[SPARC64]: Add of_find_node_by_{name,type}().
[deliverable/linux.git] / arch / sparc64 / kernel / pci_sabre.c
CommitLineData
1da177e4
LT
1/* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $
2 * pci_sabre.c: Sabre specific PCI controller support.
3 *
4 * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu)
5 * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
7 */
8
9#include <linux/kernel.h>
10#include <linux/types.h>
11#include <linux/pci.h>
12#include <linux/init.h>
13#include <linux/slab.h>
14#include <linux/interrupt.h>
15
16#include <asm/apb.h>
17#include <asm/pbm.h>
18#include <asm/iommu.h>
19#include <asm/irq.h>
20#include <asm/smp.h>
21#include <asm/oplib.h>
22
23#include "pci_impl.h"
24#include "iommu_common.h"
25
26/* All SABRE registers are 64-bits. The following accessor
27 * routines are how they are accessed. The REG parameter
28 * is a physical address.
29 */
30#define sabre_read(__reg) \
31({ u64 __ret; \
32 __asm__ __volatile__("ldxa [%1] %2, %0" \
33 : "=r" (__ret) \
34 : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
35 : "memory"); \
36 __ret; \
37})
38#define sabre_write(__reg, __val) \
39 __asm__ __volatile__("stxa %0, [%1] %2" \
40 : /* no outputs */ \
41 : "r" (__val), "r" (__reg), \
42 "i" (ASI_PHYS_BYPASS_EC_E) \
43 : "memory")
44
45/* SABRE PCI controller register offsets and definitions. */
46#define SABRE_UE_AFSR 0x0030UL
47#define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
48#define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
49#define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
50#define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
51#define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
52#define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
53#define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
54#define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
55#define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
56#define SABRE_UECE_AFAR 0x0038UL
57#define SABRE_CE_AFSR 0x0040UL
58#define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
59#define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
60#define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
61#define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
62#define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
63#define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
64#define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
65#define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
66#define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
67#define SABRE_IOMMU_CONTROL 0x0200UL
68#define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
69#define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
70#define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
71#define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
72#define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
73#define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
74#define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
75#define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
76#define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
77#define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
78#define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
79#define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
80#define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
81#define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
82#define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
83#define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
84#define SABRE_IOMMU_TSBBASE 0x0208UL
85#define SABRE_IOMMU_FLUSH 0x0210UL
86#define SABRE_IMAP_A_SLOT0 0x0c00UL
87#define SABRE_IMAP_B_SLOT0 0x0c20UL
88#define SABRE_IMAP_SCSI 0x1000UL
89#define SABRE_IMAP_ETH 0x1008UL
90#define SABRE_IMAP_BPP 0x1010UL
91#define SABRE_IMAP_AU_REC 0x1018UL
92#define SABRE_IMAP_AU_PLAY 0x1020UL
93#define SABRE_IMAP_PFAIL 0x1028UL
94#define SABRE_IMAP_KMS 0x1030UL
95#define SABRE_IMAP_FLPY 0x1038UL
96#define SABRE_IMAP_SHW 0x1040UL
97#define SABRE_IMAP_KBD 0x1048UL
98#define SABRE_IMAP_MS 0x1050UL
99#define SABRE_IMAP_SER 0x1058UL
100#define SABRE_IMAP_UE 0x1070UL
101#define SABRE_IMAP_CE 0x1078UL
102#define SABRE_IMAP_PCIERR 0x1080UL
103#define SABRE_IMAP_GFX 0x1098UL
104#define SABRE_IMAP_EUPA 0x10a0UL
105#define SABRE_ICLR_A_SLOT0 0x1400UL
106#define SABRE_ICLR_B_SLOT0 0x1480UL
107#define SABRE_ICLR_SCSI 0x1800UL
108#define SABRE_ICLR_ETH 0x1808UL
109#define SABRE_ICLR_BPP 0x1810UL
110#define SABRE_ICLR_AU_REC 0x1818UL
111#define SABRE_ICLR_AU_PLAY 0x1820UL
112#define SABRE_ICLR_PFAIL 0x1828UL
113#define SABRE_ICLR_KMS 0x1830UL
114#define SABRE_ICLR_FLPY 0x1838UL
115#define SABRE_ICLR_SHW 0x1840UL
116#define SABRE_ICLR_KBD 0x1848UL
117#define SABRE_ICLR_MS 0x1850UL
118#define SABRE_ICLR_SER 0x1858UL
119#define SABRE_ICLR_UE 0x1870UL
120#define SABRE_ICLR_CE 0x1878UL
121#define SABRE_ICLR_PCIERR 0x1880UL
122#define SABRE_WRSYNC 0x1c20UL
123#define SABRE_PCICTRL 0x2000UL
124#define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
125#define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
126#define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
127#define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
128#define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
129#define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
130#define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
131#define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
132#define SABRE_PIOAFSR 0x2010UL
133#define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
134#define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
135#define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
136#define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
137#define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
138#define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
139#define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
140#define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
141#define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
142#define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
143#define SABRE_PIOAFAR 0x2018UL
144#define SABRE_PCIDIAG 0x2020UL
145#define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
146#define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
147#define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
148#define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
149#define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
150#define SABRE_PCITASR 0x2028UL
151#define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
152#define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
153#define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
154#define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
155#define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
