include <linux/workqueue.h>
3#include <linux/netdevice.h>
4#include <linux/filter.h>
5#include <linux/cache.h>
6
7#include <asm/cacheflush.h>
8#include <asm/ptrace.h>
9
10#include "bpf_jit.h"
11
12int bpf_jit_enable __read_mostly;
13
2809a208
DM
14static inline bool is_simm13(unsigned int value)
15{
16 return value + 0x1000 < 0x2000;
17}
18
19static void bpf_flush_icache(void *start_, void *end_)
20{
21#ifdef CONFIG_SPARC64
22 /* Cheetah's I-cache is fully coherent. */
23 if (tlb_type == spitfire) {
24 unsigned long start = (unsigned long) start_;
25 unsigned long end = (unsigned long) end_;
26
27 start &= ~7UL;
28 end = (end + 7UL) & ~7UL;
29 while (start < end) {
30 flushi(start);
31 start += 32;
32 }
33 }
34#endif
35}
36
37#define SEEN_DATAREF 1 /* might call external helpers */
38#define SEEN_XREG 2 /* ebx is used */
39#define SEEN_MEM 4 /* use mem[] for temporary storage */
40
41#define S13(X) ((X) & 0x1fff)
42#define IMMED 0x00002000
43#define RD(X) ((X) << 25)
44#define RS1(X) ((X) << 14)
45#define RS2(X) ((X))
46#define OP(X) ((X) << 30)
47#define OP2(X) ((X) << 22)
48#define OP3(X) ((X) << 19)
49#define COND(X) ((X) << 25)
50#define F1(X) OP(X)
51#define F2(X, Y) (OP(X) | OP2(Y))
52#define F3(X, Y) (OP(X) | OP3(Y))
53
584c5e2a
DM
54#define CONDN COND(0x0)
55#define CONDE COND(0x1)
56#define CONDLE COND(0x2)
57#define CONDL COND(0x3)
58#define CONDLEU COND(0x4)
59#define CONDCS COND(0x5)
60#define CONDNEG COND(0x6)
61#define CONDVC COND(0x7)
62#define CONDA COND(0x8)
63#define CONDNE COND(0x9)
64#define CONDG COND(0xa)
65#define CONDGE COND(0xb)
66#define CONDGU COND(0xc)
67#define CONDCC COND(0xd)
68#define CONDPOS COND(0xe)
69#define CONDVS COND(0xf)
2809a208
DM
70
71#define CONDGEU CONDCC
72#define CONDLU CONDCS
73
74#define WDISP22(X) (((X) >> 2) & 0x3fffff)
75
76#define BA (F2(0, 2) | CONDA)
77#define BGU (F2(0, 2) | CONDGU)
78#define BLEU (F2(0, 2) | CONDLEU)
79#define BGEU (F2(0, 2) | CONDGEU)
80#define BLU (F2(0, 2) | CONDLU)
81#define BE (F2(0, 2) | CONDE)
82#define BNE (F2(0, 2) | CONDNE)
83
84#ifdef CONFIG_SPARC64
85#define BNE_PTR (F2(0, 1) | CONDNE | (2 << 20))
86#else
87#define BNE_PTR BNE
88#endif
89
90#define SETHI(K, REG) \
91 (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
92#define OR_LO(K, REG) \
93 (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
94
95#define ADD F3(2, 0x00)
96#define AND F3(2, 0x01)
97#define ANDCC F3(2, 0x11)
98#define OR F3(2, 0x02)
d7ce8a5f 99#define XOR F3(2, 0x03)
2809a208
DM
100#define SUB F3(2, 0x04)
101#define SUBCC F3(2, 0x14)
102#define MUL F3(2, 0x0a) /* umul */
103#define DIV F3(2, 0x0e) /* udiv */
104#define SLL F3(2, 0x25)
105#define SRL F3(2, 0x26)
106#define JMPL F3(2, 0x38)
107#define CALL F1(1)
108#define BR F2(0, 0x01)
109#define RD_Y F3(2, 0x28)
110#define WR_Y F3(2, 0x30)
111
112#define LD32 F3(3, 0x00)
113#define LD8 F3(3, 0x01)
114#define LD16 F3(3, 0x02)
115#define LD64 F3(3, 0x0b)
116#define ST32 F3(3, 0x04)
117
118#ifdef CONFIG_SPARC64
119#define LDPTR LD64
120#define BASE_STACKFRAME 176
121#else
122#define LDPTR LD32
123#define BASE_STACKFRAME 96
124#endif
125
126#define LD32I (LD32 | IMMED)
127#define LD8I (LD8 | IMMED)
128#define LD16I (LD16 | IMMED)
129#define LD64I (LD64 | IMMED)
130#define LDPTRI (LDPTR | IMMED)
131#define ST32I (ST32 | IMMED)
132
133#define emit_nop() \
134do { \
135 *prog++ = SETHI(0, G0); \
136} while (0)
137
138#define emit_neg() \
139do { /* sub %g0, r_A, r_A */ \
140 *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
