calibrate_delay() must be __cpuinit
[deliverable/linux.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
27a2ef38 3 * Copyright (C) 1997, 2007 David S. Miller (davem@davemloft.net)
1da177e4
LT
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
23#include <linux/bootmem.h>
24
25#include <asm/head.h>
26#include <asm/ptrace.h>
27#include <asm/atomic.h>
28#include <asm/tlbflush.h>
29#include <asm/mmu_context.h>
30#include <asm/cpudata.h>
27a2ef38
DM
31#include <asm/hvtramp.h>
32#include <asm/io.h>
1da177e4
LT
33
34#include <asm/irq.h>
6d24c8dc 35#include <asm/irq_regs.h>
1da177e4
LT
36#include <asm/page.h>
37#include <asm/pgtable.h>
38#include <asm/oplib.h>
39#include <asm/uaccess.h>
40#include <asm/timer.h>
41#include <asm/starfire.h>
42#include <asm/tlb.h>
56fb4df6 43#include <asm/sections.h>
07f8e5f3 44#include <asm/prom.h>
5cbc3073 45#include <asm/mdesc.h>
4f0234f4 46#include <asm/ldc.h>
e0204409 47#include <asm/hypervisor.h>
1da177e4 48
a2f9f6bb
DM
49int sparc64_multi_core __read_mostly;
50
4f0234f4 51cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
c12a8289 52cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
d5a7430d 53DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
f78eae2e
DM
54cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
55 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
4f0234f4
DM
56
57EXPORT_SYMBOL(cpu_possible_map);
58EXPORT_SYMBOL(cpu_online_map);
d5a7430d 59EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
4f0234f4
DM
60EXPORT_SYMBOL(cpu_core_map);
61
1da177e4 62static cpumask_t smp_commenced_mask;
1da177e4
LT
63
64void smp_info(struct seq_file *m)
65{
66 int i;
67
68 seq_printf(m, "State:\n");
394e3902
AM
69 for_each_online_cpu(i)
70 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
71}
72
73void smp_bogo(struct seq_file *m)
74{
75 int i;
76
394e3902
AM
77 for_each_online_cpu(i)
78 seq_printf(m,
394e3902 79 "Cpu%dClkTck\t: %016lx\n",
394e3902 80 i, cpu_data(i).clock_tick);
1da177e4
LT
81}
82
e0204409
DM
83static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
84
112f4871 85extern void setup_sparc64_timer(void);
1da177e4
LT
86
87static volatile unsigned long callin_flag = 0;
88
4f0234f4 89void __devinit smp_callin(void)
1da177e4
LT
90{
91 int cpuid = hard_smp_processor_id();
92
56fb4df6 93 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 94
4a07e646 95 if (tlb_type == hypervisor)
490384e7 96 sun4v_ktsb_register();
481295f9 97
56fb4df6 98 __flush_tlb_all();
1da177e4 99
112f4871 100 setup_sparc64_timer();
1da177e4 101
816242da
DM
102 if (cheetah_pcache_forced_on)
103 cheetah_enable_pcache();
104
1da177e4
LT
105 local_irq_enable();
106
1da177e4
LT
107 callin_flag = 1;
108 __asm__ __volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
110
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
113 */
db7d9a4e 114 current_thread_info()->new_child = 0;
1da177e4
LT
115
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm.mm_count);
118 current->active_mm = &init_mm;
119
120 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 121 rmb();
1da177e4 122
e0204409 123 spin_lock(&call_lock);
1da177e4 124 cpu_set(cpuid, cpu_online_map);
e0204409 125 spin_unlock(&call_lock);
5bfb5d69
NP
126
127 /* idle thread is expected to have preempt disabled */
128 preempt_disable();
1da177e4
LT
129}
130
131void cpu_panic(void)
132{
133 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
134 panic("SMP bolixed\n");
135}
136
1da177e4
LT
137/* This tick register synchronization scheme is taken entirely from
138 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
139 *
140 * The only change I've made is to rework it so that the master
141 * initiates the synchonization instead of the slave. -DaveM
142 */
143
144#define MASTER 0
145#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
146
147#define NUM_ROUNDS 64 /* magic value */
148#define NUM_ITERS 5 /* likewise */
149
150static DEFINE_SPINLOCK(itc_sync_lock);
151static unsigned long go[SLAVE + 1];
152
153#define DEBUG_TICK_SYNC 0
154
155static inline long get_delta (long *rt, long *master)
156{
157 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
158 unsigned long tcenter, t0, t1, tm;
159 unsigned long i;
160
161 for (i = 0; i < NUM_ITERS; i++) {
162 t0 = tick_ops->get_tick();
163 go[MASTER] = 1;
4f07118f 164 membar_storeload();
1da177e4 165 while (!(tm = go[SLAVE]))
4f07118f 166 rmb();
1da177e4 167 go[SLAVE] = 0;
4f07118f 168 wmb();
1da177e4
LT
169 t1 = tick_ops->get_tick();
170
171 if (t1 - t0 < best_t1 - best_t0)
172 best_t0 = t0, best_t1 = t1, best_tm = tm;
173 }
174
175 *rt = best_t1 - best_t0;
176 *master = best_tm - best_t0;
177
178 /* average best_t0 and best_t1 without overflow: */
179 tcenter = (best_t0/2 + best_t1/2);
180 if (best_t0 % 2 + best_t1 % 2 == 2)
181 tcenter++;
182 return tcenter - best_tm;
183}
184
185void smp_synchronize_tick_client(void)
186{
187 long i, delta, adj, adjust_latency = 0, done = 0;
188 unsigned long flags, rt, master_time_stamp, bound;
189#if DEBUG_TICK_SYNC
190 struct {
191 long rt; /* roundtrip time */
192 long master; /* master's timestamp */
193 long diff; /* difference between midpoint and master's timestamp */
194 long lat; /* estimate of itc adjustment latency */
195 } t[NUM_ROUNDS];
196#endif
197
198 go[MASTER] = 1;
199
200 while (go[MASTER])
4f07118f 201 rmb();
1da177e4
LT
202
203 local_irq_save(flags);
204 {
205 for (i = 0; i < NUM_ROUNDS; i++) {
206 delta = get_delta(&rt, &master_time_stamp);