156#define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
157#define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
158#define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
159#define SABRE_PIOBUF_DIAG 0x5000UL
160#define SABRE_DMABUF_DIAGLO 0x5100UL
161#define SABRE_DMABUF_DIAGHI 0x51c0UL
162#define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
163#define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
164#define SABRE_IOMMU_VADIAG 0xa400UL
165#define SABRE_IOMMU_TCDIAG 0xa408UL
166#define SABRE_IOMMU_TAG 0xa580UL
167#define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
168#define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
169#define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
170#define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
171#define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
172#define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
173#define SABRE_IOMMU_DATA 0xa600UL
174#define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
175#define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
176#define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
177#define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
178#define SABRE_PCI_IRQSTATE 0xa800UL
179#define SABRE_OBIO_IRQSTATE 0xa808UL
180#define SABRE_FFBCFG 0xf000UL
181#define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
182#define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
183#define SABRE_MCCTRL0 0xf010UL
184#define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
185#define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
186#define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
187#define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
188#define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
189#define SABRE_MCCTRL1 0xf018UL
190#define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
191#define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
192#define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
193#define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
194#define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
195#define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
196#define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
197#define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
198#define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
199#define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
200#define SABRE_RESETCTRL 0xf020UL
201
202#define SABRE_CONFIGSPACE 0x001000000UL
203#define SABRE_IOSPACE 0x002000000UL
204#define SABRE_IOSPACE_SIZE 0x000ffffffUL
205#define SABRE_MEMSPACE 0x100000000UL
206#define SABRE_MEMSPACE_SIZE 0x07fffffffUL
207
208/* UltraSparc-IIi Programmer's Manual, page 325, PCI
209 * configuration space address format:
210 *
211 * 32 24 23 16 15 11 10 8 7 2 1 0
212 * ---------------------------------------------------------
213 * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 |
214 * ---------------------------------------------------------
215 */
216#define SABRE_CONFIG_BASE(PBM) \
217 ((PBM)->config_space | (1UL << 24))
218#define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \
219 (((unsigned long)(BUS) << 16) | \
220 ((unsigned long)(DEVFN) << 8) | \
221 ((unsigned long)(REG)))
222
223static int hummingbird_p;
224static struct pci_bus *sabre_root_bus;
225
226static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm,
227 unsigned char bus,
228 unsigned int devfn,
229 int where)
230{
231 if (!pbm)
232 return NULL;
233 return (void *)
234 (SABRE_CONFIG_BASE(pbm) |
235 SABRE_CONFIG_ENCODE(bus, devfn, where));
236}
237
238static int sabre_out_of_range(unsigned char devfn)
239{
240 if (hummingbird_p)
241 return 0;
242
243 return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) ||
244 ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) ||
245 (PCI_SLOT(devfn) > 1));
246}
247
248static int __sabre_out_of_range(struct pci_pbm_info *pbm,
249 unsigned char bus,
250 unsigned char devfn)
251{
252 if (hummingbird_p)
253 return 0;
254
255 return ((pbm->parent == 0) ||
256 ((pbm == &pbm->parent->pbm_B) &&
257 (bus == pbm->pci_first_busno) &&
258 PCI_SLOT(devfn) > 8) ||
259 ((pbm == &pbm->parent->pbm_A) &&
260 (bus == pbm->pci_first_busno) &&
261 PCI_SLOT(devfn) > 8));
262}
263
264static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
265 int where, int size, u32 *value)
266{
267 struct pci_pbm_info *pbm = bus_dev->sysdata;
268 unsigned char bus = bus_dev->number;
269 u32 *addr;
270 u16 tmp16;
271 u8 tmp8;
272
273 switch (size) {
274 case 1:
275 *value = 0xff;
276 break;
277 case 2:
278 *value = 0xffff;
279 break;
280 case 4:
281 *value = 0xffffffff;
282 break;
283 }
284
285 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
286 if (!addr)
287 return PCIBIOS_SUCCESSFUL;
288
289 if (__sabre_out_of_range(pbm, bus, devfn))
290 return PCIBIOS_SUCCESSFUL;
291
292 switch (size) {
293 case 1:
294 pci_config_read8((u8 *) addr, &tmp8);
295 *value = tmp8;
296 break;
297
298 case 2:
299 if (where & 0x01) {
300 printk("pci_read_config_word: misaligned reg [%x]\n",
301 where);
302 return PCIBIOS_SUCCESSFUL;
303 }
304 pci_config_read16((u16 *) addr, &tmp16);
305 *value = tmp16;
306 break;
307
308 case 4:
309 if (where & 0x03) {
310 printk("pci_read_config_dword: misaligned reg [%x]\n",
311 where);
312 return PCIBIOS_SUCCESSFUL;
313 }
314 pci_config_read32(addr, value);
315 break;
316 }
317
318 return PCIBIOS_SUCCESSFUL;
319}
320
321static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn,
322 int where, int size, u32 *value)
323{
324 if (!bus->number && sabre_out_of_range(devfn)) {
325 switch (size) {
326 case 1:
327 *value = 0xff;
328 break;
329 case 2:
330 *value = 0xffff;
331 break;
332 case 4:
333 *value = 0xffffffff;
334 break;
335 }
336 return PCIBIOS_SUCCESSFUL;
337 }
338
339 if (bus->number || PCI_SLOT(devfn))
340 return __sabre_read_pci_cfg(bus, devfn, where, size, value);
341
342 /* When accessing PCI config space of the PCI controller itself (bus
343 * 0, device slot 0, function 0) there are restrictions. Each
344 * register must be accessed as it's natural size. Thus, for example
345 * the Vendor ID must be accessed as a 16-bit quantity.
346 */
347
348 switch (size) {
349 case 1:
350 if (where < 8) {
351 u32 tmp32;
352 u16 tmp16;
353
354 __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
355 tmp16 = (u16) tmp32;
356 if (where & 1)
357 *value = tmp16 >> 8;
358 else
359 *value = tmp16 & 0xff;
360 } else
361 return __sabre_read_pci_cfg(bus, devfn, where, 1, value);
362 break;
363
364 case 2:
365 if (where < 8)
366 return __sabre_read_pci_cfg(bus, devfn, where, 2, value);
367 else {
368 u32 tmp32;
369 u8 tmp8;
370
371 __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32);
372 tmp8 = (u8) tmp32;
373 *value = tmp8;
374 __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32);
375 tmp8 = (u8) tmp32;
376 *value |= tmp8 << 8;
377 }
378 break;