141} while (0)
142
143#define emit_reg_move(FROM, TO) \
144do { /* or %g0, FROM, TO */ \
145 *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
146} while (0)
147
148#define emit_clear(REG) \
149do { /* or %g0, %g0, REG */ \
150 *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
151} while (0)
152
153#define emit_set_const(K, REG) \
154do { /* sethi %hi(K), REG */ \
155 *prog++ = SETHI(K, REG); \
156 /* or REG, %lo(K), REG */ \
157 *prog++ = OR_LO(K, REG); \
158} while (0)
159
160 /* Emit
161 *
584c5e2a 162 * OP r_A, r_X, r_A
2809a208
DM
163 */
164#define emit_alu_X(OPCODE) \
165do { \
166 seen |= SEEN_XREG; \
167 *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
168} while (0)
169
170 /* Emit either:
171 *
172 * OP r_A, K, r_A
173 *
174 * or
175 *
176 * sethi %hi(K), r_TMP
177 * or r_TMP, %lo(K), r_TMP
178 * OP r_A, r_TMP, r_A
179 *
180 * depending upon whether K fits in a signed 13-bit
181 * immediate instruction field. Emit nothing if K
182 * is zero.
183 */
184#define emit_alu_K(OPCODE, K) \
584c5e2a 185do { \
2809a208
DM
186 if (K) { \
187 unsigned int _insn = OPCODE; \
188 _insn |= RS1(r_A) | RD(r_A); \
189 if (is_simm13(K)) { \
190 *prog++ = _insn | IMMED | S13(K); \
191 } else { \
192 emit_set_const(K, r_TMP); \
193 *prog++ = _insn | RS2(r_TMP); \
584c5e2a 194 } \
2809a208
DM
195 } \
196} while (0)
197
198#define emit_loadimm(K, DEST) \
199do { \
200 if (is_simm13(K)) { \
201 /* or %g0, K, DEST */ \
202 *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
203 } else { \
204 emit_set_const(K, DEST); \
205 } \
206} while (0)
207
208#define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
209do { unsigned int _off = offsetof(STRUCT, FIELD); \
210 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
211 *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
584c5e2a 212} while (0)
2809a208
DM
213
214#define emit_load32(BASE, STRUCT, FIELD, DEST) \
215do { unsigned int _off = offsetof(STRUCT, FIELD); \
216 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
217 *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
584c5e2a 218} while (0)
2809a208
DM
219
220#define emit_load16(BASE, STRUCT, FIELD, DEST) \
221do { unsigned int _off = offsetof(STRUCT, FIELD); \
222 BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
223 *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
584c5e2a 224} while (0)
2809a208
DM
225
226#define __emit_load8(BASE, STRUCT, FIELD, DEST) \
227do { unsigned int _off = offsetof(STRUCT, FIELD); \
228 *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
584c5e2a 229} while (0)
2809a208
DM
230
231#define emit_load8(BASE, STRUCT, FIELD, DEST) \
232do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
233 __emit_load8(BASE, STRUCT, FIELD, DEST); \
584c5e2a 234} while (0)
2809a208
DM
235
236#define emit_ldmem(OFF, DEST) \
237do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST); \
584c5e2a 238} while (0)
2809a208
DM
239
240#define emit_stmem(OFF, SRC) \
241do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC); \
584c5e2a 242} while (0)
2809a208 243
2809a208
DM
244#ifdef CONFIG_SMP
245#ifdef CONFIG_SPARC64
246#define emit_load_cpu(REG) \
247 emit_load16(G6, struct thread_info, cpu, REG)
248#else
249#define emit_load_cpu(REG) \
250 emit_load32(G6, struct thread_info, cpu, REG)
251#endif
252#else
253#define emit_load_cpu(REG) emit_clear(REG)
254#endif
255
256#define emit_skb_loadptr(FIELD, DEST) \
257 emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
