[SPARC64]: Temporary workaround for PCI-E slot on T1000.
[deliverable/linux.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
27a2ef38 3 * Copyright (C) 1997, 2007 David S. Miller (davem@davemloft.net)
1da177e4
LT
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
23#include <linux/bootmem.h>
24
25#include <asm/head.h>
26#include <asm/ptrace.h>
27#include <asm/atomic.h>
28#include <asm/tlbflush.h>
29#include <asm/mmu_context.h>
30#include <asm/cpudata.h>
27a2ef38
DM
31#include <asm/hvtramp.h>
32#include <asm/io.h>
1da177e4
LT
33
34#include <asm/irq.h>
6d24c8dc 35#include <asm/irq_regs.h>
1da177e4
LT
36#include <asm/page.h>
37#include <asm/pgtable.h>
38#include <asm/oplib.h>
39#include <asm/uaccess.h>
40#include <asm/timer.h>
41#include <asm/starfire.h>
42#include <asm/tlb.h>
56fb4df6 43#include <asm/sections.h>
07f8e5f3 44#include <asm/prom.h>
5cbc3073 45#include <asm/mdesc.h>
4f0234f4 46#include <asm/ldc.h>
e0204409 47#include <asm/hypervisor.h>
1da177e4 48
1da177e4
LT
49extern void calibrate_delay(void);
50
a2f9f6bb
DM
51int sparc64_multi_core __read_mostly;
52
4f0234f4 53cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
c12a8289 54cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
8935dced
DM
55cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
56 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
f78eae2e
DM
57cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
58 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
4f0234f4
DM
59
60EXPORT_SYMBOL(cpu_possible_map);
61EXPORT_SYMBOL(cpu_online_map);
62EXPORT_SYMBOL(cpu_sibling_map);
63EXPORT_SYMBOL(cpu_core_map);
64
1da177e4 65static cpumask_t smp_commenced_mask;
1da177e4
LT
66
67void smp_info(struct seq_file *m)
68{
69 int i;
70
71 seq_printf(m, "State:\n");
394e3902
AM
72 for_each_online_cpu(i)
73 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
74}
75
76void smp_bogo(struct seq_file *m)
77{
78 int i;
79
394e3902
AM
80 for_each_online_cpu(i)
81 seq_printf(m,
394e3902 82 "Cpu%dClkTck\t: %016lx\n",
394e3902 83 i, cpu_data(i).clock_tick);
1da177e4
LT
84}
85
e0204409
DM
86static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
87
112f4871 88extern void setup_sparc64_timer(void);
1da177e4
LT
89
90static volatile unsigned long callin_flag = 0;
91
4f0234f4 92void __devinit smp_callin(void)
1da177e4
LT
93{
94 int cpuid = hard_smp_processor_id();
95
56fb4df6 96 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 97
4a07e646 98 if (tlb_type == hypervisor)
490384e7 99 sun4v_ktsb_register();
481295f9 100
56fb4df6 101 __flush_tlb_all();
1da177e4 102
112f4871 103 setup_sparc64_timer();
1da177e4 104
816242da
DM
105 if (cheetah_pcache_forced_on)
106 cheetah_enable_pcache();
107
1da177e4
LT
108 local_irq_enable();
109
1da177e4
LT
110 callin_flag = 1;
111 __asm__ __volatile__("membar #Sync\n\t"
112 "flush %%g6" : : : "memory");
113
114 /* Clear this or we will die instantly when we
115 * schedule back to this idler...
116 */
db7d9a4e 117 current_thread_info()->new_child = 0;
1da177e4
LT
118
119 /* Attach to the address space of init_task. */
120 atomic_inc(&init_mm.mm_count);
121 current->active_mm = &init_mm;
122
123 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 124 rmb();
1da177e4 125
e0204409 126 spin_lock(&call_lock);
1da177e4 127 cpu_set(cpuid, cpu_online_map);
e0204409 128 spin_unlock(&call_lock);
5bfb5d69
NP
129
130 /* idle thread is expected to have preempt disabled */
131 preempt_disable();
1da177e4
LT
132}
133
134void cpu_panic(void)
135{
136 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
137 panic("SMP bolixed\n");
138}
139
1da177e4
LT
140/* This tick register synchronization scheme is taken entirely from
141 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
142 *
143 * The only change I've made is to rework it so that the master
144 * initiates the synchonization instead of the slave. -DaveM
145 */
146
147#define MASTER 0
148#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
149
150#define NUM_ROUNDS 64 /* magic value */
151#define NUM_ITERS 5 /* likewise */
152
153static DEFINE_SPINLOCK(itc_sync_lock);
154static unsigned long go[SLAVE + 1];
155
156#define DEBUG_TICK_SYNC 0
157
158static inline long get_delta (long *rt, long *master)
159{
160 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
161 unsigned long tcenter, t0, t1, tm;
162 unsigned long i;
163
164 for (i = 0; i < NUM_ITERS; i++) {
165 t0 = tick_ops->get_tick();
166 go[MASTER] = 1;
4f07118f 167 membar_storeload();
1da177e4 168 while (!(tm = go[SLAVE]))
4f07118f 169 rmb();
1da177e4 170 go[SLAVE] = 0;
4f07118f 171 wmb();
1da177e4
LT
172 t1 = tick_ops->get_tick();
173
174 if (t1 - t0 < best_t1 - best_t0)
175 best_t0 = t0, best_t1 = t1, best_tm = tm;
176 }
177
178 *rt = best_t1 - best_t0;
179 *master = best_tm - best_t0;
180
181 /* average best_t0 and best_t1 without overflow: */
182 tcenter = (best_t0/2 + best_t1/2);
183 if (best_t0 % 2 + best_t1 % 2 == 2)
184 tcenter++;
185 return tcenter - best_tm;
186}
187
188void smp_synchronize_tick_client(void)
189{
190 long i, delta, adj, adjust_latency = 0, done = 0;
191 unsigned long flags, rt, master_time_stamp, bound;
192#if DEBUG_TICK_SYNC
193 struct {
194 long rt; /* roundtrip time */
195 long master; /* master's timestamp */
196 long diff; /* difference between midpoint and master's timestamp */
197 long lat; /* estimate of itc adjustment latency */
198 } t[NUM_ROUNDS];
199#endif
200
201 go[MASTER] = 1;
202
203 while (go[MASTER])
4f07118f 204 rmb();
