sparc64: Start commonizing code common between SABRE and PSYCHO.
[deliverable/linux.git] / arch / sparc64 / kernel / pci_sabre.c
CommitLineData
16ce82d8 1/* pci_sabre.c: Sabre specific PCI controller support.
1da177e4 2 *
16ce82d8 3 * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
1da177e4
LT
4 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
6 */
7
8#include <linux/kernel.h>
9#include <linux/types.h>
10#include <linux/pci.h>
11#include <linux/init.h>
12#include <linux/slab.h>
13#include <linux/interrupt.h>
764f2579 14#include <linux/of_device.h>
1da177e4
LT
15
16#include <asm/apb.h>
1da177e4
LT
17#include <asm/iommu.h>
18#include <asm/irq.h>
e87dc350 19#include <asm/prom.h>
1da177e4
LT
20
21#include "pci_impl.h"
22#include "iommu_common.h"
a21cff3e 23#include "psycho_common.h"
1da177e4 24
edbe805b
DM
25#define DRIVER_NAME "sabre"
26#define PFX DRIVER_NAME ": "
27
1da177e4
LT
28/* All SABRE registers are 64-bits. The following accessor
29 * routines are how they are accessed. The REG parameter
30 * is a physical address.
31 */
32#define sabre_read(__reg) \
33({ u64 __ret; \
34 __asm__ __volatile__("ldxa [%1] %2, %0" \
35 : "=r" (__ret) \
36 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
37 : "memory"); \
38 __ret; \
39})
40#define sabre_write(__reg, __val) \
41 __asm__ __volatile__("stxa %0, [%1] %2" \
42 : /* no outputs */ \
43 : "r" (__val), "r" (__reg), \
44 "i" (ASI_PHYS_BYPASS_EC_E) \
45 : "memory")
46
47/* SABRE PCI controller register offsets and definitions. */
48#define SABRE_UE_AFSR 0x0030UL
49#define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
50#define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
51#define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
52#define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
53#define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
54#define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
55#define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
56#define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
57#define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
58#define SABRE_UECE_AFAR 0x0038UL
59#define SABRE_CE_AFSR 0x0040UL
60#define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
61#define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
62#define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
63#define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
64#define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
65#define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
66#define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
67#define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
68#define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
69#define SABRE_IOMMU_CONTROL 0x0200UL
70#define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
71#define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
72#define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
73#define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
74#define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
75#define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
76#define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
77#define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
78#define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
79#define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
80#define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
81#define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
82#define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
83#define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
84#define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
85#define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
86#define SABRE_IOMMU_TSBBASE 0x0208UL
87#define SABRE_IOMMU_FLUSH 0x0210UL
88#define SABRE_IMAP_A_SLOT0 0x0c00UL
89#define SABRE_IMAP_B_SLOT0 0x0c20UL
90#define SABRE_IMAP_SCSI 0x1000UL
91#define SABRE_IMAP_ETH 0x1008UL
92#define SABRE_IMAP_BPP 0x1010UL
93#define SABRE_IMAP_AU_REC 0x1018UL
94#define SABRE_IMAP_AU_PLAY 0x1020UL
95#define SABRE_IMAP_PFAIL 0x1028UL
96#define SABRE_IMAP_KMS 0x1030UL
97#define SABRE_IMAP_FLPY 0x1038UL
98#define SABRE_IMAP_SHW 0x1040UL
99#define SABRE_IMAP_KBD 0x1048UL
100#define SABRE_IMAP_MS 0x1050UL
101#define SABRE_IMAP_SER 0x1058UL
102#define SABRE_IMAP_UE 0x1070UL
103#define SABRE_IMAP_CE 0x1078UL
104#define SABRE_IMAP_PCIERR 0x1080UL
105#define SABRE_IMAP_GFX 0x1098UL
106#define SABRE_IMAP_EUPA 0x10a0UL
107#define SABRE_ICLR_A_SLOT0 0x1400UL
108#define SABRE_ICLR_B_SLOT0 0x1480UL
109#define SABRE_ICLR_SCSI 0x1800UL
110#define SABRE_ICLR_ETH 0x1808UL
111#define SABRE_ICLR_BPP 0x1810UL
112#define SABRE_ICLR_AU_REC 0x1818UL
113#define SABRE_ICLR_AU_PLAY 0x1820UL
114#define SABRE_ICLR_PFAIL 0x1828UL
115#define SABRE_ICLR_KMS 0x1830UL
116#define SABRE_ICLR_FLPY 0x1838UL
117#define SABRE_ICLR_SHW 0x1840UL
118#define SABRE_ICLR_KBD 0x1848UL
119#define SABRE_ICLR_MS 0x1850UL
120#define SABRE_ICLR_SER 0x1858UL
121#define SABRE_ICLR_UE 0x1870UL
122#define SABRE_ICLR_CE 0x1878UL
123#define SABRE_ICLR_PCIERR 0x1880UL
124#define SABRE_WRSYNC 0x1c20UL
125#define SABRE_PCICTRL 0x2000UL
126#define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