258#define emit_skb_load32(FIELD, DEST) \
259 emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
260#define emit_skb_load16(FIELD, DEST) \
261 emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
262#define __emit_skb_load8(FIELD, DEST) \
263 __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
264#define emit_skb_load8(FIELD, DEST) \
265 emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
266
267#define emit_jmpl(BASE, IMM_OFF, LREG) \
268 *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
269
270#define emit_call(FUNC) \
271do { void *_here = image + addrs[i] - 8; \
272 unsigned int _off = (void *)(FUNC) - _here; \
273 *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
274 emit_nop(); \
275} while (0)
276
277#define emit_branch(BR_OPC, DEST) \
278do { unsigned int _here = addrs[i] - 8; \
279 *prog++ = BR_OPC | WDISP22((DEST) - _here); \
584c5e2a 280} while (0)
2809a208
DM
281
282#define emit_branch_off(BR_OPC, OFF) \
283do { *prog++ = BR_OPC | WDISP22(OFF); \
584c5e2a 284} while (0)
2809a208
DM
285
286#define emit_jump(DEST) emit_branch(BA, DEST)
287
584c5e2a
DM
288#define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
289#define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
2809a208
DM
290
291#define emit_cmp(R1, R2) \
292 *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
293
294#define emit_cmpi(R1, IMM) \
295 *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
296
297#define emit_btst(R1, R2) \
298 *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
299
300#define emit_btsti(R1, IMM) \
301 *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
302
303#define emit_sub(R1, R2, R3) \
304 *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
305
306#define emit_subi(R1, IMM, R3) \
307 *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
308
309#define emit_add(R1, R2, R3) \
310 *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
311
312#define emit_addi(R1, IMM, R3) \
313 *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
314
315#define emit_alloc_stack(SZ) \
316 *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
317
318#define emit_release_stack(SZ) \
319 *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
320
584c5e2a
DM
321/* A note about branch offset calculations. The addrs[] array,
322 * indexed by BPF instruction, records the address after all the
323 * sparc instructions emitted for that BPF instruction.
324 *
325 * The most common case is to emit a branch at the end of such
326 * a code sequence. So this would be two instructions, the
327 * branch and it's delay slot.
328 *
329 * Therefore by default the branch emitters calculate the branch
330 * offset field as:
331 *
332 * destination - (addrs[i] - 8)
333 *
334 * This "addrs[i] - 8" is the address of the branch itself or
335 * what "." would be in assembler notation. The "8" part is
336 * how we take into consideration the branch and it's delay
337 * slot mentioned above.
338 *
339 * Sometimes we need to emit a branch earlier in the code
340 * sequence. And in these situations we adjust "destination"
341 * to accomodate this difference. For example, if we needed
342 * to emit a branch (and it's delay slot) right before the
343 * final instruction emitted for a BPF opcode, we'd use
344 * "destination + 4" instead of just plain "destination" above.
345 *
346 * This is why you see all of these funny emit_branch() and
347 * emit_jump() calls with adjusted offsets.