1da177e4
LT
205
206 local_irq_save(flags);
207 {
208 for (i = 0; i < NUM_ROUNDS; i++) {
209 delta = get_delta(&rt, &master_time_stamp);
210 if (delta == 0) {
211 done = 1; /* let's lock on to this... */
212 bound = rt;
213 }
214
215 if (!done) {
216 if (i > 0) {
217 adjust_latency += -delta;
218 adj = -delta + adjust_latency/4;
219 } else
220 adj = -delta;
221
112f4871 222 tick_ops->add_tick(adj);
1da177e4
LT
223 }
224#if DEBUG_TICK_SYNC
225 t[i].rt = rt;
226 t[i].master = master_time_stamp;
227 t[i].diff = delta;
228 t[i].lat = adjust_latency/4;
229#endif
230 }
231 }
232 local_irq_restore(flags);
233
234#if DEBUG_TICK_SYNC
235 for (i = 0; i < NUM_ROUNDS; i++)
236 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
237 t[i].rt, t[i].master, t[i].diff, t[i].lat);
238#endif
239
240 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
241 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
242}
243
244static void smp_start_sync_tick_client(int cpu);
245
246static void smp_synchronize_one_tick(int cpu)
247{
248 unsigned long flags, i;
249
250 go[MASTER] = 0;
251
252 smp_start_sync_tick_client(cpu);
253
254 /* wait for client to be ready */
255 while (!go[MASTER])
4f07118f 256 rmb();
1da177e4
LT
257
258 /* now let the client proceed into his loop */
259 go[MASTER] = 0;
4f07118f 260 membar_storeload();
1da177e4
LT
261
262 spin_lock_irqsave(&itc_sync_lock, flags);
263 {
264 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
265 while (!go[MASTER])
4f07118f 266 rmb();
1da177e4 267 go[MASTER] = 0;
4f07118f 268 wmb();
1da177e4 269 go[SLAVE] = tick_ops->get_tick();
4f07118f 270 membar_storeload();
1da177e4
LT
271 }
272 }
273 spin_unlock_irqrestore(&itc_sync_lock, flags);
274}
275
b14f5c10 276#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
27a2ef38
DM
277/* XXX Put this in some common place. XXX */
278static unsigned long kimage_addr_to_ra(void *p)
279{
280 unsigned long val = (unsigned long) p;
281
282 return kern_base + (val - KERNBASE);
283}
284
b14f5c10
DM
285static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
286{
287 extern unsigned long sparc64_ttable_tl0;
288 extern unsigned long kern_locked_tte_data;
289 extern int bigkernel;
290 struct hvtramp_descr *hdesc;
291 unsigned long trampoline_ra;
292 struct trap_per_cpu *tb;
293 u64 tte_vaddr, tte_data;
294 unsigned long hv_err;
295
296 hdesc = kzalloc(sizeof(*hdesc), GFP_KERNEL);
297 if (!hdesc) {
27a2ef38 298 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
b14f5c10
DM
299 "hvtramp_descr.\n");
300 return;
301 }
302
303 hdesc->cpu = cpu;
304 hdesc->num_mappings = (bigkernel ? 2 : 1);
305
306 tb = &trap_block[cpu];
307 tb->hdesc = hdesc;
308
309 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
310 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
311
312 hdesc->thread_reg = thread_reg;
313
314 tte_vaddr = (unsigned long) KERNBASE;
315 tte_data = kern_locked_tte_data;
316
317 hdesc->maps[0].vaddr = tte_vaddr;
318 hdesc->maps[0].tte = tte_data;
319 if (bigkernel) {
320 tte_vaddr += 0x400000;
321 tte_data += 0x400000;
322 hdesc->maps[1].vaddr = tte_vaddr;
323 hdesc->maps[1].tte = tte_data;
324 }
325
326 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
327
328 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
329 kimage_addr_to_ra(&sparc64_ttable_tl0),
330 __pa(hdesc));
e0204409
DM
331 if (hv_err)
332 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
333 "gives error %lu\n", hv_err);
b14f5c10
DM
334}
335#endif
336
1da177e4
LT
337extern unsigned long sparc64_cpu_startup;
338
339/* The OBP cpu startup callback truncates the 3rd arg cookie to
340 * 32-bits (I think) so to be safe we have it read the pointer
341 * contained here so we work on >4GB machines. -DaveM
342 */
343static struct thread_info *cpu_new_thread = NULL;
344
345static int __devinit smp_boot_one_cpu(unsigned int cpu)
346{
b37d40d1 347 struct trap_per_cpu *tb = &trap_block[cpu];
1da177e4
LT
348 unsigned long entry =
349 (unsigned long)(&sparc64_cpu_startup);
350 unsigned long cookie =
351 (unsigned long)(&cpu_new_thread);
352 struct task_struct *p;
7890f794 353 int timeout, ret;
1da177e4
LT
354
355 p = fork_idle(cpu);
356 callin_flag = 0;
f3169641 357 cpu_new_thread = task_thread_info(p);
1da177e4 358
7890f794 359 if (tlb_type == hypervisor) {
b14f5c10 360#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
4f0234f4
DM
361 if (ldom_domaining_enabled)
362 ldom_startcpu_cpuid(cpu,
363 (unsigned long) cpu_new_thread);
364 else
365#endif
366 prom_startcpu_cpuid(cpu, entry, cookie);
7890f794 367 } else {
5cbc3073 368 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 369
07f8e5f3 370 prom_startcpu(dp->node, entry, cookie);
7890f794 371 }
1da177e4 372
4f0234f4 373 for (timeout = 0; timeout < 50000; timeout++) {
1da177e4
LT
374 if (callin_flag)
375 break;
376 udelay(100);
377 }
72aff53f 378
1da177e4
LT
379 if (callin_flag) {
380 ret = 0;
381 } else {
382 printk("Processor %d is stuck.\n", cpu);
1da177e4
LT
383 ret = -ENODEV;
384 }
385 cpu_new_thread = NULL;
386
b37d40d1
DM
387 if (tb->hdesc) {
388 kfree(tb->hdesc);
389 tb->hdesc = NULL;
390 }
391
1da177e4
LT
392 return ret;
393}
394
395static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
396{
397 u64 result, target;
398 int stuck, tmp;
399
400 if (this_is_starfire) {
401 /* map to real upaid */
402 cpu = (((cpu & 0x3c) << 1) |
403 ((cpu & 0x40) >> 4) |
404 (cpu & 0x3));
405 }
406
407 target = (cpu << 14) | 0x70;
408again:
409 /* Ok, this is the real Spitfire Errata #54.