127#define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
128#define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
129#define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
130#define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
131#define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
132#define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
133#define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
134#define SABRE_PIOAFSR 0x2010UL
135#define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
136#define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
137#define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
138#define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
139#define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
140#define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
141#define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
142#define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
143#define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
144#define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
145#define SABRE_PIOAFAR 0x2018UL
146#define SABRE_PCIDIAG 0x2020UL
147#define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
148#define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
149#define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
150#define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
151#define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
152#define SABRE_PCITASR 0x2028UL
153#define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
154#define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
155#define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
156#define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
157#define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
158#define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
159#define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
160#define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
161#define SABRE_PIOBUF_DIAG 0x5000UL
162#define SABRE_DMABUF_DIAGLO 0x5100UL
163#define SABRE_DMABUF_DIAGHI 0x51c0UL
164#define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
165#define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
166#define SABRE_IOMMU_VADIAG 0xa400UL
167#define SABRE_IOMMU_TCDIAG 0xa408UL
168#define SABRE_IOMMU_TAG 0xa580UL
169#define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
170#define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
171#define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
172#define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
173#define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
174#define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
175#define SABRE_IOMMU_DATA 0xa600UL
176#define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
177#define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
178#define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
179#define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
180#define SABRE_PCI_IRQSTATE 0xa800UL
181#define SABRE_OBIO_IRQSTATE 0xa808UL
182#define SABRE_FFBCFG 0xf000UL
183#define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
184#define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
185#define SABRE_MCCTRL0 0xf010UL
186#define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
187#define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
188#define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
189#define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
190#define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
191#define SABRE_MCCTRL1 0xf018UL
192#define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
193#define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
194#define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
195#define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
196#define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
197#define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
198#define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
199#define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
200#define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
201#define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
202#define SABRE_RESETCTRL 0xf020UL
203
204#define SABRE_CONFIGSPACE 0x001000000UL
205#define SABRE_IOSPACE 0x002000000UL
206#define SABRE_IOSPACE_SIZE 0x000ffffffUL
207#define SABRE_MEMSPACE 0x100000000UL
208#define SABRE_MEMSPACE_SIZE 0x07fffffffUL
209
1da177e4
LT
210static int hummingbird_p;
211static struct pci_bus *sabre_root_bus;
212
1da177e4 213/* SABRE error handling support. */
6c108f12 214static void sabre_check_iommu_error(struct pci_pbm_info *pbm,
1da177e4
LT
215 unsigned long afsr,
216 unsigned long afar)
217{
6c108f12 218 struct iommu *iommu = pbm->iommu;
1da177e4
LT
219 unsigned long iommu_tag[16];
220 unsigned long iommu_data[16];
221 unsigned long flags;
222 u64 control;
223 int i;
224
225 spin_lock_irqsave(&iommu->lock, flags);
226 control = sabre_read(iommu->iommu_control);
227 if (control & SABRE_IOMMUCTRL_ERR) {
228 char *type_string;
229
230 /* Clear the error encountered bit.