207 if (delta == 0) {
208 done = 1; /* let's lock on to this... */
209 bound = rt;
210 }
211
212 if (!done) {
213 if (i > 0) {
214 adjust_latency += -delta;
215 adj = -delta + adjust_latency/4;
216 } else
217 adj = -delta;
218
112f4871 219 tick_ops->add_tick(adj);
1da177e4
LT
220 }
221#if DEBUG_TICK_SYNC
222 t[i].rt = rt;
223 t[i].master = master_time_stamp;
224 t[i].diff = delta;
225 t[i].lat = adjust_latency/4;
226#endif
227 }
228 }
229 local_irq_restore(flags);
230
231#if DEBUG_TICK_SYNC
232 for (i = 0; i < NUM_ROUNDS; i++)
233 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
234 t[i].rt, t[i].master, t[i].diff, t[i].lat);
235#endif
236
519c4d2d
JP
237 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
238 "(last diff %ld cycles, maxerr %lu cycles)\n",
239 smp_processor_id(), delta, rt);
1da177e4
LT
240}
241
242static void smp_start_sync_tick_client(int cpu);
243
244static void smp_synchronize_one_tick(int cpu)
245{
246 unsigned long flags, i;
247
248 go[MASTER] = 0;
249
250 smp_start_sync_tick_client(cpu);
251
252 /* wait for client to be ready */
253 while (!go[MASTER])
4f07118f 254 rmb();
1da177e4
LT
255
256 /* now let the client proceed into his loop */
257 go[MASTER] = 0;
4f07118f 258 membar_storeload();
1da177e4
LT
259
260 spin_lock_irqsave(&itc_sync_lock, flags);
261 {
262 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
263 while (!go[MASTER])
4f07118f 264 rmb();
1da177e4 265 go[MASTER] = 0;
4f07118f 266 wmb();
1da177e4 267 go[SLAVE] = tick_ops->get_tick();
4f07118f 268 membar_storeload();
1da177e4
LT
269 }
270 }
271 spin_unlock_irqrestore(&itc_sync_lock, flags);
272}
273
b14f5c10 274#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
27a2ef38
DM
275/* XXX Put this in some common place. XXX */
276static unsigned long kimage_addr_to_ra(void *p)
277{
278 unsigned long val = (unsigned long) p;
279
280 return kern_base + (val - KERNBASE);
281}
282
b14f5c10
DM
283static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
284{
285 extern unsigned long sparc64_ttable_tl0;
286 extern unsigned long kern_locked_tte_data;
287 extern int bigkernel;
288 struct hvtramp_descr *hdesc;
289 unsigned long trampoline_ra;
290 struct trap_per_cpu *tb;
291 u64 tte_vaddr, tte_data;
292 unsigned long hv_err;
293
294 hdesc = kzalloc(sizeof(*hdesc), GFP_KERNEL);
295 if (!hdesc) {
27a2ef38 296 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
b14f5c10
DM
297 "hvtramp_descr.\n");
298 return;
299 }
300
301 hdesc->cpu = cpu;
302 hdesc->num_mappings = (bigkernel ? 2 : 1);
303
304 tb = &trap_block[cpu];
305 tb->hdesc = hdesc;
306
307 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
308 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
309
310 hdesc->thread_reg = thread_reg;
311
312 tte_vaddr = (unsigned long) KERNBASE;
313 tte_data = kern_locked_tte_data;
314
315 hdesc->maps[0].vaddr = tte_vaddr;
316 hdesc->maps[0].tte = tte_data;
317 if (bigkernel) {
318 tte_vaddr += 0x400000;
319 tte_data += 0x400000;
320 hdesc->maps[1].vaddr = tte_vaddr;
321 hdesc->maps[1].tte = tte_data;
322 }
323
324 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
325
326 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
327 kimage_addr_to_ra(&sparc64_ttable_tl0),
328 __pa(hdesc));
e0204409
DM
329 if (hv_err)
330 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
331 "gives error %lu\n", hv_err);
b14f5c10
DM
332}
333#endif
334
1da177e4
LT
335extern unsigned long sparc64_cpu_startup;
336
337/* The OBP cpu startup callback truncates the 3rd arg cookie to
338 * 32-bits (I think) so to be safe we have it read the pointer
339 * contained here so we work on >4GB machines. -DaveM
340 */
341static struct thread_info *cpu_new_thread = NULL;
342
343static int __devinit smp_boot_one_cpu(unsigned int cpu)
344{
b37d40d1 345 struct trap_per_cpu *tb = &trap_block[cpu];
1da177e4
LT
346 unsigned long entry =
347 (unsigned long)(&sparc64_cpu_startup);
348 unsigned long cookie =
349 (unsigned long)(&cpu_new_thread);
350 struct task_struct *p;
7890f794 351 int timeout, ret;
1da177e4
LT
352
353 p = fork_idle(cpu);
1177bf97
AM
354 if (IS_ERR(p))
355 return PTR_ERR(p);
1da177e4 356 callin_flag = 0;
f3169641 357 cpu_new_thread = task_thread_info(p);
1da177e4 358
7890f794 359 if (tlb_type == hypervisor) {
b14f5c10 360#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
4f0234f4
DM
361 if (ldom_domaining_enabled)
362 ldom_startcpu_cpuid(cpu,
363 (unsigned long) cpu_new_thread);
364 else
365#endif
366 prom_startcpu_cpuid(cpu, entry, cookie);
7890f794 367 } else {
5cbc3073 368 struct device_node *dp = of_find_node_by_cpuid(cpu);
7890f794 369
07f8e5f3 370 prom_startcpu(dp->node, entry, cookie);
7890f794 371 }
1da177e4 372
4f0234f4 373 for (timeout = 0; timeout < 50000; timeout++) {
1da177e4
LT
374 if (callin_flag)
375 break;
376 udelay(100);
377 }
72aff53f 378
1da177e4
LT
379 if (callin_flag) {
380 ret = 0;
381 } else {
382 printk("Processor %d is stuck.\n", cpu);
1da177e4
LT
383 ret = -ENODEV;
384 }
385 cpu_new_thread = NULL;
386
b37d40d1
DM
387 if (tb->hdesc) {
388 kfree(tb->hdesc);
389 tb->hdesc = NULL;
390 }
391
1da177e4
LT
392 return ret;
393}
394
395static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
396{
397 u64 result, target;
398 int stuck, tmp;
399
400 if (this_is_starfire) {
401 /* map to real upaid */
402 cpu = (((cpu & 0x3c) << 1) |
403 ((cpu & 0x40) >> 4) |
404 (cpu & 0x3));
405 }
406
407 target = (cpu << 14) | 0x70;
408again:
409 /* Ok, this is the real Spitfire Errata #54.
