[SPARC64]: Fix sun4v mna winfixup handling.
[deliverable/linux.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
13#include <linux/smp_lock.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/delay.h>
17#include <linux/init.h>
18#include <linux/spinlock.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
21#include <linux/cache.h>
22#include <linux/jiffies.h>
23#include <linux/profile.h>
24#include <linux/bootmem.h>
25
26#include <asm/head.h>
27#include <asm/ptrace.h>
28#include <asm/atomic.h>
29#include <asm/tlbflush.h>
30#include <asm/mmu_context.h>
31#include <asm/cpudata.h>
32
33#include <asm/irq.h>
34#include <asm/page.h>
35#include <asm/pgtable.h>
36#include <asm/oplib.h>
37#include <asm/uaccess.h>
38#include <asm/timer.h>
39#include <asm/starfire.h>
40#include <asm/tlb.h>
56fb4df6 41#include <asm/sections.h>
1da177e4 42
1da177e4
LT
43extern void calibrate_delay(void);
44
45/* Please don't make this stuff initdata!!! --DaveM */
46static unsigned char boot_cpu_id;
47
c12a8289
AM
48cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
49cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
1da177e4
LT
50static cpumask_t smp_commenced_mask;
51static cpumask_t cpu_callout_map;
52
53void smp_info(struct seq_file *m)
54{
55 int i;
56
57 seq_printf(m, "State:\n");
58 for (i = 0; i < NR_CPUS; i++) {
59 if (cpu_online(i))
60 seq_printf(m,
61 "CPU%d:\t\tonline\n", i);
62 }
63}
64
65void smp_bogo(struct seq_file *m)
66{
67 int i;
68
69 for (i = 0; i < NR_CPUS; i++)
70 if (cpu_online(i))
71 seq_printf(m,
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i, cpu_data(i).udelay_val / (500000/HZ),
75 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76 i, cpu_data(i).clock_tick);
77}
78
79void __init smp_store_cpu_info(int id)
80{
f03b8a54 81 int cpu_node, def;
1da177e4
LT
82
83 /* multiplier and counter set by
84 smp_setup_percpu_timer() */
85 cpu_data(id).udelay_val = loops_per_jiffy;
86
87 cpu_find_by_mid(id, &cpu_node);
88 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
89 "clock-frequency", 0);
90
f03b8a54 91 def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
80dc0d6b 92 cpu_data(id).dcache_size = prom_getintdefault(cpu_node, "dcache-size",
f03b8a54
DM
93 def);
94
95 def = 32;
80dc0d6b 96 cpu_data(id).dcache_line_size =
f03b8a54
DM
97 prom_getintdefault(cpu_node, "dcache-line-size", def);
98
99 def = 16 * 1024;
80dc0d6b 100 cpu_data(id).icache_size = prom_getintdefault(cpu_node, "icache-size",
f03b8a54
DM
101 def);
102
103 def = 32;
80dc0d6b 104 cpu_data(id).icache_line_size =
f03b8a54
DM
105 prom_getintdefault(cpu_node, "icache-line-size", def);
106
107 def = ((tlb_type == hypervisor) ?
108 (3 * 1024 * 1024) :
109 (4 * 1024 * 1024));
80dc0d6b 110 cpu_data(id).ecache_size = prom_getintdefault(cpu_node, "ecache-size",
f03b8a54
DM
111 def);
112
113 def = 64;
80dc0d6b 114 cpu_data(id).ecache_line_size =
f03b8a54
DM
115 prom_getintdefault(cpu_node, "ecache-line-size", def);
116
80dc0d6b
DM
117 printk("CPU[%d]: Caches "
118 "D[sz(%d):line_sz(%d)] "
119 "I[sz(%d):line_sz(%d)] "
120 "E[sz(%d):line_sz(%d)]\n",
121 id,
122 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
123 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
124 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
1da177e4
LT
125}
126
127static void smp_setup_percpu_timer(void);
128
129static volatile unsigned long callin_flag = 0;
130
1da177e4
LT
131void __init smp_callin(void)
132{
133 int cpuid = hard_smp_processor_id();
134
56fb4df6 135 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 136
4a07e646 137 if (tlb_type == hypervisor)
490384e7 138 sun4v_ktsb_register();
481295f9 139
56fb4df6 140 __flush_tlb_all();
1da177e4
LT
141
142 smp_setup_percpu_timer();
143
816242da
DM
144 if (cheetah_pcache_forced_on)
145 cheetah_enable_pcache();
146
1da177e4
LT
147 local_irq_enable();
148
149 calibrate_delay();
150 smp_store_cpu_info(cpuid);
151 callin_flag = 1;
152 __asm__ __volatile__("membar #Sync\n\t"
153 "flush %%g6" : : : "memory");
154
155 /* Clear this or we will die instantly when we
156 * schedule back to this idler...