410 * One must read back from a UDB internal register
411 * after writes to the UDB interrupt dispatch, but
412 * before the membar Sync for that write.
413 * So we use the high UDB control register (ASI 0x7f,
414 * ADDR 0x20) for the dummy read. -DaveM
415 */
416 tmp = 0x40;
417 __asm__ __volatile__(
418 "wrpr %1, %2, %%pstate\n\t"
419 "stxa %4, [%0] %3\n\t"
420 "stxa %5, [%0+%8] %3\n\t"
421 "add %0, %8, %0\n\t"
422 "stxa %6, [%0+%8] %3\n\t"
423 "membar #Sync\n\t"
424 "stxa %%g0, [%7] %3\n\t"
425 "membar #Sync\n\t"
426 "mov 0x20, %%g1\n\t"
427 "ldxa [%%g1] 0x7f, %%g0\n\t"
428 "membar #Sync"
429 : "=r" (tmp)
430 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
431 "r" (data0), "r" (data1), "r" (data2), "r" (target),
432 "r" (0x10), "0" (tmp)
433 : "g1");
434
435 /* NOTE: PSTATE_IE is still clear. */
436 stuck = 100000;
437 do {
438 __asm__ __volatile__("ldxa [%%g0] %1, %0"
439 : "=r" (result)
440 : "i" (ASI_INTR_DISPATCH_STAT));
441 if (result == 0) {
442 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
443 : : "r" (pstate));
444 return;
445 }
446 stuck -= 1;
447 if (stuck == 0)
448 break;
449 } while (result & 0x1);
450 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
451 : : "r" (pstate));
452 if (stuck == 0) {
453 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
454 smp_processor_id(), result);
455 } else {
456 udelay(2);
457 goto again;
458 }
459}
460
461static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
462{
463 u64 pstate;
464 int i;
465
466 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
467 for_each_cpu_mask(i, mask)
468 spitfire_xcall_helper(data0, data1, data2, pstate, i);
469}
470
471/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
472 * packet, but we have no use for that. However we do take advantage of
473 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
474 */
475static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
476{
477 u64 pstate, ver;
22adb358 478 int nack_busy_id, is_jbus, need_more;
1da177e4
LT
479
480 if (cpus_empty(mask))
481 return;
482
483 /* Unfortunately, someone at Sun had the brilliant idea to make the
484 * busy/nack fields hard-coded by ITID number for this Ultra-III
485 * derivative processor.
486 */
487 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
488 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
489 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
490
491 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
492
493retry:
22adb358 494 need_more = 0;
1da177e4
LT
495 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
496 : : "r" (pstate), "i" (PSTATE_IE));
497
498 /* Setup the dispatch data registers. */
499 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
500 "stxa %1, [%4] %6\n\t"
501 "stxa %2, [%5] %6\n\t"
502 "membar #Sync\n\t"
503 : /* no outputs */
504 : "r" (data0), "r" (data1), "r" (data2),
505 "r" (0x40), "r" (0x50), "r" (0x60),
506 "i" (ASI_INTR_W));
507
508 nack_busy_id = 0;
509 {
510 int i;
511
512 for_each_cpu_mask(i, mask) {
513 u64 target = (i << 14) | 0x70;
514
92704a1c 515 if (!is_jbus)
1da177e4
LT
516 target |= (nack_busy_id << 24);
517 __asm__ __volatile__(
518 "stxa %%g0, [%0] %1\n\t"
519 "membar #Sync\n\t"
520 : /* no outputs */
521 : "r" (target), "i" (ASI_INTR_W));
522 nack_busy_id++;
22adb358
DM
523 if (nack_busy_id == 32) {
524 need_more = 1;
525 break;
526 }
1da177e4
LT
527 }
528 }
529
530 /* Now, poll for completion. */
531 {
532 u64 dispatch_stat;
533 long stuck;
534
535 stuck = 100000 * nack_busy_id;
536 do {
537 __asm__ __volatile__("ldxa [%%g0] %1, %0"
538 : "=r" (dispatch_stat)
539 : "i" (ASI_INTR_DISPATCH_STAT));
540 if (dispatch_stat == 0UL) {
541 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
542 : : "r" (pstate));
22adb358
DM
543 if (unlikely(need_more)) {
544 int i, cnt = 0;
545 for_each_cpu_mask(i, mask) {
546 cpu_clear(i, mask);
547 cnt++;
548 if (cnt == 32)
549 break;
550 }
551 goto retry;
552 }
1da177e4
LT
553 return;
554 }
555 if (!--stuck)
556 break;
557 } while (dispatch_stat & 0x5555555555555555UL);
558
559 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
560 : : "r" (pstate));
561
562 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
563 /* Busy bits will not clear, continue instead
564 * of freezing up on this cpu.
565 */
566 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
567 smp_processor_id(), dispatch_stat);
568 } else {
569 int i, this_busy_nack = 0;
570
571 /* Delay some random time with interrupts enabled
572 * to prevent deadlock.