231 * NOTE: On Sabre this is write 1 to clear,
232 * which is different from Psycho.
233 */
234 sabre_write(iommu->iommu_control, control);
235 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
236 case 1:
237 type_string = "Invalid Error";
238 break;
239 case 3:
240 type_string = "ECC Error";
241 break;
242 default:
243 type_string = "Unknown";
244 break;
245 };
6c108f12
DM
246 printk("%s: IOMMU Error, type[%s]\n",
247 pbm->name, type_string);
1da177e4
LT
248
249 /* Enter diagnostic mode and probe for error'd
250 * entries in the IOTLB.
251 */
252 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
253 sabre_write(iommu->iommu_control,
254 (control | SABRE_IOMMUCTRL_DENAB));
255 for (i = 0; i < 16; i++) {
6c108f12 256 unsigned long base = pbm->controller_regs;
1da177e4
LT
257
258 iommu_tag[i] =
259 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
260 iommu_data[i] =
261 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
262 sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
263 sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
264 }
265 sabre_write(iommu->iommu_control, control);
266
267 for (i = 0; i < 16; i++) {
268 unsigned long tag, data;
269
270 tag = iommu_tag[i];
271 if (!(tag & SABRE_IOMMUTAG_ERR))
272 continue;
273
274 data = iommu_data[i];
275 switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
276 case 1:
277 type_string = "Invalid Error";
278 break;
279 case 3:
280 type_string = "ECC Error";
281 break;
282 default:
283 type_string = "Unknown";
284 break;
285 };
6c108f12
DM
286 printk("%s: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
287 pbm->name, i, tag, type_string,
1da177e4
LT
288 ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
289 ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
290 ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
6c108f12
DM
291 printk("%s: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
292 pbm->name, i, data,
1da177e4
LT
293 ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
294 ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
295 ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
296 ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
297 }
298 }
299 spin_unlock_irqrestore(&iommu->lock, flags);
300}
301
6d24c8dc 302static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
1da177e4 303{
6c108f12
DM
304 struct pci_pbm_info *pbm = dev_id;
305 unsigned long afsr_reg = pbm->controller_regs + SABRE_UE_AFSR;
306 unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
1da177e4
LT
307 unsigned long afsr, afar, error_bits;
308 int reported;
309
310 /* Latch uncorrectable error status. */
311 afar = sabre_read(afar_reg);
312 afsr = sabre_read(afsr_reg);
313
314 /* Clear the primary/secondary error status bits. */
315 error_bits = afsr &
316 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
317 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
318 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
319 if (!error_bits)
320 return IRQ_NONE;
321 sabre_write(afsr_reg, error_bits);
322
323 /* Log the error. */
6c108f12
DM
324 printk("%s: Uncorrectable Error, primary error type[%s%s]\n",
325 pbm->name,
1da177e4
LT
326 ((error_bits & SABRE_UEAFSR_PDRD) ?
327 "DMA Read" :
328 ((error_bits & SABRE_UEAFSR_PDWR) ?
329 "DMA Write" : "???")),
330 ((error_bits & SABRE_UEAFSR_PDTE) ?