157 */
db7d9a4e 158 current_thread_info()->new_child = 0;
1da177e4
LT
159
160 /* Attach to the address space of init_task. */
161 atomic_inc(&init_mm.mm_count);
162 current->active_mm = &init_mm;
163
164 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 165 rmb();
1da177e4
LT
166
167 cpu_set(cpuid, cpu_online_map);
5bfb5d69
NP
168
169 /* idle thread is expected to have preempt disabled */
170 preempt_disable();
1da177e4
LT
171}
172
173void cpu_panic(void)
174{
175 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
176 panic("SMP bolixed\n");
177}
178
d369ddd2 179static unsigned long current_tick_offset __read_mostly;
1da177e4
LT
180
181/* This tick register synchronization scheme is taken entirely from
182 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
183 *
184 * The only change I've made is to rework it so that the master
185 * initiates the synchonization instead of the slave. -DaveM
186 */
187
188#define MASTER 0
189#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
190
191#define NUM_ROUNDS 64 /* magic value */
192#define NUM_ITERS 5 /* likewise */
193
194static DEFINE_SPINLOCK(itc_sync_lock);
195static unsigned long go[SLAVE + 1];
196
197#define DEBUG_TICK_SYNC 0
198
199static inline long get_delta (long *rt, long *master)
200{
201 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
202 unsigned long tcenter, t0, t1, tm;
203 unsigned long i;
204
205 for (i = 0; i < NUM_ITERS; i++) {
206 t0 = tick_ops->get_tick();
207 go[MASTER] = 1;
4f07118f 208 membar_storeload();
1da177e4 209 while (!(tm = go[SLAVE]))
4f07118f 210 rmb();
1da177e4 211 go[SLAVE] = 0;
4f07118f 212 wmb();
1da177e4
LT
213 t1 = tick_ops->get_tick();
214
215 if (t1 - t0 < best_t1 - best_t0)
216 best_t0 = t0, best_t1 = t1, best_tm = tm;
217 }
218
219 *rt = best_t1 - best_t0;
220 *master = best_tm - best_t0;
221
222 /* average best_t0 and best_t1 without overflow: */
223 tcenter = (best_t0/2 + best_t1/2);
224 if (best_t0 % 2 + best_t1 % 2 == 2)
225 tcenter++;
226 return tcenter - best_tm;
227}
228
229void smp_synchronize_tick_client(void)
230{
231 long i, delta, adj, adjust_latency = 0, done = 0;
232 unsigned long flags, rt, master_time_stamp, bound;
233#if DEBUG_TICK_SYNC
234 struct {
235 long rt; /* roundtrip time */
236 long master; /* master's timestamp */
237 long diff; /* difference between midpoint and master's timestamp */
238 long lat; /* estimate of itc adjustment latency */
239 } t[NUM_ROUNDS];
240#endif
241
242 go[MASTER] = 1;
243
244 while (go[MASTER])
4f07118f 245 rmb();
1da177e4
LT
246
247 local_irq_save(flags);
248 {
249 for (i = 0; i < NUM_ROUNDS; i++) {
250 delta = get_delta(&rt, &master_time_stamp);
251 if (delta == 0) {
252 done = 1; /* let's lock on to this... */
253 bound = rt;
254 }
255
256 if (!done) {
257 if (i > 0) {
258 adjust_latency += -delta;
259 adj = -delta + adjust_latency/4;
260 } else
261 adj = -delta;
262
263 tick_ops->add_tick(adj, current_tick_offset);
264 }
265#if DEBUG_TICK_SYNC
266 t[i].rt = rt;
267 t[i].master = master_time_stamp;
268 t[i].diff = delta;