573 */
574 udelay(2 * nack_busy_id);
575
576 /* Clear out the mask bits for cpus which did not
577 * NACK us.
578 */
579 for_each_cpu_mask(i, mask) {
580 u64 check_mask;
581
92704a1c 582 if (is_jbus)
1da177e4
LT
583 check_mask = (0x2UL << (2*i));
584 else
585 check_mask = (0x2UL <<
586 this_busy_nack);
587 if ((dispatch_stat & check_mask) == 0)
588 cpu_clear(i, mask);
589 this_busy_nack += 2;
22adb358
DM
590 if (this_busy_nack == 64)
591 break;
1da177e4
LT
592 }
593
594 goto retry;
595 }
596 }
597}
598
1d2f1f90 599/* Multi-cpu list version. */
a43fe0e7
DM
600static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
601{
b830ab66
DM
602 struct trap_per_cpu *tb;
603 u16 *cpu_list;
604 u64 *mondo;
605 cpumask_t error_mask;
606 unsigned long flags, status;
3cab0c3e 607 int cnt, retries, this_cpu, prev_sent, i;
b830ab66 608
17f34f0e
DM
609 if (cpus_empty(mask))
610 return;
611
b830ab66
DM
612 /* We have to do this whole thing with interrupts fully disabled.
613 * Otherwise if we send an xcall from interrupt context it will
614 * corrupt both our mondo block and cpu list state.
615 *
616 * One consequence of this is that we cannot use timeout mechanisms
617 * that depend upon interrupts being delivered locally. So, for
618 * example, we cannot sample jiffies and expect it to advance.
619 *
620 * Fortunately, udelay() uses %stick/%tick so we can use that.
621 */
622 local_irq_save(flags);
623
624 this_cpu = smp_processor_id();
625 tb = &trap_block[this_cpu];
1d2f1f90 626
b830ab66 627 mondo = __va(tb->cpu_mondo_block_pa);
1d2f1f90
DM
628 mondo[0] = data0;
629 mondo[1] = data1;
630 mondo[2] = data2;
631 wmb();
632
b830ab66
DM
633 cpu_list = __va(tb->cpu_list_pa);
634
635 /* Setup the initial cpu list. */
636 cnt = 0;
637 for_each_cpu_mask(i, mask)
638 cpu_list[cnt++] = i;
639
640 cpus_clear(error_mask);
1d2f1f90 641 retries = 0;
3cab0c3e 642 prev_sent = 0;
1d2f1f90 643 do {
3cab0c3e 644 int forward_progress, n_sent;
1d2f1f90 645
b830ab66
DM
646 status = sun4v_cpu_mondo_send(cnt,
647 tb->cpu_list_pa,
648 tb->cpu_mondo_block_pa);
649
650 /* HV_EOK means all cpus received the xcall, we're done. */
651 if (likely(status == HV_EOK))
1d2f1f90 652 break;
b830ab66 653
3cab0c3e
DM
654 /* First, see if we made any forward progress.
655 *
656 * The hypervisor indicates successful sends by setting
657 * cpu list entries to the value 0xffff.
b830ab66 658 */
3cab0c3e 659 n_sent = 0;
b830ab66 660 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
661 if (likely(cpu_list[i] == 0xffff))
662 n_sent++;
1d2f1f90
DM
663 }
664
3cab0c3e
DM
665 forward_progress = 0;
666 if (n_sent > prev_sent)
667 forward_progress = 1;
668
669 prev_sent = n_sent;
670
b830ab66
DM
671 /* If we get a HV_ECPUERROR, then one or more of the cpus
672 * in the list are in error state. Use the cpu_state()
673 * hypervisor call to find out which cpus are in error state.
674 */
675 if (unlikely(status == HV_ECPUERROR)) {
676 for (i = 0; i < cnt; i++) {
677 long err;
678 u16 cpu;
679
680 cpu = cpu_list[i];
681 if (cpu == 0xffff)
682 continue;
683
684 err = sun4v_cpu_state(cpu);
685 if (err >= 0 &&
686 err == HV_CPU_STATE_ERROR) {
3cab0c3e 687 cpu_list[i] = 0xffff;
b830ab66
DM
688 cpu_set(cpu, error_mask);
689 }
690 }
691 } else if (unlikely(status != HV_EWOULDBLOCK))
692 goto fatal_mondo_error;
693
3cab0c3e
DM
694 /* Don't bother rewriting the CPU list, just leave the
695 * 0xffff and non-0xffff entries in there and the
696 * hypervisor will do the right thing.
697 *
698 * Only advance timeout state if we didn't make any
699 * forward progress.
700 */
b830ab66
DM
701 if (unlikely(!forward_progress)) {
702 if (unlikely(++retries > 10000))
703 goto fatal_mondo_timeout;
704
705 /* Delay a little bit to let other cpus catch up
706 * on their cpu mondo queue work.
707 */
708 udelay(2 * cnt);
709 }
1d2f1f90
DM
710 } while (1);
711
b830ab66
DM
712 local_irq_restore(flags);
713
714 if (unlikely(!cpus_empty(error_mask)))
715 goto fatal_mondo_cpu_error;
716
717 return;
718
719fatal_mondo_cpu_error:
720 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
721 "were in error state\n",
722 this_cpu);
723 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
724 for_each_cpu_mask(i, error_mask)
725 printk("%d ", i);
726 printk("]\n");
727 return;
728
729fatal_mondo_timeout:
730 local_irq_restore(flags);
731 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
732 " progress after %d retries.\n",
733 this_cpu, retries);
734 goto dump_cpu_list_and_out;
735
736fatal_mondo_error:
737 local_irq_restore(flags);
738 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
739 this_cpu, status);
740 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
741 "mondo_block_pa(%lx)\n",
742 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
743
744dump_cpu_list_and_out:
745 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
746 for (i = 0; i < cnt; i++)
747 printk("%u ", cpu_list[i]);
748 printk("]\n");
1d2f1f90 749}
a43fe0e7 750
1da177e4
LT
751/* Send cross call to all processors mentioned in MASK
752 * except self.