331 ":Translation Error" : ""));
6c108f12
DM
332 printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
333 pbm->name,
1da177e4
LT
334 (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
335 (afsr & SABRE_UEAFSR_OFF) >> 29UL,
336 ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
6c108f12
DM
337 printk("%s: UE AFAR [%016lx]\n", pbm->name, afar);
338 printk("%s: UE Secondary errors [", pbm->name);
1da177e4
LT
339 reported = 0;
340 if (afsr & SABRE_UEAFSR_SDRD) {
341 reported++;
342 printk("(DMA Read)");
343 }
344 if (afsr & SABRE_UEAFSR_SDWR) {
345 reported++;
346 printk("(DMA Write)");
347 }
348 if (afsr & SABRE_UEAFSR_SDTE) {
349 reported++;
350 printk("(Translation Error)");
351 }
352 if (!reported)
353 printk("(none)");
354 printk("]\n");
355
356 /* Interrogate IOMMU for error status. */
6c108f12 357 sabre_check_iommu_error(pbm, afsr, afar);
1da177e4
LT
358
359 return IRQ_HANDLED;
360}
361
6d24c8dc 362static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
1da177e4 363{
6c108f12
DM
364 struct pci_pbm_info *pbm = dev_id;
365 unsigned long afsr_reg = pbm->controller_regs + SABRE_CE_AFSR;
366 unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
1da177e4
LT
367 unsigned long afsr, afar, error_bits;
368 int reported;
369
370 /* Latch error status. */
371 afar = sabre_read(afar_reg);
372 afsr = sabre_read(afsr_reg);
373
374 /* Clear primary/secondary error status bits. */
375 error_bits = afsr &
376 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
377 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
378 if (!error_bits)
379 return IRQ_NONE;
380 sabre_write(afsr_reg, error_bits);
381
382 /* Log the error. */
6c108f12
DM
383 printk("%s: Correctable Error, primary error type[%s]\n",
384 pbm->name,
1da177e4
LT
385 ((error_bits & SABRE_CEAFSR_PDRD) ?
386 "DMA Read" :
387 ((error_bits & SABRE_CEAFSR_PDWR) ?
388 "DMA Write" : "???")));
389
390 /* XXX Use syndrome and afar to print out module string just like
391 * XXX UDB CE trap handler does... -DaveM
392 */
6c108f12 393 printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
1da177e4 394 "was_block(%d)\n",
6c108f12 395 pbm->name,
1da177e4
LT
396 (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
397 (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
398 (afsr & SABRE_CEAFSR_OFF) >> 29UL,
399 ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
6c108f12
DM
400 printk("%s: CE AFAR [%016lx]\n", pbm->name, afar);
401 printk("%s: CE Secondary errors [", pbm->name);
1da177e4
LT
402 reported = 0;
403 if (afsr & SABRE_CEAFSR_SDRD) {
404 reported++;
405 printk("(DMA Read)");
406 }
407 if (afsr & SABRE_CEAFSR_SDWR) {
408 reported++;
409 printk("(DMA Write)");
410 }
411 if (!reported)
412 printk("(none)");
413 printk("]\n");
414
415 return IRQ_HANDLED;
416}
417
6c108f12 418static irqreturn_t sabre_pcierr_intr_other(struct pci_pbm_info *pbm)
1da177e4
LT
419{
420 unsigned long csr_reg, csr, csr_error_bits;
421 irqreturn_t ret = IRQ_NONE;
422 u16 stat;
423
6c108f12 424 csr_reg = pbm->controller_regs + SABRE_PCICTRL;
1da177e4
LT
425 csr = sabre_read(csr_reg);
426 csr_error_bits =
427 csr & SABRE_PCICTRL_SERR;
428 if (csr_error_bits) {
429 /* Clear the errors. */
430 sabre_write(csr_reg, csr);
431
432 /* Log 'em. */
433 if (csr_error_bits & SABRE_PCICTRL_SERR)
6c108f12
DM
434 printk("%s: PCI SERR signal asserted.\n",
435 pbm->name);
1da177e4
LT
436 ret = IRQ_HANDLED;
437 }
a2fb23af
DM
438 pci_bus_read_config_word(sabre_root_bus, 0,
439 PCI_STATUS, &stat);