410 * One must read back from a UDB internal register
411 * after writes to the UDB interrupt dispatch, but
412 * before the membar Sync for that write.
413 * So we use the high UDB control register (ASI 0x7f,
414 * ADDR 0x20) for the dummy read. -DaveM
415 */
416 tmp = 0x40;
417 __asm__ __volatile__(
418 "wrpr %1, %2, %%pstate\n\t"
419 "stxa %4, [%0] %3\n\t"
420 "stxa %5, [%0+%8] %3\n\t"
421 "add %0, %8, %0\n\t"
422 "stxa %6, [%0+%8] %3\n\t"
423 "membar #Sync\n\t"
424 "stxa %%g0, [%7] %3\n\t"
425 "membar #Sync\n\t"
426 "mov 0x20, %%g1\n\t"
427 "ldxa [%%g1] 0x7f, %%g0\n\t"
428 "membar #Sync"
429 : "=r" (tmp)
430 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
431 "r" (data0), "r" (data1), "r" (data2), "r" (target),
432 "r" (0x10), "0" (tmp)
433 : "g1");
434
435 /* NOTE: PSTATE_IE is still clear. */
436 stuck = 100000;
437 do {
438 __asm__ __volatile__("ldxa [%%g0] %1, %0"
439 : "=r" (result)
440 : "i" (ASI_INTR_DISPATCH_STAT));
441 if (result == 0) {
442 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
443 : : "r" (pstate));
444 return;
445 }
446 stuck -= 1;
447 if (stuck == 0)
448 break;
449 } while (result & 0x1);
450 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
451 : : "r" (pstate));
452 if (stuck == 0) {
453 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
454 smp_processor_id(), result);
455 } else {
456 udelay(2);
457 goto again;
458 }
459}
460
d979f179 461static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
1da177e4
LT
462{
463 u64 pstate;
464 int i;
465
466 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
467 for_each_cpu_mask(i, mask)
468 spitfire_xcall_helper(data0, data1, data2, pstate, i);
469}
470
471/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
472 * packet, but we have no use for that. However we do take advantage of
473 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
474 */
475static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
476{
0de56d1a 477 u64 pstate, ver, busy_mask;
22adb358 478 int nack_busy_id, is_jbus, need_more;
1da177e4
LT
479
480 if (cpus_empty(mask))
481 return;
482
483 /* Unfortunately, someone at Sun had the brilliant idea to make the
484 * busy/nack fields hard-coded by ITID number for this Ultra-III
485 * derivative processor.
486 */
487 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
488 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
489 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
490
491 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
492
493retry:
22adb358 494 need_more = 0;
1da177e4
LT
495 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
496 : : "r" (pstate), "i" (PSTATE_IE));
497
498 /* Setup the dispatch data registers. */
499 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
500 "stxa %1, [%4] %6\n\t"
501 "stxa %2, [%5] %6\n\t"
502 "membar #Sync\n\t"
503 : /* no outputs */
504 : "r" (data0), "r" (data1), "r" (data2),
505 "r" (0x40), "r" (0x50), "r" (0x60),
506 "i" (ASI_INTR_W));
507
508 nack_busy_id = 0;
0de56d1a 509 busy_mask = 0;
1da177e4
LT
510 {
511 int i;
512
513 for_each_cpu_mask(i, mask) {
514 u64 target = (i << 14) | 0x70;
515
0de56d1a
DM
516 if (is_jbus) {
517 busy_mask |= (0x1UL << (i * 2));
518 } else {
1da177e4 519 target |= (nack_busy_id << 24);
0de56d1a
DM
520 busy_mask |= (0x1UL <<
521 (nack_busy_id * 2));
522 }
1da177e4
LT
523 __asm__ __volatile__(
524 "stxa %%g0, [%0] %1\n\t"
525 "membar #Sync\n\t"
526 : /* no outputs */
527 : "r" (target), "i" (ASI_INTR_W));
528 nack_busy_id++;
22adb358
DM
529 if (nack_busy_id == 32) {
530 need_more = 1;
531 break;
532 }
1da177e4
LT
533 }
534 }
535
536 /* Now, poll for completion. */
537 {
0de56d1a 538 u64 dispatch_stat, nack_mask;
1da177e4
LT
539 long stuck;
540
541 stuck = 100000 * nack_busy_id;
0de56d1a 542 nack_mask = busy_mask << 1;
1da177e4
LT
543 do {
544 __asm__ __volatile__("ldxa [%%g0] %1, %0"
545 : "=r" (dispatch_stat)
546 : "i" (ASI_INTR_DISPATCH_STAT));
0de56d1a 547 if (!(dispatch_stat & (busy_mask | nack_mask))) {
1da177e4
LT
548 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
549 : : "r" (pstate));
22adb358
DM
550 if (unlikely(need_more)) {
551 int i, cnt = 0;
552 for_each_cpu_mask(i, mask) {
553 cpu_clear(i, mask);
554 cnt++;
555 if (cnt == 32)
556 break;
557 }
558 goto retry;
559 }
1da177e4
LT
560 return;
561 }
562 if (!--stuck)
563 break;
0de56d1a 564 } while (dispatch_stat & busy_mask);
1da177e4
LT
565
566 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
567 : : "r" (pstate));
568
0de56d1a 569 if (dispatch_stat & busy_mask) {
1da177e4
LT
570 /* Busy bits will not clear, continue instead
571 * of freezing up on this cpu.