753 */
754static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
755{
756 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
757 int this_cpu = get_cpu();
758
759 cpus_and(mask, mask, cpu_online_map);
760 cpu_clear(this_cpu, mask);
761
762 if (tlb_type == spitfire)
763 spitfire_xcall_deliver(data0, data1, data2, mask);
a43fe0e7 764 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1da177e4 765 cheetah_xcall_deliver(data0, data1, data2, mask);
a43fe0e7
DM
766 else
767 hypervisor_xcall_deliver(data0, data1, data2, mask);
1da177e4
LT
768 /* NOTE: Caller runs local copy on master. */
769
770 put_cpu();
771}
772
773extern unsigned long xcall_sync_tick;
774
775static void smp_start_sync_tick_client(int cpu)
776{
777 cpumask_t mask = cpumask_of_cpu(cpu);
778
779 smp_cross_call_masked(&xcall_sync_tick,
780 0, 0, 0, mask);
781}
782
783/* Send cross call to all processors except self. */
784#define smp_cross_call(func, ctx, data1, data2) \
785 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
786
787struct call_data_struct {
788 void (*func) (void *info);
789 void *info;
790 atomic_t finished;
791 int wait;
792};
793
1da177e4
LT
794static struct call_data_struct *call_data;
795
796extern unsigned long xcall_call_function;
797
aa1d1a0a
DM
798/**
799 * smp_call_function(): Run a function on all other CPUs.
800 * @func: The function to run. This must be fast and non-blocking.
801 * @info: An arbitrary pointer to pass to the function.
802 * @nonatomic: currently unused.
803 * @wait: If true, wait (atomically) until function has completed on other CPUs.
804 *
805 * Returns 0 on success, else a negative status code. Does not return until
806 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
807 *
1da177e4
LT
808 * You must not call this function with disabled interrupts or from a
809 * hardware interrupt handler or from a bottom half handler.
810 */
bd40791e
DM
811static int smp_call_function_mask(void (*func)(void *info), void *info,
812 int nonatomic, int wait, cpumask_t mask)
1da177e4
LT
813{
814 struct call_data_struct data;
ee29074d 815 int cpus;
1da177e4 816
1da177e4
LT
817 /* Can deadlock when called with interrupts disabled */
818 WARN_ON(irqs_disabled());
819
820 data.func = func;
821 data.info = info;
822 atomic_set(&data.finished, 0);
823 data.wait = wait;
824
825 spin_lock(&call_lock);
826
ee29074d
DM
827 cpu_clear(smp_processor_id(), mask);
828 cpus = cpus_weight(mask);
829 if (!cpus)
830 goto out_unlock;
831
1da177e4 832 call_data = &data;
aa1d1a0a 833 mb();
1da177e4 834
bd40791e 835 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
1da177e4 836
aa1d1a0a
DM
837 /* Wait for response */
838 while (atomic_read(&data.finished) != cpus)
839 cpu_relax();
1da177e4 840
ee29074d 841out_unlock:
1da177e4
LT
842 spin_unlock(&call_lock);
843
844 return 0;
1da177e4
LT
845}
846
bd40791e
DM
847int smp_call_function(void (*func)(void *info), void *info,
848 int nonatomic, int wait)
849{
850 return smp_call_function_mask(func, info, nonatomic, wait,
851 cpu_online_map);
852}
853
1da177e4
LT
854void smp_call_function_client(int irq, struct pt_regs *regs)
855{
856 void (*func) (void *info) = call_data->func;
857 void *info = call_data->info;
858
859 clear_softint(1 << irq);
860 if (call_data->wait) {
861 /* let initiator proceed only after completion */
862 func(info);
863 atomic_inc(&call_data->finished);
864 } else {
865 /* let initiator proceed after getting data */
866 atomic_inc(&call_data->finished);
867 func(info);
868 }
869}
870
bd40791e
DM
871static void tsb_sync(void *info)
872{
6f25f398 873 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
874 struct mm_struct *mm = info;
875
6f25f398
DM
876 /* It is not valid to test "currrent->active_mm == mm" here.
877 *
878 * The value of "current" is not changed atomically with
879 * switch_mm(). But that's OK, we just need to check the
880 * current cpu's trap block PGD physical address.