379
380 case 4: {
381 u32 tmp32;
382 u16 tmp16;
383
384 sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32);
385 tmp16 = (u16) tmp32;
386 *value = tmp16;
387 sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32);
388 tmp16 = (u16) tmp32;
389 *value |= tmp16 << 16;
390 break;
391 }
392 }
393 return PCIBIOS_SUCCESSFUL;
394}
395
396static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn,
397 int where, int size, u32 value)
398{
399 struct pci_pbm_info *pbm = bus_dev->sysdata;
400 unsigned char bus = bus_dev->number;
401 u32 *addr;
402
403 addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where);
404 if (!addr)
405 return PCIBIOS_SUCCESSFUL;
406
407 if (__sabre_out_of_range(pbm, bus, devfn))
408 return PCIBIOS_SUCCESSFUL;
409
410 switch (size) {
411 case 1:
412 pci_config_write8((u8 *) addr, value);
413 break;
414
415 case 2:
416 if (where & 0x01) {
417 printk("pci_write_config_word: misaligned reg [%x]\n",
418 where);
419 return PCIBIOS_SUCCESSFUL;
420 }
421 pci_config_write16((u16 *) addr, value);
422 break;
423
424 case 4:
425 if (where & 0x03) {
426 printk("pci_write_config_dword: misaligned reg [%x]\n",
427 where);
428 return PCIBIOS_SUCCESSFUL;
429 }
430 pci_config_write32(addr, value);
431 break;
432 }
433
434 return PCIBIOS_SUCCESSFUL;
435}
436
437static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn,
438 int where, int size, u32 value)
439{
440 if (bus->number)
441 return __sabre_write_pci_cfg(bus, devfn, where, size, value);
442
443 if (sabre_out_of_range(devfn))
444 return PCIBIOS_SUCCESSFUL;
445
446 switch (size) {
447 case 1:
448 if (where < 8) {
449 u32 tmp32;
450 u16 tmp16;
451
452 __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32);
453 tmp16 = (u16) tmp32;
454 if (where & 1) {
455 value &= 0x00ff;
456 value |= tmp16 << 8;
457 } else {
458 value &= 0xff00;
459 value |= tmp16;
460 }
461 tmp32 = (u32) tmp16;
462 return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32);
463 } else
464 return __sabre_write_pci_cfg(bus, devfn, where, 1, value);
465 break;
466 case 2:
467 if (where < 8)
468 return __sabre_write_pci_cfg(bus, devfn, where, 2, value);
469 else {
470 __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff);
471 __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8);
472 }
473 break;
474 case 4:
475 sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff);
476 sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16);
477 break;
478 }
479 return PCIBIOS_SUCCESSFUL;
480}
481
482static struct pci_ops sabre_ops = {
483 .read = sabre_read_pci_cfg,
484 .write = sabre_write_pci_cfg,
485};
486
487static unsigned long sabre_pcislot_imap_offset(unsigned long ino)
488{
489 unsigned int bus = (ino & 0x10) >> 4;
490 unsigned int slot = (ino & 0x0c) >> 2;
491
492 if (bus == 0)
493 return SABRE_IMAP_A_SLOT0 + (slot * 8);
494 else
495 return SABRE_IMAP_B_SLOT0 + (slot * 8);
496}
497
498static unsigned long __onboard_imap_off[] = {
499/*0x20*/ SABRE_IMAP_SCSI,
500/*0x21*/ SABRE_IMAP_ETH,
501/*0x22*/ SABRE_IMAP_BPP,
502/*0x23*/ SABRE_IMAP_AU_REC,
503/*0x24*/ SABRE_IMAP_AU_PLAY,
504/*0x25*/ SABRE_IMAP_PFAIL,
505/*0x26*/ SABRE_IMAP_KMS,
506/*0x27*/ SABRE_IMAP_FLPY,
507/*0x28*/ SABRE_IMAP_SHW,
508/*0x29*/ SABRE_IMAP_KBD,
509/*0x2a*/ SABRE_IMAP_MS,
510/*0x2b*/ SABRE_IMAP_SER,
511/*0x2c*/ 0 /* reserved */,
512/*0x2d*/ 0 /* reserved */,
513/*0x2e*/ SABRE_IMAP_UE,
514/*0x2f*/ SABRE_IMAP_CE,
515/*0x30*/ SABRE_IMAP_PCIERR,
516};
517#define SABRE_ONBOARD_IRQ_BASE 0x20
518#define SABRE_ONBOARD_IRQ_LAST 0x30
519#define sabre_onboard_imap_offset(__ino) \
520 __onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE]
521
522#define sabre_iclr_offset(ino) \
523 ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \
524 (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3)))
525
088dd1f8
DM
526/* When a device lives behind a bridge deeper in the PCI bus topology
527 * than APB, a special sequence must run to make sure all pending DMA
528 * transfers at the time of IRQ delivery are visible in the coherency
529 * domain by the cpu. This sequence is to perform a read on the far
530 * side of the non-APB bridge, then perform a read of Sabre's DMA
531 * write-sync register.
532 */
e18e2a00 533static void sabre_wsync_handler(unsigned int ino, void *_arg1, void *_arg2)
088dd1f8
DM
534{
535 struct pci_dev *pdev = _arg1;
536 unsigned long sync_reg = (unsigned long) _arg2;
537 u16 _unused;
538
539 pci_read_config_word(pdev, PCI_VENDOR_ID, &_unused);
540 sabre_read(sync_reg);
541}
542
085ae41f
DM
543static unsigned int sabre_irq_build(struct pci_pbm_info *pbm,
544 struct pci_dev *pdev,
545 unsigned int ino)
1da177e4 546{
1da177e4
LT
547 unsigned long imap, iclr;
548 unsigned long imap_off, iclr_off;
37cdcd9e 549 int inofixup = 0;
8047e247 550 int virt_irq;
1da177e4
LT
551
552 ino &= PCI_IRQ_INO;
553 if (ino < SABRE_ONBOARD_IRQ_BASE) {
554 /* PCI slot */
555 imap_off = sabre_pcislot_imap_offset(ino);
556 } else {
557 /* onboard device */
558 if (ino > SABRE_ONBOARD_IRQ_LAST) {
559 prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino);
560 prom_halt();
561 }
562 imap_off = sabre_onboard_imap_offset(ino);
563 }
564
565 /* Now build the IRQ bucket. */
1da177e4
LT
566 imap = pbm->controller_regs + imap_off;
567 imap += 4;
568
569 iclr_off = sabre_iclr_offset(ino);
570 iclr = pbm->controller_regs + iclr_off;
571 iclr += 4;
572
573 if ((ino & 0x20) == 0)
574 inofixup = ino & 0x03;
575
e18e2a00 576 virt_irq = build_irq(inofixup, iclr, imap);
1da177e4
LT
577
578 if (pdev) {
579 struct pcidev_cookie *pcp = pdev->sysdata;
580
1da177e4 581 if (pdev->bus->number != pcp->pbm->pci_first_busno) {
088dd1f8 582 struct pci_controller_info *p = pcp->pbm->parent;
088dd1f8 583
8047e247
DM
584 irq_install_pre_handler(virt_irq,
585 sabre_wsync_handler,
586 pdev,
587 (void *)
588 p->pbm_A.controller_regs +
589 SABRE_WRSYNC);
1da177e4
LT
590 }
591 }
8047e247 592 return virt_irq;
1da177e4
LT
593}
594
595/* SABRE error handling support. */
596static void sabre_check_iommu_error(struct pci_controller_info *p,
597 unsigned long afsr,
598 unsigned long afar)
599{
600 struct pci_iommu *iommu = p->pbm_A.iommu;
601 unsigned long iommu_tag[16];
602 unsigned long iommu_data[16];
603 unsigned long flags;
604 u64 control;
605 int i;
606
607 spin_lock_irqsave(&iommu->lock, flags);
608 control = sabre_read(iommu->iommu_control);
609 if (control & SABRE_IOMMUCTRL_ERR) {
610 char *type_string;
611
612 /* Clear the error encountered bit.
613 * NOTE: On Sabre this is write 1 to clear,
614 * which is different from Psycho.
615 */
616 sabre_write(iommu->iommu_control, control);
617 switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
618 case 1:
619 type_string = "Invalid Error";
620 break;
621 case 3:
622 type_string = "ECC Error";
623 break;
624 default:
625 type_string = "Unknown";
626 break;
627 };
628 printk("SABRE%d: IOMMU Error, type[%s]\n",
629 p->index, type_string);
630
631 /* Enter diagnostic mode and probe for error'd
632 * entries in the IOTLB.