572 */
573 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
574 smp_processor_id(), dispatch_stat);
575 } else {
576 int i, this_busy_nack = 0;
577
578 /* Delay some random time with interrupts enabled
579 * to prevent deadlock.
580 */
581 udelay(2 * nack_busy_id);
582
583 /* Clear out the mask bits for cpus which did not
584 * NACK us.
585 */
586 for_each_cpu_mask(i, mask) {
587 u64 check_mask;
588
92704a1c 589 if (is_jbus)
1da177e4
LT
590 check_mask = (0x2UL << (2*i));
591 else
592 check_mask = (0x2UL <<
593 this_busy_nack);
594 if ((dispatch_stat & check_mask) == 0)
595 cpu_clear(i, mask);
596 this_busy_nack += 2;
22adb358
DM
597 if (this_busy_nack == 64)
598 break;
1da177e4
LT
599 }
600
601 goto retry;
602 }
603 }
604}
605
1d2f1f90 606/* Multi-cpu list version. */
a43fe0e7
DM
607static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
608{
b830ab66
DM
609 struct trap_per_cpu *tb;
610 u16 *cpu_list;
611 u64 *mondo;
612 cpumask_t error_mask;
613 unsigned long flags, status;
3cab0c3e 614 int cnt, retries, this_cpu, prev_sent, i;
b830ab66 615
17f34f0e
DM
616 if (cpus_empty(mask))
617 return;
618
b830ab66
DM
619 /* We have to do this whole thing with interrupts fully disabled.
620 * Otherwise if we send an xcall from interrupt context it will
621 * corrupt both our mondo block and cpu list state.
622 *
623 * One consequence of this is that we cannot use timeout mechanisms
624 * that depend upon interrupts being delivered locally. So, for
625 * example, we cannot sample jiffies and expect it to advance.
626 *
627 * Fortunately, udelay() uses %stick/%tick so we can use that.
628 */
629 local_irq_save(flags);
630
631 this_cpu = smp_processor_id();
632 tb = &trap_block[this_cpu];
1d2f1f90 633
b830ab66 634 mondo = __va(tb->cpu_mondo_block_pa);
1d2f1f90
DM
635 mondo[0] = data0;
636 mondo[1] = data1;
637 mondo[2] = data2;
638 wmb();
639
b830ab66
DM
640 cpu_list = __va(tb->cpu_list_pa);
641
642 /* Setup the initial cpu list. */
643 cnt = 0;
644 for_each_cpu_mask(i, mask)
645 cpu_list[cnt++] = i;
646
647 cpus_clear(error_mask);
1d2f1f90 648 retries = 0;
3cab0c3e 649 prev_sent = 0;
1d2f1f90 650 do {
3cab0c3e 651 int forward_progress, n_sent;
1d2f1f90 652
b830ab66
DM
653 status = sun4v_cpu_mondo_send(cnt,
654 tb->cpu_list_pa,
655 tb->cpu_mondo_block_pa);
656
657 /* HV_EOK means all cpus received the xcall, we're done. */
658 if (likely(status == HV_EOK))
1d2f1f90 659 break;
b830ab66 660
3cab0c3e
DM
661 /* First, see if we made any forward progress.
662 *
663 * The hypervisor indicates successful sends by setting
664 * cpu list entries to the value 0xffff.
b830ab66 665 */
3cab0c3e 666 n_sent = 0;
b830ab66 667 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
668 if (likely(cpu_list[i] == 0xffff))
669 n_sent++;
1d2f1f90
DM
670 }
671
3cab0c3e
DM
672 forward_progress = 0;
673 if (n_sent > prev_sent)
674 forward_progress = 1;
675
676 prev_sent = n_sent;
677
b830ab66
DM
678 /* If we get a HV_ECPUERROR, then one or more of the cpus
679 * in the list are in error state. Use the cpu_state()
680 * hypervisor call to find out which cpus are in error state.
681 */
682 if (unlikely(status == HV_ECPUERROR)) {
683 for (i = 0; i < cnt; i++) {
684 long err;
685 u16 cpu;
686
687 cpu = cpu_list[i];
688 if (cpu == 0xffff)
689 continue;
690
691 err = sun4v_cpu_state(cpu);
692 if (err >= 0 &&
693 err == HV_CPU_STATE_ERROR) {
3cab0c3e 694 cpu_list[i] = 0xffff;
b830ab66
DM
695 cpu_set(cpu, error_mask);
696 }
697 }
698 } else if (unlikely(status != HV_EWOULDBLOCK))
699 goto fatal_mondo_error;
700
3cab0c3e
DM
701 /* Don't bother rewriting the CPU list, just leave the
702 * 0xffff and non-0xffff entries in there and the
703 * hypervisor will do the right thing.
704 *
705 * Only advance timeout state if we didn't make any
706 * forward progress.
707 */
b830ab66
DM
708 if (unlikely(!forward_progress)) {
709 if (unlikely(++retries > 10000))
710 goto fatal_mondo_timeout;
711
712 /* Delay a little bit to let other cpus catch up
713 * on their cpu mondo queue work.
714 */
715 udelay(2 * cnt);
716 }
1d2f1f90
DM
717 } while (1);
718
b830ab66
DM
719 local_irq_restore(flags);
720
721 if (unlikely(!cpus_empty(error_mask)))
722 goto fatal_mondo_cpu_error;
723
724 return;
725
726fatal_mondo_cpu_error:
727 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
728 "were in error state\n",
729 this_cpu);
730 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
731 for_each_cpu_mask(i, error_mask)
732 printk("%d ", i);
733 printk("]\n");
734 return;
735
736fatal_mondo_timeout:
737 local_irq_restore(flags);
738 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
739 " progress after %d retries.\n",
740 this_cpu, retries);
741 goto dump_cpu_list_and_out;
742
743fatal_mondo_error:
744 local_irq_restore(flags);
745 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
746 this_cpu, status);
747 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
748 "mondo_block_pa(%lx)\n",
749 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
750
751dump_cpu_list_and_out:
752 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
753 for (i = 0; i < cnt; i++)
754 printk("%u ", cpu_list[i]);
755 printk("]\n");
1d2f1f90 756}
a43fe0e7 757
1da177e4
LT
758/* Send cross call to all processors mentioned in MASK
759 * except self.