269 t[i].lat = adjust_latency/4;
270#endif
271 }
272 }
273 local_irq_restore(flags);
274
275#if DEBUG_TICK_SYNC
276 for (i = 0; i < NUM_ROUNDS; i++)
277 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
278 t[i].rt, t[i].master, t[i].diff, t[i].lat);
279#endif
280
281 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
282 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
283}
284
285static void smp_start_sync_tick_client(int cpu);
286
287static void smp_synchronize_one_tick(int cpu)
288{
289 unsigned long flags, i;
290
291 go[MASTER] = 0;
292
293 smp_start_sync_tick_client(cpu);
294
295 /* wait for client to be ready */
296 while (!go[MASTER])
4f07118f 297 rmb();
1da177e4
LT
298
299 /* now let the client proceed into his loop */
300 go[MASTER] = 0;
4f07118f 301 membar_storeload();
1da177e4
LT
302
303 spin_lock_irqsave(&itc_sync_lock, flags);
304 {
305 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
306 while (!go[MASTER])
4f07118f 307 rmb();
1da177e4 308 go[MASTER] = 0;
4f07118f 309 wmb();
1da177e4 310 go[SLAVE] = tick_ops->get_tick();
4f07118f 311 membar_storeload();
1da177e4
LT
312 }
313 }
314 spin_unlock_irqrestore(&itc_sync_lock, flags);
315}
316
72aff53f
DM
317extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
318
1da177e4
LT
319extern unsigned long sparc64_cpu_startup;
320
321/* The OBP cpu startup callback truncates the 3rd arg cookie to
322 * 32-bits (I think) so to be safe we have it read the pointer
323 * contained here so we work on >4GB machines. -DaveM
324 */
325static struct thread_info *cpu_new_thread = NULL;
326
327static int __devinit smp_boot_one_cpu(unsigned int cpu)
328{
329 unsigned long entry =
330 (unsigned long)(&sparc64_cpu_startup);
331 unsigned long cookie =
332 (unsigned long)(&cpu_new_thread);
333 struct task_struct *p;
7890f794 334 int timeout, ret;
1da177e4
LT
335
336 p = fork_idle(cpu);
337 callin_flag = 0;
f3169641 338 cpu_new_thread = task_thread_info(p);
1da177e4
LT
339 cpu_set(cpu, cpu_callout_map);
340
7890f794 341 if (tlb_type == hypervisor) {
72aff53f
DM
342 /* Alloc the mondo queues, cpu will load them. */
343 sun4v_init_mondo_queues(0, cpu, 1, 0);
344
7890f794
DM
345 prom_startcpu_cpuid(cpu, entry, cookie);
346 } else {
347 int cpu_node;
348
349 cpu_find_by_mid(cpu, &cpu_node);
350 prom_startcpu(cpu_node, entry, cookie);
351 }
1da177e4
LT
352
353 for (timeout = 0; timeout < 5000000; timeout++) {
354 if (callin_flag)
355 break;
356 udelay(100);
357 }
72aff53f 358
1da177e4
LT
359 if (callin_flag) {
360 ret = 0;
361 } else {
362 printk("Processor %d is stuck.\n", cpu);
363 cpu_clear(cpu, cpu_callout_map);
364 ret = -ENODEV;
365 }
366 cpu_new_thread = NULL;
367
368 return ret;
369}
370
371static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
372{
373 u64 result, target;
374 int stuck, tmp;
375
376 if (this_is_starfire) {
377 /* map to real upaid */
378 cpu = (((cpu & 0x3c) << 1) |
379 ((cpu & 0x40) >> 4) |
380 (cpu & 0x3));
381 }
382
383 target = (cpu << 14) | 0x70;
384again:
385 /* Ok, this is the real Spitfire Errata #54.