348 */
349
2809a208
DM
350void bpf_jit_compile(struct sk_filter *fp)
351{
352 unsigned int cleanup_addr, proglen, oldproglen = 0;
353 u32 temp[8], *prog, *func, seen = 0, pass;
354 const struct sock_filter *filter = fp->insns;
355 int i, flen = fp->len, pc_ret0 = -1;
356 unsigned int *addrs;
357 void *image;
358
359 if (!bpf_jit_enable)
360 return;
361
362 addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
363 if (addrs == NULL)
364 return;
365
366 /* Before first pass, make a rough estimation of addrs[]
367 * each bpf instruction is translated to less than 64 bytes
368 */
369 for (proglen = 0, i = 0; i < flen; i++) {
370 proglen += 64;
371 addrs[i] = proglen;
372 }
373 cleanup_addr = proglen; /* epilogue address */
374 image = NULL;
375 for (pass = 0; pass < 10; pass++) {
376 u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
377
378 /* no prologue/epilogue for trivial filters (RET something) */
379 proglen = 0;
380 prog = temp;
381
382 /* Prologue */
383 if (seen_or_pass0) {
384 if (seen_or_pass0 & SEEN_MEM) {
385 unsigned int sz = BASE_STACKFRAME;
386 sz += BPF_MEMWORDS * sizeof(u32);
387 emit_alloc_stack(sz);
388 }
389
390 /* Make sure we dont leek kernel memory. */
391 if (seen_or_pass0 & SEEN_XREG)
392 emit_clear(r_X);
393
394 /* If this filter needs to access skb data,
7b56f76e 395 * load %o4 and %o5 with:
2809a208
DM
396 * %o4 = skb->len - skb->data_len
397 * %o5 = skb->data
398 * And also back up %o7 into r_saved_O7 so we can
399 * invoke the stubs using 'call'.
400 */
401 if (seen_or_pass0 & SEEN_DATAREF) {
402 emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
403 emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
404 emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
405 emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
406 }
407 }
408 emit_reg_move(O7, r_saved_O7);
409
410 switch (filter[0].code) {
411 case BPF_S_RET_K:
412 case BPF_S_LD_W_LEN:
413 case BPF_S_ANC_PROTOCOL:
414 case BPF_S_ANC_PKTTYPE:
415 case BPF_S_ANC_IFINDEX:
416 case BPF_S_ANC_MARK:
417 case BPF_S_ANC_RXHASH:
418 case BPF_S_ANC_CPU:
419 case BPF_S_ANC_QUEUE:
420 case BPF_S_LD_W_ABS:
421 case BPF_S_LD_H_ABS:
422 case BPF_S_LD_B_ABS:
423 /* The first instruction sets the A register (or is
424 * a "RET 'constant'")
425 */
426 break;
427 default:
428 /* Make sure we dont leak kernel information to the
429 * user.
430 */
431 emit_clear(r_A); /* A = 0 */
432 }
433
434 for (i = 0; i < flen; i++) {
435 unsigned int K = filter[i].k;
436 unsigned int t_offset;
437 unsigned int f_offset;
438 u32 t_op, f_op;
439 int ilen;
440
441 switch (filter[i].code) {
442 case BPF_S_ALU_ADD_X: /* A += X; */
443 emit_alu_X(ADD);
444 break;
445 case BPF_S_ALU_ADD_K: /* A += K; */
446 emit_alu_K(ADD, K);
447 break;
448 case BPF_S_ALU_SUB_X: /* A -= X; */
449 emit_alu_X(SUB);
450 break;
451 case BPF_S_ALU_SUB_K: /* A -= K */
452 emit_alu_K(SUB, K);
453 break;