760 */
761static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
762{
763 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
764 int this_cpu = get_cpu();
765
766 cpus_and(mask, mask, cpu_online_map);
767 cpu_clear(this_cpu, mask);
768
769 if (tlb_type == spitfire)
770 spitfire_xcall_deliver(data0, data1, data2, mask);
a43fe0e7 771 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1da177e4 772 cheetah_xcall_deliver(data0, data1, data2, mask);
a43fe0e7
DM
773 else
774 hypervisor_xcall_deliver(data0, data1, data2, mask);
1da177e4
LT
775 /* NOTE: Caller runs local copy on master. */
776
777 put_cpu();
778}
779
780extern unsigned long xcall_sync_tick;
781
782static void smp_start_sync_tick_client(int cpu)
783{
784 cpumask_t mask = cpumask_of_cpu(cpu);
785
786 smp_cross_call_masked(&xcall_sync_tick,
787 0, 0, 0, mask);
788}
789
790/* Send cross call to all processors except self. */
791#define smp_cross_call(func, ctx, data1, data2) \
792 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
793
794struct call_data_struct {
795 void (*func) (void *info);
796 void *info;
797 atomic_t finished;
798 int wait;
799};
800
1da177e4
LT
801static struct call_data_struct *call_data;
802
803extern unsigned long xcall_call_function;
804
aa1d1a0a
DM
805/**
806 * smp_call_function(): Run a function on all other CPUs.
807 * @func: The function to run. This must be fast and non-blocking.
808 * @info: An arbitrary pointer to pass to the function.
809 * @nonatomic: currently unused.
810 * @wait: If true, wait (atomically) until function has completed on other CPUs.
811 *
812 * Returns 0 on success, else a negative status code. Does not return until
813 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
814 *
1da177e4
LT
815 * You must not call this function with disabled interrupts or from a
816 * hardware interrupt handler or from a bottom half handler.
817 */
bd40791e
DM
818static int smp_call_function_mask(void (*func)(void *info), void *info,
819 int nonatomic, int wait, cpumask_t mask)
1da177e4
LT
820{
821 struct call_data_struct data;
ee29074d 822 int cpus;
1da177e4 823
1da177e4
LT
824 /* Can deadlock when called with interrupts disabled */
825 WARN_ON(irqs_disabled());
826
827 data.func = func;
828 data.info = info;
829 atomic_set(&data.finished, 0);
830 data.wait = wait;
831
832 spin_lock(&call_lock);
833
ee29074d
DM
834 cpu_clear(smp_processor_id(), mask);
835 cpus = cpus_weight(mask);
836 if (!cpus)
837 goto out_unlock;
838
1da177e4 839 call_data = &data;
aa1d1a0a 840 mb();
1da177e4 841
bd40791e 842 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
1da177e4 843
aa1d1a0a
DM
844 /* Wait for response */
845 while (atomic_read(&data.finished) != cpus)
846 cpu_relax();
1da177e4 847
ee29074d 848out_unlock:
1da177e4
LT
849 spin_unlock(&call_lock);
850
851 return 0;
1da177e4
LT
852}
853
bd40791e
DM
854int smp_call_function(void (*func)(void *info), void *info,
855 int nonatomic, int wait)
856{
857 return smp_call_function_mask(func, info, nonatomic, wait,
858 cpu_online_map);
859}
860
1da177e4
LT
861void smp_call_function_client(int irq, struct pt_regs *regs)
862{
863 void (*func) (void *info) = call_data->func;
864 void *info = call_data->info;
865
866 clear_softint(1 << irq);
867 if (call_data->wait) {
868 /* let initiator proceed only after completion */
869 func(info);
870 atomic_inc(&call_data->finished);
871 } else {
872 /* let initiator proceed after getting data */
873 atomic_inc(&call_data->finished);
874 func(info);
875 }
876}
877
bd40791e
DM
878static void tsb_sync(void *info)
879{
6f25f398 880 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
881 struct mm_struct *mm = info;
882
6f25f398
DM
883 /* It is not valid to test "currrent->active_mm == mm" here.
884 *
885 * The value of "current" is not changed atomically with
886 * switch_mm(). But that's OK, we just need to check the
887 * current cpu's trap block PGD physical address.