633 */
634 control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
635 sabre_write(iommu->iommu_control,
636 (control | SABRE_IOMMUCTRL_DENAB));
637 for (i = 0; i < 16; i++) {
638 unsigned long base = p->pbm_A.controller_regs;
639
640 iommu_tag[i] =
641 sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
642 iommu_data[i] =
643 sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
644 sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
645 sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
646 }
647 sabre_write(iommu->iommu_control, control);
648
649 for (i = 0; i < 16; i++) {
650 unsigned long tag, data;
651
652 tag = iommu_tag[i];
653 if (!(tag & SABRE_IOMMUTAG_ERR))
654 continue;
655
656 data = iommu_data[i];
657 switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
658 case 1:
659 type_string = "Invalid Error";
660 break;
661 case 3:
662 type_string = "ECC Error";
663 break;
664 default:
665 type_string = "Unknown";
666 break;
667 };
668 printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
669 p->index, i, tag, type_string,
670 ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
671 ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
672 ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
673 printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
674 p->index, i, data,
675 ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
676 ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
677 ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
678 ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
679 }
680 }
681 spin_unlock_irqrestore(&iommu->lock, flags);
682}
683
684static irqreturn_t sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs)
685{
686 struct pci_controller_info *p = dev_id;
687 unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR;
688 unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
689 unsigned long afsr, afar, error_bits;
690 int reported;
691
692 /* Latch uncorrectable error status. */
693 afar = sabre_read(afar_reg);
694 afsr = sabre_read(afsr_reg);
695
696 /* Clear the primary/secondary error status bits. */
697 error_bits = afsr &
698 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
699 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
700 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
701 if (!error_bits)
702 return IRQ_NONE;
703 sabre_write(afsr_reg, error_bits);
704
705 /* Log the error. */
706 printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n",
707 p->index,
708 ((error_bits & SABRE_UEAFSR_PDRD) ?
709 "DMA Read" :
710 ((error_bits & SABRE_UEAFSR_PDWR) ?
711 "DMA Write" : "???")),
712 ((error_bits & SABRE_UEAFSR_PDTE) ?
713 ":Translation Error" : ""));
714 printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
715 p->index,
716 (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
717 (afsr & SABRE_UEAFSR_OFF) >> 29UL,
718 ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
719 printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar);
720 printk("SABRE%d: UE Secondary errors [", p->index);
721 reported = 0;
722 if (afsr & SABRE_UEAFSR_SDRD) {
723 reported++;
724 printk("(DMA Read)");
725 }
726 if (afsr & SABRE_UEAFSR_SDWR) {
727 reported++;
728 printk("(DMA Write)");
729 }
730 if (afsr & SABRE_UEAFSR_SDTE) {
731 reported++;
732 printk("(Translation Error)");
733 }
734 if (!reported)
735 printk("(none)");
736 printk("]\n");
737
738 /* Interrogate IOMMU for error status. */
739 sabre_check_iommu_error(p, afsr, afar);
740
741 return IRQ_HANDLED;
742}
743
744static irqreturn_t sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs)
745{
746 struct pci_controller_info *p = dev_id;
747 unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR;
748 unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR;
749 unsigned long afsr, afar, error_bits;
750 int reported;
751
752 /* Latch error status. */
753 afar = sabre_read(afar_reg);
754 afsr = sabre_read(afsr_reg);
755
756 /* Clear primary/secondary error status bits. */
757 error_bits = afsr &
758 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
759 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
760 if (!error_bits)
761 return IRQ_NONE;
762 sabre_write(afsr_reg, error_bits);
763
764 /* Log the error. */
765 printk("SABRE%d: Correctable Error, primary error type[%s]\n",
766 p->index,
767 ((error_bits & SABRE_CEAFSR_PDRD) ?
768 "DMA Read" :
769 ((error_bits & SABRE_CEAFSR_PDWR) ?
770 "DMA Write" : "???")));
771
772 /* XXX Use syndrome and afar to print out module string just like
773 * XXX UDB CE trap handler does... -DaveM
774 */
775 printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
776 "was_block(%d)\n",
777 p->index,
778 (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
779 (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
780 (afsr & SABRE_CEAFSR_OFF) >> 29UL,
781 ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
782 printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar);
783 printk("SABRE%d: CE Secondary errors [", p->index);
784 reported = 0;
785 if (afsr & SABRE_CEAFSR_SDRD) {
786 reported++;
787 printk("(DMA Read)");
788 }
789 if (afsr & SABRE_CEAFSR_SDWR) {
790 reported++;
791 printk("(DMA Write)");
792 }
793 if (!reported)
794 printk("(none)");
795 printk("]\n");
796
797 return IRQ_HANDLED;
798}
799
800static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p)
801{
802 unsigned long csr_reg, csr, csr_error_bits;
803 irqreturn_t ret = IRQ_NONE;
804 u16 stat;
805
806 csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL;
807 csr = sabre_read(csr_reg);
808 csr_error_bits =
809 csr & SABRE_PCICTRL_SERR;
810 if (csr_error_bits) {
811 /* Clear the errors. */
812 sabre_write(csr_reg, csr);
813
814 /* Log 'em. */
815 if (csr_error_bits & SABRE_PCICTRL_SERR)
816 printk("SABRE%d: PCI SERR signal asserted.\n",
817 p->index);
818 ret = IRQ_HANDLED;
819 }
820 pci_read_config_word(sabre_root_bus->self,
821 PCI_STATUS, &stat);
822 if (stat & (PCI_STATUS_PARITY |
823 PCI_STATUS_SIG_TARGET_ABORT |
824 PCI_STATUS_REC_TARGET_ABORT |
825 PCI_STATUS_REC_MASTER_ABORT |
826 PCI_STATUS_SIG_SYSTEM_ERROR)) {
827 printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n",
828 p->index, stat);
829 pci_write_config_word(sabre_root_bus->self,
830 PCI_STATUS, 0xffff);
831 ret = IRQ_HANDLED;
832 }
833 return ret;
834}
835
836static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs)
837{
838 struct pci_controller_info *p = dev_id;
839 unsigned long afsr_reg, afar_reg;
840 unsigned long afsr, afar, error_bits;
841 int reported;
842
843 afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR;
844 afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR;
845
846 /* Latch error status. */
847 afar = sabre_read(afar_reg);
848 afsr = sabre_read(afsr_reg);
849
850 /* Clear primary/secondary error status bits. */
851 error_bits = afsr &
852 (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
853 SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
854 SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
855 SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
856 if (!error_bits)
857 return sabre_pcierr_intr_other(p);
858 sabre_write(afsr_reg, error_bits);
859
860 /* Log the error. */
861 printk("SABRE%d: PCI Error, primary error type[%s]\n",
862 p->index,
863 (((error_bits & SABRE_PIOAFSR_PMA) ?