386 * One must read back from a UDB internal register
387 * after writes to the UDB interrupt dispatch, but
388 * before the membar Sync for that write.
389 * So we use the high UDB control register (ASI 0x7f,
390 * ADDR 0x20) for the dummy read. -DaveM
391 */
392 tmp = 0x40;
393 __asm__ __volatile__(
394 "wrpr %1, %2, %%pstate\n\t"
395 "stxa %4, [%0] %3\n\t"
396 "stxa %5, [%0+%8] %3\n\t"
397 "add %0, %8, %0\n\t"
398 "stxa %6, [%0+%8] %3\n\t"
399 "membar #Sync\n\t"
400 "stxa %%g0, [%7] %3\n\t"
401 "membar #Sync\n\t"
402 "mov 0x20, %%g1\n\t"
403 "ldxa [%%g1] 0x7f, %%g0\n\t"
404 "membar #Sync"
405 : "=r" (tmp)
406 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
407 "r" (data0), "r" (data1), "r" (data2), "r" (target),
408 "r" (0x10), "0" (tmp)
409 : "g1");
410
411 /* NOTE: PSTATE_IE is still clear. */
412 stuck = 100000;
413 do {
414 __asm__ __volatile__("ldxa [%%g0] %1, %0"
415 : "=r" (result)
416 : "i" (ASI_INTR_DISPATCH_STAT));
417 if (result == 0) {
418 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
419 : : "r" (pstate));
420 return;
421 }
422 stuck -= 1;
423 if (stuck == 0)
424 break;
425 } while (result & 0x1);
426 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
427 : : "r" (pstate));
428 if (stuck == 0) {
429 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
430 smp_processor_id(), result);
431 } else {
432 udelay(2);
433 goto again;
434 }
435}
436
437static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
438{
439 u64 pstate;
440 int i;
441
442 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
443 for_each_cpu_mask(i, mask)
444 spitfire_xcall_helper(data0, data1, data2, pstate, i);
445}
446
447/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
448 * packet, but we have no use for that. However we do take advantage of
449 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
450 */
451static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
452{
453 u64 pstate, ver;
92704a1c 454 int nack_busy_id, is_jbus;
1da177e4
LT
455
456 if (cpus_empty(mask))
457 return;
458
459 /* Unfortunately, someone at Sun had the brilliant idea to make the
460 * busy/nack fields hard-coded by ITID number for this Ultra-III
461 * derivative processor.
462 */
463 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
464 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
465 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
466
467 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
468
469retry:
470 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
471 : : "r" (pstate), "i" (PSTATE_IE));
472
473 /* Setup the dispatch data registers. */
474 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
475 "stxa %1, [%4] %6\n\t"
476 "stxa %2, [%5] %6\n\t"
477 "membar #Sync\n\t"
478 : /* no outputs */
479 : "r" (data0), "r" (data1), "r" (data2),
480 "r" (0x40), "r" (0x50), "r" (0x60),
481 "i" (ASI_INTR_W));
482
483 nack_busy_id = 0;
484 {
485 int i;
486
487 for_each_cpu_mask(i, mask) {
488 u64 target = (i << 14) | 0x70;
489
92704a1c 490 if (!is_jbus)
1da177e4
LT
491 target |= (nack_busy_id << 24);
492 __asm__ __volatile__(
493 "stxa %%g0, [%0] %1\n\t"
494 "membar #Sync\n\t"
495 : /* no outputs */
496 : "r" (target), "i" (ASI_INTR_W));
497 nack_busy_id++;
498 }
499 }
500
501 /* Now, poll for completion. */
502 {
503 u64 dispatch_stat;
504 long stuck;
505
506 stuck = 100000 * nack_busy_id;
507 do {
508 __asm__ __volatile__("ldxa [%%g0] %1, %0"
509 : "=r" (dispatch_stat)
510 : "i" (ASI_INTR_DISPATCH_STAT));
511 if (dispatch_stat == 0UL) {
512 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
513 : : "r" (pstate));
514 return;
515 }
516 if (!--stuck)
517 break;
518 } while (dispatch_stat & 0x5555555555555555UL);
519
520 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
521 : : "r" (pstate));
522
523 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
524 /* Busy bits will not clear, continue instead
525 * of freezing up on this cpu.