881 */
882 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
883 tsb_context_switch(mm);
884}
885
886void smp_tsb_sync(struct mm_struct *mm)
887{
888 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
889}
890
1da177e4
LT
891extern unsigned long xcall_flush_tlb_mm;
892extern unsigned long xcall_flush_tlb_pending;
893extern unsigned long xcall_flush_tlb_kernel_range;
1da177e4
LT
894extern unsigned long xcall_report_regs;
895extern unsigned long xcall_receive_signal;
ee29074d 896extern unsigned long xcall_new_mmu_context_version;
1da177e4
LT
897
898#ifdef DCACHE_ALIASING_POSSIBLE
899extern unsigned long xcall_flush_dcache_page_cheetah;
900#endif
901extern unsigned long xcall_flush_dcache_page_spitfire;
902
903#ifdef CONFIG_DEBUG_DCFLUSH
904extern atomic_t dcpage_flushes;
905extern atomic_t dcpage_flushes_xcall;
906#endif
907
908static __inline__ void __local_flush_dcache_page(struct page *page)
909{
910#ifdef DCACHE_ALIASING_POSSIBLE
911 __flush_dcache_page(page_address(page),
912 ((tlb_type == spitfire) &&
913 page_mapping(page) != NULL));
914#else
915 if (page_mapping(page) != NULL &&
916 tlb_type == spitfire)
917 __flush_icache_page(__pa(page_address(page)));
918#endif
919}
920
921void smp_flush_dcache_page_impl(struct page *page, int cpu)
922{
923 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
924 int this_cpu;
925
926 if (tlb_type == hypervisor)
927 return;
1da177e4
LT
928
929#ifdef CONFIG_DEBUG_DCFLUSH
930 atomic_inc(&dcpage_flushes);
931#endif
a43fe0e7
DM
932
933 this_cpu = get_cpu();
934
1da177e4
LT
935 if (cpu == this_cpu) {
936 __local_flush_dcache_page(page);
937 } else if (cpu_online(cpu)) {
938 void *pg_addr = page_address(page);
939 u64 data0;
940
941 if (tlb_type == spitfire) {
942 data0 =
943 ((u64)&xcall_flush_dcache_page_spitfire);
944 if (page_mapping(page) != NULL)
945 data0 |= ((u64)1 << 32);
946 spitfire_xcall_deliver(data0,
947 __pa(pg_addr),
948 (u64) pg_addr,
949 mask);
a43fe0e7 950 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
951#ifdef DCACHE_ALIASING_POSSIBLE
952 data0 =
953 ((u64)&xcall_flush_dcache_page_cheetah);
954 cheetah_xcall_deliver(data0,
955 __pa(pg_addr),
956 0, mask);
957#endif
958 }
959#ifdef CONFIG_DEBUG_DCFLUSH
960 atomic_inc(&dcpage_flushes_xcall);
961#endif
962 }
963
964 put_cpu();
965}
966
967void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
968{
969 void *pg_addr = page_address(page);
970 cpumask_t mask = cpu_online_map;
971 u64 data0;
a43fe0e7
DM
972 int this_cpu;
973
974 if (tlb_type == hypervisor)
975 return;
976
977 this_cpu = get_cpu();
1da177e4
LT
978
979 cpu_clear(this_cpu, mask);
980
981#ifdef CONFIG_DEBUG_DCFLUSH
982 atomic_inc(&dcpage_flushes);
983#endif
984 if (cpus_empty(mask))
985 goto flush_self;
986 if (tlb_type == spitfire) {
987 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
988 if (page_mapping(page) != NULL)
989 data0 |= ((u64)1 << 32);
990 spitfire_xcall_deliver(data0,
991 __pa(pg_addr),
992 (u64) pg_addr,
993 mask);
a43fe0e7 994 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
995#ifdef DCACHE_ALIASING_POSSIBLE
996 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
997 cheetah_xcall_deliver(data0,
998 __pa(pg_addr),
999 0, mask);
1000#endif
1001 }
1002#ifdef CONFIG_DEBUG_DCFLUSH
1003 atomic_inc(&dcpage_flushes_xcall);
1004#endif
1005 flush_self:
1006 __local_flush_dcache_page(page);
1007
1008 put_cpu();
1009}
1010
a0663a79
DM
1011static void __smp_receive_signal_mask(cpumask_t mask)
1012{
1013 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1014}
1015
1da177e4
LT
1016void smp_receive_signal(int cpu)
1017{
1018 cpumask_t mask = cpumask_of_cpu(cpu);
1019
a0663a79
DM
1020 if (cpu_online(cpu))
1021 __smp_receive_signal_mask(mask);
1da177e4
LT
1022}
1023
1024void smp_receive_signal_client(int irq, struct pt_regs *regs)
ee29074d
DM
1025{
1026 clear_softint(1 << irq);
1027}
1028
1029void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 1030{
a0663a79 1031 struct mm_struct *mm;
ee29074d 1032 unsigned long flags;
a0663a79 1033
1da177e4 1034 clear_softint(1 << irq);
a0663a79
DM
1035
1036 /* See if we need to allocate a new TLB context because
1037 * the version of the one we are using is now out of date.
1038 */
1039 mm = current->active_mm;
ee29074d
DM
1040 if (unlikely(!mm || (mm == &init_mm)))
1041 return;
a0663a79 1042
ee29074d 1043 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 1044
ee29074d
DM
1045 if (unlikely(!CTX_VALID(mm->context)))
1046 get_new_mmu_context(mm);
aac0aadf 1047
ee29074d 1048 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 1049
ee29074d
DM
1050 load_secondary_context(mm);
1051 __flush_tlb_mm(CTX_HWBITS(mm->context),
1052 SECONDARY_CONTEXT);
a0663a79
DM
1053}
1054
1055void smp_new_mmu_context_version(void)
1056{
ee29074d 1057 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
1058}
1059
1060void smp_report_regs(void)
1061{
1062 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1063}
1064
1da177e4
LT
1065/* We know that the window frames of the user have been flushed
1066 * to the stack before we get here because all callers of us
1067 * are flush_tlb_*() routines, and these run after flush_cache_*()
1068 * which performs the flushw.
1069 *
1070 * The SMP TLB coherency scheme we use works as follows:
1071 *
1072 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1073 * space has (potentially) executed on, this is the heuristic
1074 * we use to avoid doing cross calls.
1075 *
1076 * Also, for flushing from kswapd and also for clones, we
1077 * use cpu_vm_mask as the list of cpus to make run the TLB.
1078 *
1079 * 2) TLB context numbers are shared globally across all processors
1080 * in the system, this allows us to play several games to avoid
1081 * cross calls.
1082 *
1083 * One invariant is that when a cpu switches to a process, and
1084 * that processes tsk->active_mm->cpu_vm_mask does not have the
1085 * current cpu's bit set, that tlb context is flushed locally.
1086 *
1087 * If the address space is non-shared (ie. mm->count == 1) we avoid
1088 * cross calls when we want to flush the currently running process's
1089 * tlb state. This is done by clearing all cpu bits except the current
1090 * processor's in current->active_mm->cpu_vm_mask and performing the
1091 * flush locally only. This will force any subsequent cpus which run
1092 * this task to flush the context from the local tlb if the process
1093 * migrates to another cpu (again).
1094 *
1095 * 3) For shared address spaces (threads) and swapping we bite the
1096 * bullet for most cases and perform the cross call (but only to
1097 * the cpus listed in cpu_vm_mask).