864 "Master Abort" :
865 ((error_bits & SABRE_PIOAFSR_PTA) ?
866 "Target Abort" :
867 ((error_bits & SABRE_PIOAFSR_PRTRY) ?
868 "Excessive Retries" :
869 ((error_bits & SABRE_PIOAFSR_PPERR) ?
870 "Parity Error" : "???"))))));
871 printk("SABRE%d: bytemask[%04lx] was_block(%d)\n",
872 p->index,
873 (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
874 (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
875 printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar);
876 printk("SABRE%d: PCI Secondary errors [", p->index);
877 reported = 0;
878 if (afsr & SABRE_PIOAFSR_SMA) {
879 reported++;
880 printk("(Master Abort)");
881 }
882 if (afsr & SABRE_PIOAFSR_STA) {
883 reported++;
884 printk("(Target Abort)");
885 }
886 if (afsr & SABRE_PIOAFSR_SRTRY) {
887 reported++;
888 printk("(Excessive Retries)");
889 }
890 if (afsr & SABRE_PIOAFSR_SPERR) {
891 reported++;
892 printk("(Parity Error)");
893 }
894 if (!reported)
895 printk("(none)");
896 printk("]\n");
897
898 /* For the error types shown, scan both PCI buses for devices
899 * which have logged that error type.
900 */
901
902 /* If we see a Target Abort, this could be the result of an
903 * IOMMU translation error of some sort. It is extremely
904 * useful to log this information as usually it indicates
905 * a bug in the IOMMU support code or a PCI device driver.
906 */
907 if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
908 sabre_check_iommu_error(p, afsr, afar);
909 pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
910 pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
911 }
912 if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) {
913 pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus);
914 pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus);
915 }
916 /* For excessive retries, SABRE/PBM will abort the device
917 * and there is no way to specifically check for excessive
918 * retries in the config space status registers. So what
919 * we hope is that we'll catch it via the master/target
920 * abort events.
921 */
922
923 if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) {
924 pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus);
925 pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus);
926 }
927
928 return IRQ_HANDLED;
929}
930
931/* XXX What about PowerFail/PowerManagement??? -DaveM */
932#define SABRE_UE_INO 0x2e
933#define SABRE_CE_INO 0x2f
934#define SABRE_PCIERR_INO 0x30
085ae41f 935static void sabre_register_error_handlers(struct pci_controller_info *p)
1da177e4
LT
936{
937 struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */
938 unsigned long base = pbm->controller_regs;
939 unsigned long irq, portid = pbm->portid;
940 u64 tmp;
941
942 /* We clear the error bits in the appropriate AFSR before
943 * registering the handler so that we don't get spurious
944 * interrupts.
945 */
946 sabre_write(base + SABRE_UE_AFSR,
947 (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
948 SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
949 SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
950 irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_UE_INO);
951 if (request_irq(irq, sabre_ue_intr,
952 SA_SHIRQ, "SABRE UE", p) < 0) {
953 prom_printf("SABRE%d: Cannot register UE interrupt.\n",
954 p->index);
955 prom_halt();
956 }
957
958 sabre_write(base + SABRE_CE_AFSR,
959 (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
960 SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
961 irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_CE_INO);
962 if (request_irq(irq, sabre_ce_intr,
963 SA_SHIRQ, "SABRE CE", p) < 0) {
964 prom_printf("SABRE%d: Cannot register CE interrupt.\n",
965 p->index);
966 prom_halt();
967 }
968
969 irq = sabre_irq_build(pbm, NULL, (portid << 6) | SABRE_PCIERR_INO);
970 if (request_irq(irq, sabre_pcierr_intr,
971 SA_SHIRQ, "SABRE PCIERR", p) < 0) {
972 prom_printf("SABRE%d: Cannot register PciERR interrupt.\n",
973 p->index);
974 prom_halt();
975 }
976
977 tmp = sabre_read(base + SABRE_PCICTRL);
978 tmp |= SABRE_PCICTRL_ERREN;
979 sabre_write(base + SABRE_PCICTRL, tmp);
980}
981
085ae41f
DM
982static void sabre_resource_adjust(struct pci_dev *pdev,
983 struct resource *res,
984 struct resource *root)
1da177e4
LT
985{
986 struct pci_pbm_info *pbm = pdev->bus->sysdata;
987 unsigned long base;
988
989 if (res->flags & IORESOURCE_IO)
990 base = pbm->controller_regs + SABRE_IOSPACE;
991 else
992 base = pbm->controller_regs + SABRE_MEMSPACE;
993
994 res->start += base;
995 res->end += base;
996}
997
085ae41f 998static void sabre_base_address_update(struct pci_dev *pdev, int resource)
1da177e4
LT
999{
1000 struct pcidev_cookie *pcp = pdev->sysdata;
1001 struct pci_pbm_info *pbm = pcp->pbm;
1002 struct resource *res;
1003 unsigned long base;
1004 u32 reg;
1005 int where, size, is_64bit;
1006
1007 res = &pdev->resource[resource];
1008 if (resource < 6) {
1009 where = PCI_BASE_ADDRESS_0 + (resource * 4);
1010 } else if (resource == PCI_ROM_RESOURCE) {
1011 where = pdev->rom_base_reg;
1012 } else {
1013 /* Somebody might have asked allocation of a non-standard resource */
1014 return;
1015 }
1016
1017 is_64bit = 0;
1018 if (res->flags & IORESOURCE_IO)
1019 base = pbm->controller_regs + SABRE_IOSPACE;
1020 else {
1021 base = pbm->controller_regs + SABRE_MEMSPACE;
1022 if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK)
1023 == PCI_BASE_ADDRESS_MEM_TYPE_64)
1024 is_64bit = 1;
1025 }
1026
1027 size = res->end - res->start;
1028 pci_read_config_dword(pdev, where, &reg);
1029 reg = ((reg & size) |
1030 (((u32)(res->start - base)) & ~size));
1031 if (resource == PCI_ROM_RESOURCE) {
1032 reg |= PCI_ROM_ADDRESS_ENABLE;
1033 res->flags |= IORESOURCE_ROM_ENABLE;
1034 }
1035 pci_write_config_dword(pdev, where, reg);
1036
1037 /* This knows that the upper 32-bits of the address
1038 * must be zero. Our PCI common layer enforces this.
1039 */
1040 if (is_64bit)
1041 pci_write_config_dword(pdev, where + 4, 0);
1042}
1043
085ae41f 1044static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus)
1da177e4
LT
1045{
1046 struct pci_dev *pdev;
1047
1048 list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
1049
1050 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
1051 pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
1052 u32 word32;
1053 u16 word16;
1054
1055 sabre_read_pci_cfg(pdev->bus, pdev->devfn,
1056 PCI_COMMAND, 2, &word32);
1057 word16 = (u16) word32;
1058 word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
1059 PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
1060 PCI_COMMAND_IO;
1061 word32 = (u32) word16;
1062 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1063 PCI_COMMAND, 2, word32);
1064
1065 /* Status register bits are "write 1 to clear". */
1066 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1067 PCI_STATUS, 2, 0xffff);
1068 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1069 PCI_SEC_STATUS, 2, 0xffff);
1070
1071 /* Use a primary/seconday latency timer value
1072 * of 64.