888 */
889 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
890 tsb_context_switch(mm);
891}
892
893void smp_tsb_sync(struct mm_struct *mm)
894{
895 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
896}
897
1da177e4
LT
898extern unsigned long xcall_flush_tlb_mm;
899extern unsigned long xcall_flush_tlb_pending;
900extern unsigned long xcall_flush_tlb_kernel_range;
1da177e4
LT
901extern unsigned long xcall_report_regs;
902extern unsigned long xcall_receive_signal;
ee29074d 903extern unsigned long xcall_new_mmu_context_version;
1da177e4
LT
904
905#ifdef DCACHE_ALIASING_POSSIBLE
906extern unsigned long xcall_flush_dcache_page_cheetah;
907#endif
908extern unsigned long xcall_flush_dcache_page_spitfire;
909
910#ifdef CONFIG_DEBUG_DCFLUSH
911extern atomic_t dcpage_flushes;
912extern atomic_t dcpage_flushes_xcall;
913#endif
914
d979f179 915static inline void __local_flush_dcache_page(struct page *page)
1da177e4
LT
916{
917#ifdef DCACHE_ALIASING_POSSIBLE
918 __flush_dcache_page(page_address(page),
919 ((tlb_type == spitfire) &&
920 page_mapping(page) != NULL));
921#else
922 if (page_mapping(page) != NULL &&
923 tlb_type == spitfire)
924 __flush_icache_page(__pa(page_address(page)));
925#endif
926}
927
928void smp_flush_dcache_page_impl(struct page *page, int cpu)
929{
930 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
931 int this_cpu;
932
933 if (tlb_type == hypervisor)
934 return;
1da177e4
LT
935
936#ifdef CONFIG_DEBUG_DCFLUSH
937 atomic_inc(&dcpage_flushes);
938#endif
a43fe0e7
DM
939
940 this_cpu = get_cpu();
941
1da177e4
LT
942 if (cpu == this_cpu) {
943 __local_flush_dcache_page(page);
944 } else if (cpu_online(cpu)) {
945 void *pg_addr = page_address(page);
946 u64 data0;
947
948 if (tlb_type == spitfire) {
949 data0 =
950 ((u64)&xcall_flush_dcache_page_spitfire);
951 if (page_mapping(page) != NULL)
952 data0 |= ((u64)1 << 32);
953 spitfire_xcall_deliver(data0,
954 __pa(pg_addr),
955 (u64) pg_addr,
956 mask);
a43fe0e7 957 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
958#ifdef DCACHE_ALIASING_POSSIBLE
959 data0 =
960 ((u64)&xcall_flush_dcache_page_cheetah);
961 cheetah_xcall_deliver(data0,
962 __pa(pg_addr),
963 0, mask);
964#endif
965 }
966#ifdef CONFIG_DEBUG_DCFLUSH
967 atomic_inc(&dcpage_flushes_xcall);
968#endif
969 }
970
971 put_cpu();
972}
973
974void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
975{
976 void *pg_addr = page_address(page);
977 cpumask_t mask = cpu_online_map;
978 u64 data0;
a43fe0e7
DM
979 int this_cpu;
980
981 if (tlb_type == hypervisor)
982 return;
983
984 this_cpu = get_cpu();
1da177e4
LT
985
986 cpu_clear(this_cpu, mask);
987
988#ifdef CONFIG_DEBUG_DCFLUSH
989 atomic_inc(&dcpage_flushes);
990#endif
991 if (cpus_empty(mask))
992 goto flush_self;
993 if (tlb_type == spitfire) {
994 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
995 if (page_mapping(page) != NULL)
996 data0 |= ((u64)1 << 32);
997 spitfire_xcall_deliver(data0,
998 __pa(pg_addr),
999 (u64) pg_addr,
1000 mask);
a43fe0e7 1001 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
1002#ifdef DCACHE_ALIASING_POSSIBLE
1003 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1004 cheetah_xcall_deliver(data0,
1005 __pa(pg_addr),
1006 0, mask);
1007#endif
1008 }
1009#ifdef CONFIG_DEBUG_DCFLUSH
1010 atomic_inc(&dcpage_flushes_xcall);
1011#endif
1012 flush_self:
1013 __local_flush_dcache_page(page);
1014
1015 put_cpu();
1016}
1017
a0663a79
DM
1018static void __smp_receive_signal_mask(cpumask_t mask)
1019{
1020 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1021}
1022
1da177e4
LT
1023void smp_receive_signal(int cpu)
1024{
1025 cpumask_t mask = cpumask_of_cpu(cpu);
1026
a0663a79
DM
1027 if (cpu_online(cpu))
1028 __smp_receive_signal_mask(mask);
1da177e4
LT
1029}
1030
1031void smp_receive_signal_client(int irq, struct pt_regs *regs)
ee29074d
DM
1032{
1033 clear_softint(1 << irq);
1034}
1035
1036void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 1037{
a0663a79 1038 struct mm_struct *mm;
ee29074d 1039 unsigned long flags;
a0663a79 1040
1da177e4 1041 clear_softint(1 << irq);
a0663a79
DM
1042
1043 /* See if we need to allocate a new TLB context because
1044 * the version of the one we are using is now out of date.
1045 */
1046 mm = current->active_mm;
ee29074d
DM
1047 if (unlikely(!mm || (mm == &init_mm)))
1048 return;
a0663a79 1049
ee29074d 1050 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 1051
ee29074d
DM
1052 if (unlikely(!CTX_VALID(mm->context)))
1053 get_new_mmu_context(mm);
aac0aadf 1054
ee29074d 1055 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 1056
ee29074d
DM
1057 load_secondary_context(mm);
1058 __flush_tlb_mm(CTX_HWBITS(mm->context),
1059 SECONDARY_CONTEXT);
a0663a79
DM
1060}
1061
1062void smp_new_mmu_context_version(void)
1063{
ee29074d 1064 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
1065}
1066
1067void smp_report_regs(void)
1068{
1069 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1070}
1071
1da177e4
LT
1072/* We know that the window frames of the user have been flushed
1073 * to the stack before we get here because all callers of us
1074 * are flush_tlb_*() routines, and these run after flush_cache_*()
1075 * which performs the flushw.
1076 *
1077 * The SMP TLB coherency scheme we use works as follows:
1078 *
1079 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1080 * space has (potentially) executed on, this is the heuristic
1081 * we use to avoid doing cross calls.
1082 *
1083 * Also, for flushing from kswapd and also for clones, we
1084 * use cpu_vm_mask as the list of cpus to make run the TLB.
1085 *
1086 * 2) TLB context numbers are shared globally across all processors
1087 * in the system, this allows us to play several games to avoid
1088 * cross calls.
1089 *
1090 * One invariant is that when a cpu switches to a process, and
1091 * that processes tsk->active_mm->cpu_vm_mask does not have the
1092 * current cpu's bit set, that tlb context is flushed locally.
1093 *
1094 * If the address space is non-shared (ie. mm->count == 1) we avoid
1095 * cross calls when we want to flush the currently running process's
1096 * tlb state. This is done by clearing all cpu bits except the current
1097 * processor's in current->active_mm->cpu_vm_mask and performing the
1098 * flush locally only. This will force any subsequent cpus which run
1099 * this task to flush the context from the local tlb if the process
1100 * migrates to another cpu (again).