454 case BPF_S_ALU_AND_X: /* A &= X */
455 emit_alu_X(AND);
456 break;
457 case BPF_S_ALU_AND_K: /* A &= K */
458 emit_alu_K(AND, K);
459 break;
460 case BPF_S_ALU_OR_X: /* A |= X */
461 emit_alu_X(OR);
462 break;
463 case BPF_S_ALU_OR_K: /* A |= K */
464 emit_alu_K(OR, K);
465 break;
d7ce8a5f 466 case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
aa99521e 467 case BPF_S_ALU_XOR_X:
d7ce8a5f
DM
468 emit_alu_X(XOR);
469 break;
aa99521e
DB
470 case BPF_S_ALU_XOR_K: /* A ^= K */
471 emit_alu_K(XOR, K);
472 break;
2809a208
DM
473 case BPF_S_ALU_LSH_X: /* A <<= X */
474 emit_alu_X(SLL);
475 break;
476 case BPF_S_ALU_LSH_K: /* A <<= K */
477 emit_alu_K(SLL, K);
478 break;
479 case BPF_S_ALU_RSH_X: /* A >>= X */
480 emit_alu_X(SRL);
481 break;
482 case BPF_S_ALU_RSH_K: /* A >>= K */
483 emit_alu_K(SRL, K);
484 break;
485 case BPF_S_ALU_MUL_X: /* A *= X; */
486 emit_alu_X(MUL);
487 break;
488 case BPF_S_ALU_MUL_K: /* A *= K */
489 emit_alu_K(MUL, K);
490 break;
491 case BPF_S_ALU_DIV_K: /* A /= K */
492 emit_alu_K(MUL, K);
493 emit_read_y(r_A);
494 break;
495 case BPF_S_ALU_DIV_X: /* A /= X; */
496 emit_cmpi(r_X, 0);
497 if (pc_ret0 > 0) {
498 t_offset = addrs[pc_ret0 - 1];
499#ifdef CONFIG_SPARC32
500 emit_branch(BE, t_offset + 20);
501#else
502 emit_branch(BE, t_offset + 8);
503#endif
504 emit_nop(); /* delay slot */
505 } else {
506 emit_branch_off(BNE, 16);
507 emit_nop();
508#ifdef CONFIG_SPARC32
509 emit_jump(cleanup_addr + 20);
510#else
511 emit_jump(cleanup_addr + 8);
512#endif
513 emit_clear(r_A);
514 }
515 emit_write_y(G0);
516#ifdef CONFIG_SPARC32
584c5e2a
DM
517 /* The Sparc v8 architecture requires
518 * three instructions between a %y
519 * register write and the first use.
520 */
2809a208
DM
521 emit_nop();
522 emit_nop();
523 emit_nop();
524#endif
525 emit_alu_X(DIV);
526 break;
527 case BPF_S_ALU_NEG:
528 emit_neg();
529 break;
530 case BPF_S_RET_K:
531 if (!K) {
532 if (pc_ret0 == -1)
533 pc_ret0 = i;
534 emit_clear(r_A);
535 } else {
536 emit_loadimm(K, r_A);
537 }
538 /* Fallthrough */
539 case BPF_S_RET_A:
540 if (seen_or_pass0) {
541 if (i != flen - 1) {
542 emit_jump(cleanup_addr);
543 emit_nop();
544 break;
545 }
546 if (seen_or_pass0 & SEEN_MEM) {
547 unsigned int sz = BASE_STACKFRAME;
548 sz += BPF_MEMWORDS * sizeof(u32);
549 emit_release_stack(sz);
550 }
551 }
552 /* jmpl %r_saved_O7 + 8, %g0 */
553 emit_jmpl(r_saved_O7, 8, G0);
554 emit_reg_move(r_A, O0); /* delay slot */
555 break;
556 case BPF_S_MISC_TAX:
557 seen |= SEEN_XREG;
558 emit_reg_move(r_A, r_X);
559 break;
560 case BPF_S_MISC_TXA:
561 seen |= SEEN_XREG;
562 emit_reg_move(r_X, r_A);
563 break;
564 case BPF_S_ANC_CPU:
565 emit_load_cpu(r_A);
566 break;
567 case BPF_S_ANC_PROTOCOL:
568 emit_skb_load16(protocol, r_A);
569 break;
570#if 0
571 /* GCC won't let us take the address of
572 * a bit field even though we very much
573 * know what we are doing here.