1073 */
1074 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1075 PCI_LATENCY_TIMER, 1, 64);
1076 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1077 PCI_SEC_LATENCY_TIMER, 1, 64);
1078
1079 /* Enable reporting/forwarding of master aborts,
1080 * parity, and SERR.
1081 */
1082 sabre_write_pci_cfg(pdev->bus, pdev->devfn,
1083 PCI_BRIDGE_CONTROL, 1,
1084 (PCI_BRIDGE_CTL_PARITY |
1085 PCI_BRIDGE_CTL_SERR |
1086 PCI_BRIDGE_CTL_MASTER_ABORT));
1087 }
1088 }
1089}
1090
1091static struct pcidev_cookie *alloc_bridge_cookie(struct pci_pbm_info *pbm)
1092{
9132983a 1093 struct pcidev_cookie *cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
1da177e4
LT
1094
1095 if (!cookie) {
1096 prom_printf("SABRE: Critical allocation failure.\n");
1097 prom_halt();
1098 }
1099
1100 /* All we care about is the PBM. */
1da177e4
LT
1101 cookie->pbm = pbm;
1102
1103 return cookie;
1104}
1105
085ae41f 1106static void sabre_scan_bus(struct pci_controller_info *p)
1da177e4
LT
1107{
1108 static int once;
1109 struct pci_bus *sabre_bus, *pbus;
1110 struct pci_pbm_info *pbm;
1111 struct pcidev_cookie *cookie;
1112 int sabres_scanned;
1113
1114 /* The APB bridge speaks to the Sabre host PCI bridge
1115 * at 66Mhz, but the front side of APB runs at 33Mhz
1116 * for both segments.
1117 */
1118 p->pbm_A.is_66mhz_capable = 0;
1119 p->pbm_B.is_66mhz_capable = 0;
1120
1121 /* This driver has not been verified to handle
1122 * multiple SABREs yet, so trap this.
1123 *
1124 * Also note that the SABRE host bridge is hardwired
1125 * to live at bus 0.
1126 */
1127 if (once != 0) {
1128 prom_printf("SABRE: Multiple controllers unsupported.\n");
1129 prom_halt();
1130 }
1131 once++;
1132
1133 cookie = alloc_bridge_cookie(&p->pbm_A);
1134
1135 sabre_bus = pci_scan_bus(p->pci_first_busno,
1136 p->pci_ops,
1137 &p->pbm_A);
1138 pci_fixup_host_bridge_self(sabre_bus);
1139 sabre_bus->self->sysdata = cookie;
1140
1141 sabre_root_bus = sabre_bus;
1142
1143 apb_init(p, sabre_bus);
1144
1145 sabres_scanned = 0;
1146
1147 list_for_each_entry(pbus, &sabre_bus->children, node) {
1148
1149 if (pbus->number == p->pbm_A.pci_first_busno) {
1150 pbm = &p->pbm_A;
1151 } else if (pbus->number == p->pbm_B.pci_first_busno) {
1152 pbm = &p->pbm_B;
1153 } else
1154 continue;
1155
1156 cookie = alloc_bridge_cookie(pbm);
1157 pbus->self->sysdata = cookie;
1158
1159 sabres_scanned++;
1160
1161 pbus->sysdata = pbm;
1162 pbm->pci_bus = pbus;
1163 pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node);
1164 pci_record_assignments(pbm, pbus);
1165 pci_assign_unassigned(pbm, pbus);
1166 pci_fixup_irq(pbm, pbus);
1167 pci_determine_66mhz_disposition(pbm, pbus);
1168 pci_setup_busmastering(pbm, pbus);
1169 }
1170
1171 if (!sabres_scanned) {
1172 /* Hummingbird, no APBs. */
1173 pbm = &p->pbm_A;
1174 sabre_bus->sysdata = pbm;
1175 pbm->pci_bus = sabre_bus;
1176 pci_fill_in_pbm_cookies(sabre_bus, pbm, pbm->prom_node);
1177 pci_record_assignments(pbm, sabre_bus);
1178 pci_assign_unassigned(pbm, sabre_bus);
1179 pci_fixup_irq(pbm, sabre_bus);
1180 pci_determine_66mhz_disposition(pbm, sabre_bus);
1181 pci_setup_busmastering(pbm, sabre_bus);
1182 }
1183
1184 sabre_register_error_handlers(p);
1185}
1186
085ae41f
DM
1187static void sabre_iommu_init(struct pci_controller_info *p,
1188 int tsbsize, unsigned long dvma_offset,
1189 u32 dma_mask)
1da177e4
LT
1190{
1191 struct pci_iommu *iommu = p->pbm_A.iommu;
51e85136 1192 unsigned long i;
1da177e4
LT
1193 u64 control;
1194
1da177e4
LT
1195 /* Register addresses. */
1196 iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL;
1197 iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE;
1198 iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH;
1199 iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC;
1200 /* Sabre's IOMMU lacks ctx flushing. */
1201 iommu->iommu_ctxflush = 0;
1202
1203 /* Invalidate TLB Entries. */
1204 control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1205 control |= SABRE_IOMMUCTRL_DENAB;
1206 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1207
1208 for(i = 0; i < 16; i++) {
1209 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
1210 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
1211 }
1212
1213 /* Leave diag mode enabled for full-flushing done
1214 * in pci_iommu.c
1215 */
51e85136 1216 pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask);
1da177e4 1217
51e85136
DM
1218 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE,
1219 __pa(iommu->page_table));
1da177e4
LT
1220
1221 control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL);
1222 control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
1223 control |= SABRE_IOMMUCTRL_ENAB;
1224 switch(tsbsize) {