526 */
527 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
528 smp_processor_id(), dispatch_stat);
529 } else {
530 int i, this_busy_nack = 0;
531
532 /* Delay some random time with interrupts enabled
533 * to prevent deadlock.
534 */
535 udelay(2 * nack_busy_id);
536
537 /* Clear out the mask bits for cpus which did not
538 * NACK us.
539 */
540 for_each_cpu_mask(i, mask) {
541 u64 check_mask;
542
92704a1c 543 if (is_jbus)
1da177e4
LT
544 check_mask = (0x2UL << (2*i));
545 else
546 check_mask = (0x2UL <<
547 this_busy_nack);
548 if ((dispatch_stat & check_mask) == 0)
549 cpu_clear(i, mask);
550 this_busy_nack += 2;
551 }
552
553 goto retry;
554 }
555 }
556}
557
1d2f1f90 558/* Multi-cpu list version. */
a43fe0e7
DM
559static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
560{
b830ab66
DM
561 struct trap_per_cpu *tb;
562 u16 *cpu_list;
563 u64 *mondo;
564 cpumask_t error_mask;
565 unsigned long flags, status;
566 int cnt, retries, this_cpu, i;
567
568 /* We have to do this whole thing with interrupts fully disabled.
569 * Otherwise if we send an xcall from interrupt context it will
570 * corrupt both our mondo block and cpu list state.
571 *
572 * One consequence of this is that we cannot use timeout mechanisms
573 * that depend upon interrupts being delivered locally. So, for
574 * example, we cannot sample jiffies and expect it to advance.
575 *
576 * Fortunately, udelay() uses %stick/%tick so we can use that.
577 */
578 local_irq_save(flags);
579
580 this_cpu = smp_processor_id();
581 tb = &trap_block[this_cpu];
1d2f1f90 582
b830ab66 583 mondo = __va(tb->cpu_mondo_block_pa);
1d2f1f90
DM
584 mondo[0] = data0;
585 mondo[1] = data1;
586 mondo[2] = data2;
587 wmb();
588
b830ab66
DM
589 cpu_list = __va(tb->cpu_list_pa);
590
591 /* Setup the initial cpu list. */
592 cnt = 0;
593 for_each_cpu_mask(i, mask)
594 cpu_list[cnt++] = i;
595
596 cpus_clear(error_mask);
1d2f1f90 597 retries = 0;
1d2f1f90 598 do {
b830ab66 599 int forward_progress;
1d2f1f90 600
b830ab66
DM
601 status = sun4v_cpu_mondo_send(cnt,
602 tb->cpu_list_pa,
603 tb->cpu_mondo_block_pa);
604
605 /* HV_EOK means all cpus received the xcall, we're done. */
606 if (likely(status == HV_EOK))
1d2f1f90 607 break;
b830ab66
DM
608
609 /* First, clear out all the cpus in the mask that were
610 * successfully sent to. The hypervisor indicates this
611 * by setting the cpu list entry of such cpus to 0xffff.
612 */
613 forward_progress = 0;
614 for (i = 0; i < cnt; i++) {
615 if (cpu_list[i] == 0xffff) {
616 cpu_clear(i, mask);
617 forward_progress = 1;
618 }
1d2f1f90
DM
619 }
620
b830ab66
DM
621 /* If we get a HV_ECPUERROR, then one or more of the cpus
622 * in the list are in error state. Use the cpu_state()
623 * hypervisor call to find out which cpus are in error state.