574 */
575 case BPF_S_ANC_PKTTYPE:
576 __emit_skb_load8(pkt_type, r_A);
577 emit_alu_K(SRL, 5);
578 break;
579#endif
580 case BPF_S_ANC_IFINDEX:
581 emit_skb_loadptr(dev, r_A);
582 emit_cmpi(r_A, 0);
583 emit_branch(BNE_PTR, cleanup_addr + 4);
584 emit_nop();
585 emit_load32(r_A, struct net_device, ifindex, r_A);
586 break;
587 case BPF_S_ANC_MARK:
588 emit_skb_load32(mark, r_A);
589 break;
590 case BPF_S_ANC_QUEUE:
591 emit_skb_load16(queue_mapping, r_A);
592 break;
593 case BPF_S_ANC_HATYPE:
594 emit_skb_loadptr(dev, r_A);
595 emit_cmpi(r_A, 0);
596 emit_branch(BNE_PTR, cleanup_addr + 4);
597 emit_nop();
598 emit_load16(r_A, struct net_device, type, r_A);
599 break;
600 case BPF_S_ANC_RXHASH:
601 emit_skb_load32(rxhash, r_A);
602 break;
603
604 case BPF_S_LD_IMM:
605 emit_loadimm(K, r_A);
606 break;
607 case BPF_S_LDX_IMM:
608 emit_loadimm(K, r_X);
609 break;
610 case BPF_S_LD_MEM:
611 emit_ldmem(K * 4, r_A);
612 break;
613 case BPF_S_LDX_MEM:
614 emit_ldmem(K * 4, r_X);
615 break;
616 case BPF_S_ST:
617 emit_stmem(K * 4, r_A);
618 break;
619 case BPF_S_STX:
620 emit_stmem(K * 4, r_X);
621 break;
622
623#define CHOOSE_LOAD_FUNC(K, func) \
624 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
625
626 case BPF_S_LD_W_ABS:
627 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
628common_load: seen |= SEEN_DATAREF;
629 emit_loadimm(K, r_OFF);
630 emit_call(func);
631 break;
632 case BPF_S_LD_H_ABS:
633 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
634 goto common_load;
635 case BPF_S_LD_B_ABS:
636 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
637 goto common_load;
638 case BPF_S_LDX_B_MSH:
639 func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
640 goto common_load;
641 case BPF_S_LD_W_IND:
642 func = bpf_jit_load_word;
643common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
644 if (K) {
645 if (is_simm13(K)) {
646 emit_addi(r_X, K, r_OFF);
647 } else {
648 emit_loadimm(K, r_TMP);
649 emit_add(r_X, r_TMP, r_OFF);
650 }
651 } else {
652 emit_reg_move(r_X, r_OFF);
653 }
654 emit_call(func);
655 break;
656 case BPF_S_LD_H_IND:
657 func = bpf_jit_load_half;
658 goto common_load_ind;
659 case BPF_S_LD_B_IND:
660 func = bpf_jit_load_byte;
661 goto common_load_ind;
662 case BPF_S_JMP_JA:
663 emit_jump(addrs[i + K]);
664 emit_nop();
665 break;
666
667#define COND_SEL(CODE, TOP, FOP) \
668 case CODE: \
669 t_op = TOP; \
670 f_op = FOP; \
671 goto cond_branch
672
673 COND_SEL(BPF_S_JMP_JGT_K, BGU, BLEU);
674 COND_SEL(BPF_S_JMP_JGE_K, BGEU, BLU);
675 COND_SEL(BPF_S_JMP_JEQ_K, BE, BNE);
676 COND_SEL(BPF_S_JMP_JSET_K, BNE, BE);
677 COND_SEL(BPF_S_JMP_JGT_X, BGU, BLEU);
678 COND_SEL(BPF_S_JMP_JGE_X, BGEU, BLU);
679 COND_SEL(BPF_S_JMP_JEQ_X, BE, BNE);
680 COND_SEL(BPF_S_JMP_JSET_X, BNE, BE);
681
682cond_branch: f_offset = addrs[i + filter[i].jf];
683 t_offset = addrs[i + filter[i].jt];
684
685 /* same targets, can avoid doing the test :) */