1225 case 64:
1226 control |= SABRE_IOMMU_TSBSZ_64K;
1da177e4
LT
1227 break;
1228 case 128:
1229 control |= SABRE_IOMMU_TSBSZ_128K;
1da177e4
LT
1230 break;
1231 default:
1232 prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
1233 prom_halt();
1234 break;
1235 }
1236 sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control);
1da177e4
LT
1237}
1238
085ae41f
DM
1239static void pbm_register_toplevel_resources(struct pci_controller_info *p,
1240 struct pci_pbm_info *pbm)
1da177e4
LT
1241{
1242 char *name = pbm->name;
1243 unsigned long ibase = p->pbm_A.controller_regs + SABRE_IOSPACE;
1244 unsigned long mbase = p->pbm_A.controller_regs + SABRE_MEMSPACE;
1245 unsigned int devfn;
1246 unsigned long first, last, i;
1247 u8 *addr, map;
1248
1249 sprintf(name, "SABRE%d PBM%c",
1250 p->index,
1251 (pbm == &p->pbm_A ? 'A' : 'B'));
1252 pbm->io_space.name = pbm->mem_space.name = name;
1253
1254 devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1);
1255 addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP);
1256 map = 0;
1257 pci_config_read8(addr, &map);
1258
1259 first = 8;
1260 last = 0;
1261 for (i = 0; i < 8; i++) {
1262 if ((map & (1 << i)) != 0) {
1263 if (first > i)
1264 first = i;
1265 if (last < i)
1266 last = i;
1267 }
1268 }
1269 pbm->io_space.start = ibase + (first << 21UL);
1270 pbm->io_space.end = ibase + (last << 21UL) + ((1 << 21UL) - 1);
1271 pbm->io_space.flags = IORESOURCE_IO;
1272
1273 addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP);
1274 map = 0;
1275 pci_config_read8(addr, &map);
1276
1277 first = 8;
1278 last = 0;
1279 for (i = 0; i < 8; i++) {
1280 if ((map & (1 << i)) != 0) {
1281 if (first > i)
1282 first = i;
1283 if (last < i)
1284 last = i;
1285 }
1286 }
1287 pbm->mem_space.start = mbase + (first << 29UL);
1288 pbm->mem_space.end = mbase + (last << 29UL) + ((1 << 29UL) - 1);
1289 pbm->mem_space.flags = IORESOURCE_MEM;
1290
1291 if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
1292 prom_printf("Cannot register PBM-%c's IO space.\n",
1293 (pbm == &p->pbm_A ? 'A' : 'B'));
1294 prom_halt();
1295 }
1296 if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
1297 prom_printf("Cannot register PBM-%c's MEM space.\n",
1298 (pbm == &p->pbm_A ? 'A' : 'B'));
1299 prom_halt();
1300 }
1301
1302 /* Register legacy regions if this PBM covers that area. */
1303 if (pbm->io_space.start == ibase &&
1304 pbm->mem_space.start == mbase)
1305 pci_register_legacy_regions(&pbm->io_space,
1306 &pbm->mem_space);
1307}
1308
085ae41f 1309static void sabre_pbm_init(struct pci_controller_info *p, int sabre_node, u32 dma_begin)
1da177e4
LT
1310{
1311 struct pci_pbm_info *pbm;
1312 char namebuf[128];
1313 u32 busrange[2];
1314 int node, simbas_found;
1315
1316 simbas_found = 0;
1317 node = prom_getchild(sabre_node);
1318 while ((node = prom_searchsiblings(node, "pci")) != 0) {
1319 int err;
1320
1321 err = prom_getproperty(node, "model", namebuf, sizeof(namebuf));
1322 if ((err <= 0) || strncmp(namebuf, "SUNW,simba", err))
1323 goto next_pci;
1324
1325 err = prom_getproperty(node, "bus-range",
1326 (char *)&busrange[0], sizeof(busrange));
1327 if (err == 0 || err == -1) {
1328 prom_printf("APB: Error, cannot get PCI bus-range.\n");
1329 prom_halt();
1330 }
1331
1332 simbas_found++;
1333 if (busrange[0] == 1)
1334 pbm = &p->pbm_B;
1335 else
1336 pbm = &p->pbm_A;
1337 pbm->chip_type = PBM_CHIP_TYPE_SABRE;
1338 pbm->parent = p;
1339 pbm->prom_node = node;
1340 pbm->pci_first_slot = 1;
1341 pbm->pci_first_busno = busrange[0];
1342 pbm->pci_last_busno = busrange[1];
1343
1344 prom_getstring(node, "name", pbm->prom_name, sizeof(pbm->prom_name));
1345 err = prom_getproperty(node, "ranges",
1346 (char *)pbm->pbm_ranges,
1347 sizeof(pbm->pbm_ranges));
1348 if (err != -1)
1349 pbm->num_pbm_ranges =
1350 (err / sizeof(struct linux_prom_pci_ranges));
1351 else
1352 pbm->num_pbm_ranges = 0;
1353
1354 err = prom_getproperty(node, "interrupt-map",
1355 (char *)pbm->pbm_intmap,
1356 sizeof(pbm->pbm_intmap));
1357 if (err != -1) {
1358 pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap));
1359 err = prom_getproperty(node, "interrupt-map-mask",
1360 (char *)&pbm->pbm_intmask,
1361 sizeof(pbm->pbm_intmask));
1362 if (err == -1) {
1363 prom_printf("APB: Fatal error, no interrupt-map-mask.\n");
1364 prom_halt();
1365 }
1366 } else {
1367 pbm->num_pbm_intmap = 0;
1368 memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask));
1369 }
1370
1371 pbm_register_toplevel_resources(p, pbm);
1372
1373 next_pci:
1374 node = prom_getsibling(node);
1375 if (!node)
1376 break;
1377 }
1378 if (simbas_found == 0) {
1379 int err;
1380
1381 /* No APBs underneath, probably this is a hummingbird
1382 * system.