1098 *
1099 * The performance gain from "optimizing" away the cross call for threads is
1100 * questionable (in theory the big win for threads is the massive sharing of
1101 * address space state across processors).
1102 */
62dbec78
DM
1103
1104/* This currently is only used by the hugetlb arch pre-fault
1105 * hook on UltraSPARC-III+ and later when changing the pagesize
1106 * bits of the context register for an address space.
1107 */
1da177e4
LT
1108void smp_flush_tlb_mm(struct mm_struct *mm)
1109{
62dbec78
DM
1110 u32 ctx = CTX_HWBITS(mm->context);
1111 int cpu = get_cpu();
1da177e4 1112
62dbec78
DM
1113 if (atomic_read(&mm->mm_users) == 1) {
1114 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1115 goto local_flush_and_out;
1116 }
1da177e4 1117
62dbec78
DM
1118 smp_cross_call_masked(&xcall_flush_tlb_mm,
1119 ctx, 0, 0,
1120 mm->cpu_vm_mask);
1da177e4 1121
62dbec78
DM
1122local_flush_and_out:
1123 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1124
62dbec78 1125 put_cpu();
1da177e4
LT
1126}
1127
1128void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1129{
1130 u32 ctx = CTX_HWBITS(mm->context);
1131 int cpu = get_cpu();
1132
dedeb002 1133 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 1134 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
1135 else
1136 smp_cross_call_masked(&xcall_flush_tlb_pending,
1137 ctx, nr, (unsigned long) vaddrs,
1138 mm->cpu_vm_mask);
1da177e4 1139
1da177e4
LT
1140 __flush_tlb_pending(ctx, nr, vaddrs);
1141
1142 put_cpu();
1143}
1144
1145void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1146{
1147 start &= PAGE_MASK;
1148 end = PAGE_ALIGN(end);
1149 if (start != end) {
1150 smp_cross_call(&xcall_flush_tlb_kernel_range,
1151 0, start, end);
1152
1153 __flush_tlb_kernel_range(start, end);
1154 }
1155}
1156
1157/* CPU capture. */
1158/* #define CAPTURE_DEBUG */
1159extern unsigned long xcall_capture;
1160
1161static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1162static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1163static unsigned long penguins_are_doing_time;
1164
1165void smp_capture(void)
1166{
1167 int result = atomic_add_ret(1, &smp_capture_depth);
1168
1169 if (result == 1) {
1170 int ncpus = num_online_cpus();
1171
1172#ifdef CAPTURE_DEBUG
1173 printk("CPU[%d]: Sending penguins to jail...",
1174 smp_processor_id());
1175#endif
1176 penguins_are_doing_time = 1;
4f07118f 1177 membar_storestore_loadstore();
1da177e4
LT
1178 atomic_inc(&smp_capture_registry);
1179 smp_cross_call(&xcall_capture, 0, 0, 0);
1180 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1181 rmb();
1da177e4
LT
1182#ifdef CAPTURE_DEBUG
1183 printk("done\n");
1184#endif
1185 }
1186}
1187
1188void smp_release(void)
1189{
1190 if (atomic_dec_and_test(&smp_capture_depth)) {
1191#ifdef CAPTURE_DEBUG
1192 printk("CPU[%d]: Giving pardon to "
1193 "imprisoned penguins\n",
1194 smp_processor_id());
1195#endif
1196 penguins_are_doing_time = 0;
4f07118f 1197 membar_storeload_storestore();
1da177e4
LT
1198 atomic_dec(&smp_capture_registry);
1199 }
1200}
1201
1202/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1203 * can service tlb flush xcalls...
1204 */
1205extern void prom_world(int);
96c6e0d8 1206
1da177e4
LT
1207void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1208{
1da177e4
LT
1209 clear_softint(1 << irq);
1210
1211 preempt_disable();
1212
1213 __asm__ __volatile__("flushw");
1da177e4
LT
1214 prom_world(1);
1215 atomic_inc(&smp_capture_registry);
4f07118f 1216 membar_storeload_storestore();
1da177e4 1217 while (penguins_are_doing_time)
4f07118f 1218 rmb();
1da177e4
LT
1219 atomic_dec(&smp_capture_registry);
1220 prom_world(0);
1221
1222 preempt_enable();
1223}
1224
1da177e4 1225/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1226int setup_profiling_timer(unsigned int multiplier)
1227{
777a4475 1228 return -EINVAL;
1da177e4
LT
1229}
1230
1231void __init smp_prepare_cpus(unsigned int max_cpus)
1232{
1da177e4
LT
1233}
1234
5cbc3073 1235void __devinit smp_prepare_boot_cpu(void)
7abea921 1236{
7abea921
DM
1237}
1238
5cbc3073 1239void __devinit smp_fill_in_sib_core_maps(void)
1da177e4 1240{
5cbc3073
DM
1241 unsigned int i;
1242
e0204409 1243 for_each_present_cpu(i) {
5cbc3073
DM
1244 unsigned int j;
1245
39dd992a 1246 cpus_clear(cpu_core_map[i]);
5cbc3073 1247 if (cpu_data(i).core_id == 0) {
f78eae2e 1248 cpu_set(i, cpu_core_map[i]);
5cbc3073
DM
1249 continue;
1250 }
1251
e0204409 1252 for_each_present_cpu(j) {
5cbc3073
DM
1253 if (cpu_data(i).core_id ==
1254 cpu_data(j).core_id)
f78eae2e
DM
1255 cpu_set(j, cpu_core_map[i]);
1256 }
1257 }
1258
e0204409 1259 for_each_present_cpu(i) {
f78eae2e
DM
1260 unsigned int j;
1261
39dd992a 1262 cpus_clear(cpu_sibling_map[i]);
f78eae2e
DM
1263 if (cpu_data(i).proc_id == -1) {
1264 cpu_set(i, cpu_sibling_map[i]);
1265 continue;
1266 }
1267
e0204409 1268 for_each_present_cpu(j) {
f78eae2e
DM
1269 if (cpu_data(i).proc_id ==
1270 cpu_data(j).proc_id)
5cbc3073
DM
1271 cpu_set(j, cpu_sibling_map[i]);
1272 }
1273 }
1da177e4
LT
1274}
1275
b282b6f8 1276int __cpuinit __cpu_up(unsigned int cpu)
1da177e4
LT
1277{
1278 int ret = smp_boot_one_cpu(cpu);
1279
1280 if (!ret) {
1281 cpu_set(cpu, smp_commenced_mask);
1282 while (!cpu_isset(cpu, cpu_online_map))
1283 mb();
1284 if (!cpu_isset(cpu, cpu_online_map)) {
1285 ret = -ENODEV;
1286 } else {
02fead75
DM
1287 /* On SUN4V, writes to %tick and %stick are
1288 * not allowed.