686 if (filter[i].jt == filter[i].jf) {
687 emit_jump(t_offset);
688 emit_nop();
689 break;
690 }
691
692 switch (filter[i].code) {
693 case BPF_S_JMP_JGT_X:
694 case BPF_S_JMP_JGE_X:
695 case BPF_S_JMP_JEQ_X:
696 seen |= SEEN_XREG;
697 emit_cmp(r_A, r_X);
698 break;
699 case BPF_S_JMP_JSET_X:
700 seen |= SEEN_XREG;
701 emit_btst(r_A, r_X);
702 break;
703 case BPF_S_JMP_JEQ_K:
704 case BPF_S_JMP_JGT_K:
705 case BPF_S_JMP_JGE_K:
706 if (is_simm13(K)) {
707 emit_cmpi(r_A, K);
708 } else {
709 emit_loadimm(K, r_TMP);
710 emit_cmp(r_A, r_TMP);
711 }
712 break;
713 case BPF_S_JMP_JSET_K:
714 if (is_simm13(K)) {
715 emit_btsti(r_A, K);
716 } else {
717 emit_loadimm(K, r_TMP);
718 emit_btst(r_A, r_TMP);
719 }
720 break;
721 }
722 if (filter[i].jt != 0) {
723 if (filter[i].jf)
724 t_offset += 8;
725 emit_branch(t_op, t_offset);
726 emit_nop(); /* delay slot */
727 if (filter[i].jf) {
728 emit_jump(f_offset);
729 emit_nop();
730 }
731 break;
732 }
733 emit_branch(f_op, f_offset);
734 emit_nop(); /* delay slot */
735 break;
736
737 default:
738 /* hmm, too complex filter, give up with jit compiler */
739 goto out;
740 }
741 ilen = (void *) prog - (void *) temp;
742 if (image) {
743 if (unlikely(proglen + ilen > oldproglen)) {
744 pr_err("bpb_jit_compile fatal error\n");
745 kfree(addrs);
746 module_free(NULL, image);
747 return;
748 }
749 memcpy(image + proglen, temp, ilen);
750 }
751 proglen += ilen;
752 addrs[i] = proglen;
753 prog = temp;
754 }
755 /* last bpf instruction is always a RET :
756 * use it to give the cleanup instruction(s) addr
757 */
758 cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
759 if (seen_or_pass0 & SEEN_MEM)
760 cleanup_addr -= 4; /* add %sp, X, %sp; */
761
762 if (image) {
763 if (proglen != oldproglen)
764 pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
765 proglen, oldproglen);
766 break;
767 }
768 if (proglen == oldproglen) {
769 image = module_alloc(max_t(unsigned int,
770 proglen,
771 sizeof(struct work_struct)));
772 if (!image)
773 goto out;
774 }
775 oldproglen = proglen;
776 }
777
778 if (bpf_jit_enable > 1)
779 pr_err("flen=%d proglen=%u pass=%d image=%p\n",
780 flen, proglen, pass, image);
781
782 if (image) {
783 if (bpf_jit_enable > 1)
784 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
785 16, 1, image, proglen, false);
786 bpf_flush_icache(image, image + proglen);
787 fp->bpf_func = (void *)image;
788 }
789out:
790 kfree(addrs);
791 return;
792}
793
794static void jit_free_defer(struct work_struct *arg)
795{
796 module_free(NULL, arg);
797}
798
799/* run from softirq, we must use a work_struct to call
800 * module_free() from process context
801 */
802void bpf_jit_free(struct sk_filter *fp)
803{
804 if (fp->bpf_func != sk_run_filter) {
805 struct work_struct *work = (struct work_struct *)fp->bpf_func;
806
807 INIT_WORK(work, jit_free_defer);
808 schedule_work(work);
809 }
810}
This page took 0.094812 seconds and 5 git commands to generate.