624 */
625 if (unlikely(status == HV_ECPUERROR)) {
626 for (i = 0; i < cnt; i++) {
627 long err;
628 u16 cpu;
629
630 cpu = cpu_list[i];
631 if (cpu == 0xffff)
632 continue;
633
634 err = sun4v_cpu_state(cpu);
635 if (err >= 0 &&
636 err == HV_CPU_STATE_ERROR) {
637 cpu_clear(cpu, mask);
638 cpu_set(cpu, error_mask);
639 }
640 }
641 } else if (unlikely(status != HV_EWOULDBLOCK))
642 goto fatal_mondo_error;
643
644 /* Rebuild the cpu_list[] array and try again. */
645 cnt = 0;
646 for_each_cpu_mask(i, mask)
647 cpu_list[cnt++] = i;
1d2f1f90 648
b830ab66
DM
649 if (unlikely(!forward_progress)) {
650 if (unlikely(++retries > 10000))
651 goto fatal_mondo_timeout;
652
653 /* Delay a little bit to let other cpus catch up
654 * on their cpu mondo queue work.
655 */
656 udelay(2 * cnt);
657 }
1d2f1f90
DM
658 } while (1);
659
b830ab66
DM
660 local_irq_restore(flags);
661
662 if (unlikely(!cpus_empty(error_mask)))
663 goto fatal_mondo_cpu_error;
664
665 return;
666
667fatal_mondo_cpu_error:
668 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
669 "were in error state\n",
670 this_cpu);
671 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
672 for_each_cpu_mask(i, error_mask)
673 printk("%d ", i);
674 printk("]\n");
675 return;
676
677fatal_mondo_timeout:
678 local_irq_restore(flags);
679 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
680 " progress after %d retries.\n",
681 this_cpu, retries);
682 goto dump_cpu_list_and_out;
683
684fatal_mondo_error:
685 local_irq_restore(flags);
686 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
687 this_cpu, status);
688 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
689 "mondo_block_pa(%lx)\n",
690 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
691
692dump_cpu_list_and_out:
693 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
694 for (i = 0; i < cnt; i++)
695 printk("%u ", cpu_list[i]);
696 printk("]\n");
1d2f1f90 697}
a43fe0e7 698
1da177e4
LT
699/* Send cross call to all processors mentioned in MASK
700 * except self.
701 */
702static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
703{
704 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
705 int this_cpu = get_cpu();
706
707 cpus_and(mask, mask, cpu_online_map);
708 cpu_clear(this_cpu, mask);
709
710 if (tlb_type == spitfire)
711 spitfire_xcall_deliver(data0, data1, data2, mask);
a43fe0e7 712 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1da177e4 713 cheetah_xcall_deliver(data0, data1, data2, mask);
a43fe0e7
DM
714 else
715 hypervisor_xcall_deliver(data0, data1, data2, mask);
1da177e4
LT
716 /* NOTE: Caller runs local copy on master. */
717
718 put_cpu();
719}
720
721extern unsigned long xcall_sync_tick;
722
723static void smp_start_sync_tick_client(int cpu)
724{
725 cpumask_t mask = cpumask_of_cpu(cpu);
726
727 smp_cross_call_masked(&xcall_sync_tick,
728 0, 0, 0, mask);
729}
730
731/* Send cross call to all processors except self. */
732#define smp_cross_call(func, ctx, data1, data2) \
733 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
734
735struct call_data_struct {
736 void (*func) (void *info);
737 void *info;
738 atomic_t finished;
739 int wait;
740};
741
742static DEFINE_SPINLOCK(call_lock);
743static struct call_data_struct *call_data;
744
745extern unsigned long xcall_call_function;
746
747/*
748 * You must not call this function with disabled interrupts or from a
749 * hardware interrupt handler or from a bottom half handler.
750 */
bd40791e
DM
751static int smp_call_function_mask(void (*func)(void *info), void *info,
752 int nonatomic, int wait, cpumask_t mask)
1da177e4
LT
753{
754 struct call_data_struct data;
bd40791e 755 int cpus = cpus_weight(mask) - 1;
1da177e4
LT
756 long timeout;
757
758 if (!cpus)
759 return 0;
760
761 /* Can deadlock when called with interrupts disabled */
762 WARN_ON(irqs_disabled());
763
764 data.func = func;
765 data.info = info;
766 atomic_set(&data.finished, 0);
767 data.wait = wait;
768
769 spin_lock(&call_lock);
770
771 call_data = &data;
772
bd40791e 773 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
1da177e4
LT
774
775 /*
776 * Wait for other cpus to complete function or at
777 * least snap the call data.