1da177e4
LT
440 if (stat & (PCI_STATUS_PARITY |
441 PCI_STATUS_SIG_TARGET_ABORT |
442 PCI_STATUS_REC_TARGET_ABORT |
443 PCI_STATUS_REC_MASTER_ABORT |
444 PCI_STATUS_SIG_SYSTEM_ERROR)) {
6c108f12
DM
445 printk("%s: PCI bus error, PCI_STATUS[%04x]\n",
446 pbm->name, stat);
a2fb23af
DM
447 pci_bus_write_config_word(sabre_root_bus, 0,
448 PCI_STATUS, 0xffff);
1da177e4
LT
449 ret = IRQ_HANDLED;
450 }
451 return ret;
452}
453
6d24c8dc 454static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
1da177e4 455{
6c108f12 456 struct pci_pbm_info *pbm = dev_id;
1da177e4
LT
457 unsigned long afsr_reg, afar_reg;
458 unsigned long afsr, afar, error_bits;
459 int reported;
460
6c108f12
DM
461 afsr_reg = pbm->controller_regs + SABRE_PIOAFSR;
462 afar_reg = pbm->controller_regs + SABRE_PIOAFAR;
1da177e4
LT
463
464 /* Latch error status. */
465 afar = sabre_read(afar_reg);
466 afsr = sabre_read(afsr_reg);
467
468 /* Clear primary/secondary error status bits. */
469 error_bits = afsr &
470 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
471 SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
472 SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
473 SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
474 if (!error_bits)
6c108f12 475 return sabre_pcierr_intr_other(pbm);
1da177e4
LT
476 sabre_write(afsr_reg, error_bits);
477
478 /* Log the error. */
6c108f12
DM
479 printk("%s: PCI Error, primary error type[%s]\n",
480 pbm->name,
1da177e4
LT
481 (((error_bits & SABRE_PIOAFSR_PMA) ?
482 "Master Abort" :
483 ((error_bits & SABRE_PIOAFSR_PTA) ?
484 "Target Abort" :
485 ((error_bits & SABRE_PIOAFSR_PRTRY) ?
486 "Excessive Retries" :
487 ((error_bits & SABRE_PIOAFSR_PPERR) ?
488 "Parity Error" : "???"))))));
6c108f12
DM
489 printk("%s: bytemask[%04lx] was_block(%d)\n",
490 pbm->name,
1da177e4
LT
491 (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
492 (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
6c108f12
DM
493 printk("%s: PCI AFAR [%016lx]\n", pbm->name, afar);
494 printk("%s: PCI Secondary errors [", pbm->name);
1da177e4
LT
495 reported = 0;
496 if (afsr & SABRE_PIOAFSR_SMA) {
497 reported++;
498 printk("(Master Abort)");
499 }
500 if (afsr & SABRE_PIOAFSR_STA) {
501 reported++;
502 printk("(Target Abort)");
503 }
504 if (afsr & SABRE_PIOAFSR_SRTRY) {
505 reported++;
506 printk("(Excessive Retries)");
507 }
508 if (afsr & SABRE_PIOAFSR_SPERR) {
509 reported++;
510 printk("(Parity Error)");
511 }
512 if (!reported)
513 printk("(none)");
514 printk("]\n");
515
516 /* For the error types shown, scan both PCI buses for devices
517 * which have logged that error type.
518 */
519
520 /* If we see a Target Abort, this could be the result of an
521 * IOMMU translation error of some sort. It is extremely
522 * useful to log this information as usually it indicates
523 * a bug in the IOMMU support code or a PCI device driver.
524 */
525 if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
6c108f12
DM
526 sabre_check_iommu_error(pbm, afsr, afar);
527 pci_scan_for_target_abort(pbm, pbm->pci_bus);
1da177e4 528 }
01f94c4a 529 if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA))
6c108f12 530 pci_scan_for_master_abort(pbm, pbm->pci_bus);
01f94c4a 531
1da177e4
LT
532 /* For excessive retries, SABRE/PBM will abort the device
533 * and there is no way to specifically check for excessive
534 * retries in the config space status registers. So what
535 * we hope is that we'll catch it via the master/target
536 * abort events.