1101 *
1102 * 3) For shared address spaces (threads) and swapping we bite the
1103 * bullet for most cases and perform the cross call (but only to
1104 * the cpus listed in cpu_vm_mask).
1105 *
1106 * The performance gain from "optimizing" away the cross call for threads is
1107 * questionable (in theory the big win for threads is the massive sharing of
1108 * address space state across processors).
1109 */
62dbec78
DM
1110
1111/* This currently is only used by the hugetlb arch pre-fault
1112 * hook on UltraSPARC-III+ and later when changing the pagesize
1113 * bits of the context register for an address space.
1114 */
1da177e4
LT
1115void smp_flush_tlb_mm(struct mm_struct *mm)
1116{
62dbec78
DM
1117 u32 ctx = CTX_HWBITS(mm->context);
1118 int cpu = get_cpu();
1da177e4 1119
62dbec78
DM
1120 if (atomic_read(&mm->mm_users) == 1) {
1121 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1122 goto local_flush_and_out;
1123 }
1da177e4 1124
62dbec78
DM
1125 smp_cross_call_masked(&xcall_flush_tlb_mm,
1126 ctx, 0, 0,
1127 mm->cpu_vm_mask);
1da177e4 1128
62dbec78
DM
1129local_flush_and_out:
1130 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1131
62dbec78 1132 put_cpu();
1da177e4
LT
1133}
1134
1135void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1136{
1137 u32 ctx = CTX_HWBITS(mm->context);
1138 int cpu = get_cpu();
1139
dedeb002 1140 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 1141 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
1142 else
1143 smp_cross_call_masked(&xcall_flush_tlb_pending,
1144 ctx, nr, (unsigned long) vaddrs,
1145 mm->cpu_vm_mask);
1da177e4 1146
1da177e4
LT
1147 __flush_tlb_pending(ctx, nr, vaddrs);
1148
1149 put_cpu();
1150}
1151
1152void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1153{
1154 start &= PAGE_MASK;
1155 end = PAGE_ALIGN(end);
1156 if (start != end) {
1157 smp_cross_call(&xcall_flush_tlb_kernel_range,
1158 0, start, end);
1159
1160 __flush_tlb_kernel_range(start, end);
1161 }
1162}
1163
1164/* CPU capture. */
1165/* #define CAPTURE_DEBUG */
1166extern unsigned long xcall_capture;
1167
1168static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1169static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1170static unsigned long penguins_are_doing_time;
1171
1172void smp_capture(void)
1173{
1174 int result = atomic_add_ret(1, &smp_capture_depth);
1175
1176 if (result == 1) {
1177 int ncpus = num_online_cpus();
1178
1179#ifdef CAPTURE_DEBUG
1180 printk("CPU[%d]: Sending penguins to jail...",
1181 smp_processor_id());
1182#endif
1183 penguins_are_doing_time = 1;
4f07118f 1184 membar_storestore_loadstore();
1da177e4
LT
1185 atomic_inc(&smp_capture_registry);
1186 smp_cross_call(&xcall_capture, 0, 0, 0);
1187 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1188 rmb();
1da177e4
LT
1189#ifdef CAPTURE_DEBUG
1190 printk("done\n");
1191#endif
1192 }
1193}
1194
1195void smp_release(void)
1196{
1197 if (atomic_dec_and_test(&smp_capture_depth)) {
1198#ifdef CAPTURE_DEBUG
1199 printk("CPU[%d]: Giving pardon to "
1200 "imprisoned penguins\n",
1201 smp_processor_id());
1202#endif
1203 penguins_are_doing_time = 0;
4f07118f 1204 membar_storeload_storestore();
1da177e4
LT
1205 atomic_dec(&smp_capture_registry);
1206 }
1207}
1208
1209/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1210 * can service tlb flush xcalls...
1211 */
1212extern void prom_world(int);
96c6e0d8 1213
1da177e4
LT
1214void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1215{
1da177e4
LT
1216 clear_softint(1 << irq);
1217
1218 preempt_disable();
1219
1220 __asm__ __volatile__("flushw");
1da177e4
LT
1221 prom_world(1);
1222 atomic_inc(&smp_capture_registry);
4f07118f 1223 membar_storeload_storestore();
1da177e4 1224 while (penguins_are_doing_time)
4f07118f 1225 rmb();
1da177e4
LT
1226 atomic_dec(&smp_capture_registry);
1227 prom_world(0);
1228
1229 preempt_enable();
1230}
1231
1da177e4 1232/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1233int setup_profiling_timer(unsigned int multiplier)
1234{
777a4475 1235 return -EINVAL;
1da177e4
LT
1236}
1237
1238void __init smp_prepare_cpus(unsigned int max_cpus)
1239{
1da177e4
LT
1240}
1241
5cbc3073 1242void __devinit smp_prepare_boot_cpu(void)
7abea921 1243{
7abea921
DM
1244}
1245
5cbc3073 1246void __devinit smp_fill_in_sib_core_maps(void)
1da177e4 1247{
5cbc3073
DM
1248 unsigned int i;
1249
e0204409 1250 for_each_present_cpu(i) {
5cbc3073
DM
1251 unsigned int j;
1252
39dd992a 1253 cpus_clear(cpu_core_map[i]);
5cbc3073 1254 if (cpu_data(i).core_id == 0) {
f78eae2e 1255 cpu_set(i, cpu_core_map[i]);
5cbc3073
DM
1256 continue;
1257 }
1258
e0204409 1259 for_each_present_cpu(j) {
5cbc3073
DM
1260 if (cpu_data(i).core_id ==
1261 cpu_data(j).core_id)
f78eae2e
DM
1262 cpu_set(j, cpu_core_map[i]);
1263 }
1264 }
1265
e0204409 1266 for_each_present_cpu(i) {
f78eae2e
DM
1267 unsigned int j;
1268
d5a7430d 1269 cpus_clear(per_cpu(cpu_sibling_map, i));
f78eae2e 1270 if (cpu_data(i).proc_id == -1) {
d5a7430d 1271 cpu_set(i, per_cpu(cpu_sibling_map, i));
f78eae2e
DM
1272 continue;
1273 }
1274
e0204409 1275 for_each_present_cpu(j) {
f78eae2e
DM
1276 if (cpu_data(i).proc_id ==
1277 cpu_data(j).proc_id)
d5a7430d 1278 cpu_set(j, per_cpu(cpu_sibling_map, i));
5cbc3073
DM
1279 }
1280 }
1da177e4
LT
1281}
1282
b282b6f8 1283int __cpuinit __cpu_up(unsigned int cpu)
1da177e4
LT
1284{
1285 int ret = smp_boot_one_cpu(cpu);
1286
1287 if (!ret) {
1288 cpu_set(cpu, smp_commenced_mask);
1289 while (!cpu_isset(cpu, cpu_online_map))
1290 mb();
1291 if (!cpu_isset(cpu, cpu_online_map)) {
1292 ret = -ENODEV;
1293 } else {
02fead75
DM
1294 /* On SUN4V, writes to %tick and %stick are
1295 * not allowed.