778 */
779 timeout = 1000000;
780 while (atomic_read(&data.finished) != cpus) {
781 if (--timeout <= 0)
782 goto out_timeout;
783 barrier();
784 udelay(1);
785 }
786
787 spin_unlock(&call_lock);
788
789 return 0;
790
791out_timeout:
792 spin_unlock(&call_lock);
b830ab66
DM
793 printk("XCALL: Remote cpus not responding, ncpus=%d finished=%d\n",
794 cpus, atomic_read(&data.finished));
1da177e4
LT
795 return 0;
796}
797
bd40791e
DM
798int smp_call_function(void (*func)(void *info), void *info,
799 int nonatomic, int wait)
800{
801 return smp_call_function_mask(func, info, nonatomic, wait,
802 cpu_online_map);
803}
804
1da177e4
LT
805void smp_call_function_client(int irq, struct pt_regs *regs)
806{
807 void (*func) (void *info) = call_data->func;
808 void *info = call_data->info;
809
810 clear_softint(1 << irq);
811 if (call_data->wait) {
812 /* let initiator proceed only after completion */
813 func(info);
814 atomic_inc(&call_data->finished);
815 } else {
816 /* let initiator proceed after getting data */
817 atomic_inc(&call_data->finished);
818 func(info);
819 }
820}
821
bd40791e
DM
822static void tsb_sync(void *info)
823{
824 struct mm_struct *mm = info;
825
826 if (current->active_mm == mm)
827 tsb_context_switch(mm);
828}
829
830void smp_tsb_sync(struct mm_struct *mm)
831{
832 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
833}
834
1da177e4
LT
835extern unsigned long xcall_flush_tlb_mm;
836extern unsigned long xcall_flush_tlb_pending;
837extern unsigned long xcall_flush_tlb_kernel_range;
1da177e4
LT
838extern unsigned long xcall_report_regs;
839extern unsigned long xcall_receive_signal;
840
841#ifdef DCACHE_ALIASING_POSSIBLE
842extern unsigned long xcall_flush_dcache_page_cheetah;
843#endif
844extern unsigned long xcall_flush_dcache_page_spitfire;
845
846#ifdef CONFIG_DEBUG_DCFLUSH
847extern atomic_t dcpage_flushes;
848extern atomic_t dcpage_flushes_xcall;
849#endif
850
851static __inline__ void __local_flush_dcache_page(struct page *page)
852{
853#ifdef DCACHE_ALIASING_POSSIBLE
854 __flush_dcache_page(page_address(page),
855 ((tlb_type == spitfire) &&
856 page_mapping(page) != NULL));
857#else
858 if (page_mapping(page) != NULL &&
859 tlb_type == spitfire)
860 __flush_icache_page(__pa(page_address(page)));
861#endif
862}
863
864void smp_flush_dcache_page_impl(struct page *page, int cpu)
865{
866 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
867 int this_cpu;
868
869 if (tlb_type == hypervisor)
870 return;
1da177e4
LT
871
872#ifdef CONFIG_DEBUG_DCFLUSH
873 atomic_inc(&dcpage_flushes);
874#endif
a43fe0e7
DM
875
876 this_cpu = get_cpu();
877
1da177e4
LT
878 if (cpu == this_cpu) {
879 __local_flush_dcache_page(page);
880 } else if (cpu_online(cpu)) {
881 void *pg_addr = page_address(page);
882 u64 data0;
883
884 if (tlb_type == spitfire) {
885 data0 =
886 ((u64)&xcall_flush_dcache_page_spitfire);
887 if (page_mapping(page) != NULL)
888 data0 |= ((u64)1 << 32);
889 spitfire_xcall_deliver(data0,
890 __pa(pg_addr),
891 (u64) pg_addr,
892 mask);
a43fe0e7 893 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
894#ifdef DCACHE_ALIASING_POSSIBLE
895 data0 =
896 ((u64)&xcall_flush_dcache_page_cheetah);
897 cheetah_xcall_deliver(data0,
898 __pa(pg_addr),
899 0, mask);
900#endif
901 }
902#ifdef CONFIG_DEBUG_DCFLUSH
903 atomic_inc(&dcpage_flushes_xcall);
904#endif
905 }
906
907 put_cpu();
908}
909