537 */
538
01f94c4a 539 if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR))
6c108f12 540 pci_scan_for_parity_error(pbm, pbm->pci_bus);
1da177e4
LT
541
542 return IRQ_HANDLED;
543}
544
34768bc8 545static void sabre_register_error_handlers(struct pci_pbm_info *pbm)
1da177e4 546{
22fecbae 547 struct device_node *dp = pbm->op->node;
2b1e5978 548 struct of_device *op;
1da177e4 549 unsigned long base = pbm->controller_regs;
1da177e4 550 u64 tmp;
af80318e 551 int err;
1da177e4 552
2b1e5978
DM
553 if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
554 dp = dp->parent;
555
556 op = of_find_device_by_node(dp);
557 if (!op)
558 return;
559
560 /* Sabre/Hummingbird IRQ property layout is:
561 * 0: PCI ERR
562 * 1: UE ERR
563 * 2: CE ERR
564 * 3: POWER FAIL
565 */
566 if (op->num_irqs < 4)
567 return;
568
1da177e4
LT
569 /* We clear the error bits in the appropriate AFSR before
570 * registering the handler so that we don't get spurious
571 * interrupts.
572 */
573 sabre_write(base + SABRE_UE_AFSR,
574 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
575 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
576 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
2b1e5978 577
af80318e
DM
578 err = request_irq(op->irqs[1], sabre_ue_intr, 0, "SABRE_UE", pbm);
579 if (err)
580 printk(KERN_WARNING "%s: Couldn't register UE, err=%d.\n",
581 pbm->name, err);
1da177e4
LT
582
583 sabre_write(base + SABRE_CE_AFSR,
584 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
585 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
1da177e4 586
af80318e
DM
587 err = request_irq(op->irqs[2], sabre_ce_intr, 0, "SABRE_CE", pbm);
588 if (err)
589 printk(KERN_WARNING "%s: Couldn't register CE, err=%d.\n",
590 pbm->name, err);
591 err = request_irq(op->irqs[0], sabre_pcierr_intr, 0,
592 "SABRE_PCIERR", pbm);
593 if (err)
594 printk(KERN_WARNING "%s: Couldn't register PCIERR, err=%d.\n",
595 pbm->name, err);
1da177e4
LT
596
597 tmp = sabre_read(base + SABRE_PCICTRL);
598 tmp |= SABRE_PCICTRL_ERREN;
599 sabre_write(base + SABRE_PCICTRL, tmp);
600}
601
34768bc8 602static void apb_init(struct pci_bus *sabre_bus)
1da177e4
LT
603{
604 struct pci_dev *pdev;
605
606 list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
1da177e4
LT
607 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
608 pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
1da177e4
LT
609 u16 word16;
610
01f94c4a 611 pci_read_config_word(pdev, PCI_COMMAND, &word16);
1da177e4
LT
612 word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
613 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
614 PCI_COMMAND_IO;
01f94c4a 615 pci_write_config_word(pdev, PCI_COMMAND, word16);
1da177e4
LT
616
617 /* Status register bits are "write 1 to clear". */
01f94c4a
DM
618 pci_write_config_word(pdev, PCI_STATUS, 0xffff);
619 pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
1da177e4
LT
620
621 /* Use a primary/seconday latency timer value
622 * of 64.
623 */
01f94c4a
DM
624 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
625 pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
1da177e4
LT
626
627 /* Enable reporting/forwarding of master aborts,
628 * parity, and SERR.
629 */
01f94c4a
DM
630 pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
631 (PCI_BRIDGE_CTL_PARITY |
632 PCI_BRIDGE_CTL_SERR |
633 PCI_BRIDGE_CTL_MASTER_ABORT));
1da177e4
LT
634 }
635 }
636}
637
e822358a
DM
638static void __init sabre_scan_bus(struct pci_pbm_info *pbm,
639 struct device *parent)
1da177e4
LT
640{
641 static int once;
1da177e4
LT
642
643 /* The APB bridge speaks to the Sabre host PCI bridge
644 * at 66Mhz, but the front side of APB runs at 33Mhz
645 * for both segments.
321566c2
DM
646 *
647 * Hummingbird systems do not use APB, so they run
648 * at 66MHZ.