1383 */
1384 pbm = &p->pbm_A;
1385 pbm->parent = p;
1386 pbm->prom_node = sabre_node;
1387 pbm->pci_first_busno = p->pci_first_busno;
1388 pbm->pci_last_busno = p->pci_last_busno;
1389
1390 prom_getstring(sabre_node, "name", pbm->prom_name, sizeof(pbm->prom_name));
1391 err = prom_getproperty(sabre_node, "ranges",
1392 (char *) pbm->pbm_ranges,
1393 sizeof(pbm->pbm_ranges));
1394 if (err != -1)
1395 pbm->num_pbm_ranges =
1396 (err / sizeof(struct linux_prom_pci_ranges));
1397 else
1398 pbm->num_pbm_ranges = 0;
1399
1400 err = prom_getproperty(sabre_node, "interrupt-map",
1401 (char *) pbm->pbm_intmap,
1402 sizeof(pbm->pbm_intmap));
1403
1404 if (err != -1) {
1405 pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap));
1406 err = prom_getproperty(sabre_node, "interrupt-map-mask",
1407 (char *)&pbm->pbm_intmask,
1408 sizeof(pbm->pbm_intmask));
1409 if (err == -1) {
1410 prom_printf("Hummingbird: Fatal error, no interrupt-map-mask.\n");
1411 prom_halt();
1412 }
1413 } else {
1414 pbm->num_pbm_intmap = 0;
1415 memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask));
1416 }
1417
1418
1419 sprintf(pbm->name, "SABRE%d PBM%c", p->index,
1420 (pbm == &p->pbm_A ? 'A' : 'B'));
1421 pbm->io_space.name = pbm->mem_space.name = pbm->name;
1422
1423 /* Hack up top-level resources. */
1424 pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE;
1425 pbm->io_space.end = pbm->io_space.start + (1UL << 24) - 1UL;
1426 pbm->io_space.flags = IORESOURCE_IO;
1427
1428 pbm->mem_space.start = p->pbm_A.controller_regs + SABRE_MEMSPACE;
1429 pbm->mem_space.end = pbm->mem_space.start + (unsigned long)dma_begin - 1UL;
1430 pbm->mem_space.flags = IORESOURCE_MEM;
1431
1432 if (request_resource(&ioport_resource, &pbm->io_space) < 0) {
1433 prom_printf("Cannot register Hummingbird's IO space.\n");
1434 prom_halt();
1435 }
1436 if (request_resource(&iomem_resource, &pbm->mem_space) < 0) {
1437 prom_printf("Cannot register Hummingbird's MEM space.\n");
1438 prom_halt();
1439 }
1440
1441 pci_register_legacy_regions(&pbm->io_space,
1442 &pbm->mem_space);
1443 }
1444}
1445
085ae41f 1446void sabre_init(int pnode, char *model_name)
1da177e4
LT
1447{
1448 struct linux_prom64_registers pr_regs[2];
1449 struct pci_controller_info *p;
1450 struct pci_iommu *iommu;
1451 int tsbsize, err;
1452 u32 busrange[2];
1453 u32 vdma[2];
1454 u32 upa_portid, dma_mask;
1455 u64 clear_irq;
1456
1457 hummingbird_p = 0;
1458 if (!strcmp(model_name, "pci108e,a001"))
1459 hummingbird_p = 1;
1460 else if (!strcmp(model_name, "SUNW,sabre")) {
1461 char compat[64];
1462
1463 if (prom_getproperty(pnode, "compatible",
1464 compat, sizeof(compat)) > 0 &&
1465 !strcmp(compat, "pci108e,a001")) {
1466 hummingbird_p = 1;
1467 } else {
1468 int cpu_node;
1469
1470 /* Of course, Sun has to encode things a thousand
1471 * different ways, inconsistently.
1472 */
1473 cpu_find_by_instance(0, &cpu_node, NULL);
1474 if (prom_getproperty(cpu_node, "name",
1475 compat, sizeof(compat)) > 0 &&
1476 !strcmp(compat, "SUNW,UltraSPARC-IIe"))
1477 hummingbird_p = 1;
1478 }
1479 }
1480
9132983a 1481 p = kzalloc(sizeof(*p), GFP_ATOMIC);
1da177e4
LT
1482 if (!p) {
1483 prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n");
1484 prom_halt();
1485 }
1da177e4 1486
9132983a 1487 iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
1da177e4
LT
1488 if (!iommu) {
1489 prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n");
1490 prom_halt();
1491 }
1da177e4
LT
1492 p->pbm_A.iommu = p->pbm_B.iommu = iommu;
1493
1494 upa_portid = prom_getintdefault(pnode, "upa-portid", 0xff);
1495
1496 p->next = pci_controller_root;
1497 pci_controller_root = p;
1498
1499 p->pbm_A.portid = upa_portid;
1500 p->pbm_B.portid = upa_portid;
1501 p->index = pci_num_controllers++;
1502 p->pbms_same_domain = 1;
1503 p->scan_bus = sabre_scan_bus;
1504 p->irq_build = sabre_irq_build;
1505 p->base_address_update = sabre_base_address_update;
1506 p->resource_adjust = sabre_resource_adjust;
1507 p->pci_ops = &sabre_ops;
1508
1509 /*
1510 * Map in SABRE register set and report the presence of this SABRE.
1511 */
1512 err = prom_getproperty(pnode, "reg",
1513 (char *)&pr_regs[0], sizeof(pr_regs));
1514 if(err == 0 || err == -1) {
1515 prom_printf("SABRE: Error, cannot get U2P registers "
1516 "from PROM.\n");
1517 prom_halt();
1518 }
1519
1520 /*
1521 * First REG in property is base of entire SABRE register space.
1522 */
1523 p->pbm_A.controller_regs = pr_regs[0].phys_addr;
1524 p->pbm_B.controller_regs = pr_regs[0].phys_addr;
1da177e4 1525
088dd1f8
DM
1526 printk("PCI: Found SABRE, main regs at %016lx\n",
1527 p->pbm_A.controller_regs);
1da177e4
LT
1528
1529 /* Clear interrupts */
1530
1531 /* PCI first */
1532 for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
1533 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1534
1535 /* Then OBIO */
1536 for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
1537 sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL);
1538
1539 /* Error interrupts are enabled later after the bus scan. */
1540 sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL,
1541 (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
1542 SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
1543
1544 /* Now map in PCI config space for entire SABRE. */
1545 p->pbm_A.config_space = p->pbm_B.config_space =
1546 (p->pbm_A.controller_regs + SABRE_CONFIGSPACE);
1547 printk("SABRE: Shared PCI config space at %016lx\n",
1548 p->pbm_A.config_space);
1549
1550 err = prom_getproperty(pnode, "virtual-dma",
1551 (char *)&vdma[0], sizeof(vdma));
1552 if(err == 0 || err == -1) {
1553 prom_printf("SABRE: Error, cannot get virtual-dma property "
1554 "from PROM.\n");
1555 prom_halt();
1556 }
1557
1558 dma_mask = vdma[0];
1559 switch(vdma[1]) {
1560 case 0x20000000:
1561 dma_mask |= 0x1fffffff;
1562 tsbsize = 64;
1563 break;
1564 case 0x40000000:
1565 dma_mask |= 0x3fffffff;
1566 tsbsize = 128;
1567 break;
1568
1569 case 0x80000000:
1570 dma_mask |= 0x7fffffff;
1571 tsbsize = 128;
1572 break;
1573 default:
1574 prom_printf("SABRE: strange virtual-dma size.\n");
1575 prom_halt();
1576 }
1577
1578 sabre_iommu_init(p, tsbsize, vdma[0], dma_mask);
1579
1580 printk("SABRE: DVMA at %08x [%08x]\n", vdma[0], vdma[1]);
1581
1582 err = prom_getproperty(pnode, "bus-range",
1583 (char *)&busrange[0], sizeof(busrange));
1584 if(err == 0 || err == -1) {
1585 prom_printf("SABRE: Error, cannot get PCI bus-range "
1586 " from PROM.\n");
1587 prom_halt();
1588 }
1589
1590 p->pci_first_busno = busrange[0];
1591 p->pci_last_busno = busrange[1];
1592
1593 /*
1594 * Look for APB underneath.
1595 */
1596 sabre_pbm_init(p, pnode, vdma[0]);
1597}
This page took 0.212407 seconds and 5 git commands to generate.