1296 */
1297 if (tlb_type != hypervisor)
1298 smp_synchronize_one_tick(cpu);
1da177e4
LT
1299 }
1300 }
1301 return ret;
1302}
1303
4f0234f4 1304#ifdef CONFIG_HOTPLUG_CPU
e0204409
DM
1305void cpu_play_dead(void)
1306{
1307 int cpu = smp_processor_id();
1308 unsigned long pstate;
1309
1310 idle_task_exit();
1311
1312 if (tlb_type == hypervisor) {
1313 struct trap_per_cpu *tb = &trap_block[cpu];
1314
1315 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1316 tb->cpu_mondo_pa, 0);
1317 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1318 tb->dev_mondo_pa, 0);
1319 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1320 tb->resum_mondo_pa, 0);
1321 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1322 tb->nonresum_mondo_pa, 0);
1323 }
1324
1325 cpu_clear(cpu, smp_commenced_mask);
1326 membar_safe("#Sync");
1327
1328 local_irq_disable();
1329
1330 __asm__ __volatile__(
1331 "rdpr %%pstate, %0\n\t"
1332 "wrpr %0, %1, %%pstate"
1333 : "=r" (pstate)
1334 : "i" (PSTATE_IE));
1335
1336 while (1)
1337 barrier();
1338}
1339
4f0234f4
DM
1340int __cpu_disable(void)
1341{
e0204409
DM
1342 int cpu = smp_processor_id();
1343 cpuinfo_sparc *c;
1344 int i;
1345
1346 for_each_cpu_mask(i, cpu_core_map[cpu])
1347 cpu_clear(cpu, cpu_core_map[i]);
1348 cpus_clear(cpu_core_map[cpu]);
1349
d5a7430d
MT
1350 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1351 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1352 cpus_clear(per_cpu(cpu_sibling_map, cpu));
e0204409
DM
1353
1354 c = &cpu_data(cpu);
1355
1356 c->core_id = 0;
1357 c->proc_id = -1;
1358
1359 spin_lock(&call_lock);
1360 cpu_clear(cpu, cpu_online_map);
1361 spin_unlock(&call_lock);
1362
1363 smp_wmb();
1364
1365 /* Make sure no interrupts point to this cpu. */
1366 fixup_irqs();
1367
1368 local_irq_enable();
1369 mdelay(1);
1370 local_irq_disable();
1371
1372 return 0;
4f0234f4
DM
1373}
1374
1375void __cpu_die(unsigned int cpu)
1376{
e0204409
DM
1377 int i;
1378
1379 for (i = 0; i < 100; i++) {
1380 smp_rmb();
1381 if (!cpu_isset(cpu, smp_commenced_mask))
1382 break;
1383 msleep(100);
1384 }
1385 if (cpu_isset(cpu, smp_commenced_mask)) {
1386 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1387 } else {
1388#if defined(CONFIG_SUN_LDOMS)
1389 unsigned long hv_err;
1390 int limit = 100;
1391
1392 do {
1393 hv_err = sun4v_cpu_stop(cpu);
1394 if (hv_err == HV_EOK) {
1395 cpu_clear(cpu, cpu_present_map);
1396 break;
1397 }
1398 } while (--limit > 0);
1399 if (limit <= 0) {
1400 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1401 hv_err);
1402 }
1403#endif
1404 }
4f0234f4
DM
1405}
1406#endif
1407
1da177e4
LT
1408void __init smp_cpus_done(unsigned int max_cpus)
1409{
1da177e4
LT
1410}
1411
1da177e4
LT
1412void smp_send_reschedule(int cpu)
1413{
64c7c8f8 1414 smp_receive_signal(cpu);
1da177e4
LT
1415}
1416
1417/* This is a nop because we capture all other cpus
1418 * anyways when making the PROM active.
1419 */
1420void smp_send_stop(void)
1421{
1422}
1423
d369ddd2
DM
1424unsigned long __per_cpu_base __read_mostly;
1425unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1426
1427EXPORT_SYMBOL(__per_cpu_base);
1428EXPORT_SYMBOL(__per_cpu_shift);
1429
5cbc3073 1430void __init real_setup_per_cpu_areas(void)
1da177e4
LT
1431{
1432 unsigned long goal, size, i;
1433 char *ptr;
1da177e4
LT
1434
1435 /* Copy section for each CPU (we discard the original) */
5a089006
DM
1436 goal = PERCPU_ENOUGH_ROOM;
1437
b6e3590f
JF
1438 __per_cpu_shift = PAGE_SHIFT;
1439 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1da177e4
LT
1440 __per_cpu_shift++;
1441
b6e3590f 1442 ptr = alloc_bootmem_pages(size * NR_CPUS);
1da177e4
LT
1443
1444 __per_cpu_base = ptr - __per_cpu_start;
1445
1da177e4
LT
1446 for (i = 0; i < NR_CPUS; i++, ptr += size)
1447 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
951bc82c
DM
1448
1449 /* Setup %g5 for the boot cpu. */
1450 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1da177e4 1451}
This page took 0.426245 seconds and 5 git commands to generate.