1da177e4 649 */
321566c2
DM
650 if (hummingbird_p)
651 pbm->is_66mhz_capable = 1;
652 else
653 pbm->is_66mhz_capable = 0;
1da177e4
LT
654
655 /* This driver has not been verified to handle
656 * multiple SABREs yet, so trap this.
657 *
658 * Also note that the SABRE host bridge is hardwired
659 * to live at bus 0.
660 */
661 if (once != 0) {
edbe805b
DM
662 printk(KERN_ERR PFX "Multiple controllers unsupported.\n");
663 return;
1da177e4
LT
664 }
665 once++;
666
e822358a 667 pbm->pci_bus = pci_scan_one_pbm(pbm, parent);
321566c2 668 if (!pbm->pci_bus)
a2fb23af 669 return;
1da177e4 670
321566c2 671 sabre_root_bus = pbm->pci_bus;
1da177e4 672
321566c2 673 apb_init(pbm->pci_bus);
1da177e4 674
34768bc8 675 sabre_register_error_handlers(pbm);
1da177e4
LT
676}
677
d3ae4b5b
DM
678static void __init sabre_pbm_init(struct pci_pbm_info *pbm,
679 struct of_device *op)
1da177e4 680{
e822358a
DM
681 struct device_node *dp = op->node;
682
01f94c4a
DM
683 pbm->name = dp->full_name;
684 printk("%s: SABRE PCI Bus Module\n", pbm->name);
685
c1b1a5f1
DM
686 pbm->numa_node = -1;
687
ca3dd88e
DM
688 pbm->pci_ops = &sun4u_pci_ops;
689 pbm->config_space_reg_bits = 8;
34768bc8 690
6c108f12
DM
691 pbm->index = pci_num_pbms++;
692
01f94c4a 693 pbm->chip_type = PBM_CHIP_TYPE_SABRE;
22fecbae 694 pbm->op = op;
cfa0652c 695 pci_get_pbm_props(pbm);
01f94c4a 696
9fd8b647 697 pci_determine_mem_io_space(pbm);
edbe805b 698
e822358a 699 sabre_scan_bus(pbm, &op->dev);
1da177e4
LT
700}
701
edbe805b
DM
702static int __devinit sabre_probe(struct of_device *op,
703 const struct of_device_id *match)
1da177e4 704{
a165b420 705 const struct linux_prom64_registers *pr_regs;
edbe805b 706 struct device_node *dp = op->node;
28113a99 707 struct pci_pbm_info *pbm;
edbe805b 708 u32 upa_portid, dma_mask;
16ce82d8 709 struct iommu *iommu;
edbe805b 710 int tsbsize, err;
a165b420 711 const u32 *vdma;
1da177e4
LT
712 u64 clear_irq;
713
edbe805b
DM
714 hummingbird_p = (match->data != NULL);
715 if (!hummingbird_p) {
716 struct device_node *cpu_dp;
717
718 /* Of course, Sun has to encode things a thousand
719 * different ways, inconsistently.
720 */
721 for_each_node_by_type(cpu_dp, "cpu") {
722 if (!strcmp(cpu_dp->name, "SUNW,UltraSPARC-IIe"))
723 hummingbird_p = 1;
1da177e4
LT
724 }
725 }
726
edbe805b 727 err = -ENOMEM;
d3ae4b5b
DM
728 pbm = kzalloc(sizeof(*pbm), GFP_KERNEL);
729 if (!pbm) {
730 printk(KERN_ERR PFX "Cannot allocate pci_pbm_info.\n");
d7472c38 731 goto out_err;
edbe805b 732 }
1da177e4 733
d3ae4b5b 734 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
edbe805b
DM
735 if (!iommu) {
736 printk(KERN_ERR PFX "Cannot allocate PBM iommu.\n");
d7472c38 737 goto out_free_controller;
edbe805b
DM
738 }
739
28113a99 740 pbm->iommu = iommu;
1da177e4 741
01f94c4a 742 upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
1da177e4 743
28113a99 744 pbm->portid = upa_portid;
1da177e4
LT
745
746 /*
747 * Map in SABRE register set and report the presence of this SABRE.