1289 */
1290 if (tlb_type != hypervisor)
1291 smp_synchronize_one_tick(cpu);
1da177e4
LT
1292 }
1293 }
1294 return ret;
1295}
1296
4f0234f4 1297#ifdef CONFIG_HOTPLUG_CPU
e0204409
DM
1298void cpu_play_dead(void)
1299{
1300 int cpu = smp_processor_id();
1301 unsigned long pstate;
1302
1303 idle_task_exit();
1304
1305 if (tlb_type == hypervisor) {
1306 struct trap_per_cpu *tb = &trap_block[cpu];
1307
1308 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1309 tb->cpu_mondo_pa, 0);
1310 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1311 tb->dev_mondo_pa, 0);
1312 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1313 tb->resum_mondo_pa, 0);
1314 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1315 tb->nonresum_mondo_pa, 0);
1316 }
1317
1318 cpu_clear(cpu, smp_commenced_mask);
1319 membar_safe("#Sync");
1320
1321 local_irq_disable();
1322
1323 __asm__ __volatile__(
1324 "rdpr %%pstate, %0\n\t"
1325 "wrpr %0, %1, %%pstate"
1326 : "=r" (pstate)
1327 : "i" (PSTATE_IE));
1328
1329 while (1)
1330 barrier();
1331}
1332
4f0234f4
DM
1333int __cpu_disable(void)
1334{
e0204409
DM
1335 int cpu = smp_processor_id();
1336 cpuinfo_sparc *c;
1337 int i;
1338
1339 for_each_cpu_mask(i, cpu_core_map[cpu])
1340 cpu_clear(cpu, cpu_core_map[i]);
1341 cpus_clear(cpu_core_map[cpu]);
1342
1343 for_each_cpu_mask(i, cpu_sibling_map[cpu])
1344 cpu_clear(cpu, cpu_sibling_map[i]);
1345 cpus_clear(cpu_sibling_map[cpu]);
1346
1347 c = &cpu_data(cpu);
1348
1349 c->core_id = 0;
1350 c->proc_id = -1;
1351
1352 spin_lock(&call_lock);
1353 cpu_clear(cpu, cpu_online_map);
1354 spin_unlock(&call_lock);
1355
1356 smp_wmb();
1357
1358 /* Make sure no interrupts point to this cpu. */
1359 fixup_irqs();
1360
1361 local_irq_enable();
1362 mdelay(1);
1363 local_irq_disable();
1364
1365 return 0;
4f0234f4
DM
1366}
1367
1368void __cpu_die(unsigned int cpu)
1369{
e0204409
DM
1370 int i;
1371
1372 for (i = 0; i < 100; i++) {
1373 smp_rmb();
1374 if (!cpu_isset(cpu, smp_commenced_mask))
1375 break;
1376 msleep(100);
1377 }
1378 if (cpu_isset(cpu, smp_commenced_mask)) {
1379 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1380 } else {
1381#if defined(CONFIG_SUN_LDOMS)
1382 unsigned long hv_err;
1383 int limit = 100;
1384
1385 do {
1386 hv_err = sun4v_cpu_stop(cpu);
1387 if (hv_err == HV_EOK) {
1388 cpu_clear(cpu, cpu_present_map);
1389 break;
1390 }
1391 } while (--limit > 0);
1392 if (limit <= 0) {
1393 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1394 hv_err);
1395 }
1396#endif
1397 }
4f0234f4
DM
1398}
1399#endif
1400
1da177e4
LT
1401void __init smp_cpus_done(unsigned int max_cpus)
1402{
1da177e4
LT
1403}
1404
1da177e4
LT
1405void smp_send_reschedule(int cpu)
1406{
64c7c8f8 1407 smp_receive_signal(cpu);
1da177e4
LT
1408}
1409
1410/* This is a nop because we capture all other cpus
1411 * anyways when making the PROM active.
1412 */
1413void smp_send_stop(void)
1414{
1415}
1416
d369ddd2
DM
1417unsigned long __per_cpu_base __read_mostly;
1418unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1419
1420EXPORT_SYMBOL(__per_cpu_base);
1421EXPORT_SYMBOL(__per_cpu_shift);
1422
5cbc3073 1423void __init real_setup_per_cpu_areas(void)
1da177e4
LT
1424{
1425 unsigned long goal, size, i;
1426 char *ptr;
1da177e4
LT
1427
1428 /* Copy section for each CPU (we discard the original) */
5a089006
DM
1429 goal = PERCPU_ENOUGH_ROOM;
1430
b6e3590f
JF
1431 __per_cpu_shift = PAGE_SHIFT;
1432 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1da177e4
LT
1433 __per_cpu_shift++;
1434
b6e3590f 1435 ptr = alloc_bootmem_pages(size * NR_CPUS);
1da177e4
LT
1436
1437 __per_cpu_base = ptr - __per_cpu_start;
1438
1da177e4
LT
1439 for (i = 0; i < NR_CPUS; i++, ptr += size)
1440 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
951bc82c
DM
1441
1442 /* Setup %g5 for the boot cpu. */
1443 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1da177e4 1444}
This page took 0.321314 seconds and 5 git commands to generate.