748 */
e87dc350 749
01f94c4a 750 pr_regs = of_get_property(dp, "reg", NULL);
edbe805b
DM
751 err = -ENODEV;
752 if (!pr_regs) {
753 printk(KERN_ERR PFX "No reg property\n");
d7472c38 754 goto out_free_iommu;
edbe805b 755 }
1da177e4
LT
756
757 /*
758 * First REG in property is base of entire SABRE register space.
759 */
28113a99 760 pbm->controller_regs = pr_regs[0].phys_addr;
1da177e4 761
1da177e4
LT
762 /* Clear interrupts */
763
764 /* PCI first */
765 for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
28113a99 766 sabre_write(pbm->controller_regs + clear_irq, 0x0UL);
1da177e4
LT
767
768 /* Then OBIO */
769 for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
28113a99 770 sabre_write(pbm->controller_regs + clear_irq, 0x0UL);
1da177e4
LT
771
772 /* Error interrupts are enabled later after the bus scan. */
28113a99 773 sabre_write(pbm->controller_regs + SABRE_PCICTRL,
1da177e4
LT
774 (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
775 SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
776
777 /* Now map in PCI config space for entire SABRE. */
d3ae4b5b 778 pbm->config_space = pbm->controller_regs + SABRE_CONFIGSPACE;
e87dc350 779
01f94c4a 780 vdma = of_get_property(dp, "virtual-dma", NULL);
edbe805b
DM
781 if (!vdma) {
782 printk(KERN_ERR PFX "No virtual-dma property\n");
d7472c38 783 goto out_free_iommu;
edbe805b 784 }
1da177e4
LT
785
786 dma_mask = vdma[0];
787 switch(vdma[1]) {
788 case 0x20000000:
789 dma_mask |= 0x1fffffff;
790 tsbsize = 64;
791 break;
792 case 0x40000000:
793 dma_mask |= 0x3fffffff;
794 tsbsize = 128;
795 break;
796
797 case 0x80000000:
798 dma_mask |= 0x7fffffff;
799 tsbsize = 128;
800 break;
801 default:
edbe805b 802 printk(KERN_ERR PFX "Strange virtual-dma size.\n");
d7472c38 803 goto out_free_iommu;
1da177e4
LT
804 }
805
a21cff3e 806 err = psycho_iommu_init(pbm, tsbsize, vdma[0], dma_mask, SABRE_WRSYNC);
edbe805b 807 if (err)
d7472c38 808 goto out_free_iommu;
1da177e4 809
1da177e4
LT
810 /*
811 * Look for APB underneath.
812 */
d3ae4b5b
DM
813 sabre_pbm_init(pbm, op);
814
815 pbm->next = pci_pbm_root;
816 pci_pbm_root = pbm;
817
818 dev_set_drvdata(&op->dev, pbm);
819
edbe805b 820 return 0;
ad7ad57c 821
d7472c38 822out_free_iommu:
d3ae4b5b 823 kfree(pbm->iommu);
d7472c38
DM
824
825out_free_controller:
d3ae4b5b 826 kfree(pbm);
d7472c38
DM
827
828out_err:
edbe805b 829 return err;
1da177e4 830}
edbe805b 831
fd098316 832static struct of_device_id __initdata sabre_match[] = {
edbe805b
DM
833 {
834 .name = "pci",
835 .compatible = "pci108e,a001",
836 .data = (void *) 1,
837 },
838 {
839 .name = "pci",
840 .compatible = "pci108e,a000",
841 },
842 {},
843};
844
845static struct of_platform_driver sabre_driver = {
846 .name = DRIVER_NAME,
847 .match_table = sabre_match,
848 .probe = sabre_probe,
849};
850
851static int __init sabre_init(void)
852{
853 return of_register_driver(&sabre_driver, &of_bus_type);
854}
855
856subsys_initcall(sabre_init);
This page took 0.406856 seconds and 5 git commands to generate.