910void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
911{
912 void *pg_addr = page_address(page);
913 cpumask_t mask = cpu_online_map;
914 u64 data0;
a43fe0e7
DM
915 int this_cpu;
916
917 if (tlb_type == hypervisor)
918 return;
919
920 this_cpu = get_cpu();
1da177e4
LT
921
922 cpu_clear(this_cpu, mask);
923
924#ifdef CONFIG_DEBUG_DCFLUSH
925 atomic_inc(&dcpage_flushes);
926#endif
927 if (cpus_empty(mask))
928 goto flush_self;
929 if (tlb_type == spitfire) {
930 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
931 if (page_mapping(page) != NULL)
932 data0 |= ((u64)1 << 32);
933 spitfire_xcall_deliver(data0,
934 __pa(pg_addr),
935 (u64) pg_addr,
936 mask);
a43fe0e7 937 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
938#ifdef DCACHE_ALIASING_POSSIBLE
939 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
940 cheetah_xcall_deliver(data0,
941 __pa(pg_addr),
942 0, mask);
943#endif
944 }
945#ifdef CONFIG_DEBUG_DCFLUSH
946 atomic_inc(&dcpage_flushes_xcall);
947#endif
948 flush_self:
949 __local_flush_dcache_page(page);
950
951 put_cpu();
952}
953
a0663a79
DM
954static void __smp_receive_signal_mask(cpumask_t mask)
955{
956 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
957}
958
1da177e4
LT
959void smp_receive_signal(int cpu)
960{
961 cpumask_t mask = cpumask_of_cpu(cpu);
962
a0663a79
DM
963 if (cpu_online(cpu))
964 __smp_receive_signal_mask(mask);
1da177e4
LT
965}
966
967void smp_receive_signal_client(int irq, struct pt_regs *regs)
968{
a0663a79
DM
969 struct mm_struct *mm;
970
1da177e4 971 clear_softint(1 << irq);
a0663a79
DM
972
973 /* See if we need to allocate a new TLB context because
974 * the version of the one we are using is now out of date.
975 */
976 mm = current->active_mm;
977 if (likely(mm)) {
aac0aadf 978 unsigned long flags;
a0663a79 979
aac0aadf
DM
980 spin_lock_irqsave(&mm->context.lock, flags);
981
982 if (unlikely(!CTX_VALID(mm->context)))
a0663a79 983 get_new_mmu_context(mm);
aac0aadf
DM
984
985 load_secondary_context(mm);
986 __flush_tlb_mm(CTX_HWBITS(mm->context),
987 SECONDARY_CONTEXT);
988
989 spin_unlock_irqrestore(&mm->context.lock, flags);
a0663a79
DM
990 }
991}
992
993void smp_new_mmu_context_version(void)
994{
995 __smp_receive_signal_mask(cpu_online_map);
1da177e4
LT
996}
997
998void smp_report_regs(void)
999{
1000 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1001}
1002
1da177e4
LT
1003/* We know that the window frames of the user have been flushed
1004 * to the stack before we get here because all callers of us
1005 * are flush_tlb_*() routines, and these run after flush_cache_*()
1006 * which performs the flushw.
1007 *
1008 * The SMP TLB coherency scheme we use works as follows:
1009 *
1010 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1011 * space has (potentially) executed on, this is the heuristic
1012 * we use to avoid doing cross calls.
1013 *
1014 * Also, for flushing from kswapd and also for clones, we
1015 * use cpu_vm_mask as the list of cpus to make run the TLB.
1016 *
1017 * 2) TLB context numbers are shared globally across all processors
1018 * in the system, this allows us to play several games to avoid
1019 * cross calls.
1020 *
1021 * One invariant is that when a cpu switches to a process, and
1022 * that processes tsk->active_mm->cpu_vm_mask does not have the
1023 * current cpu's bit set, that tlb context is flushed locally.
1024 *
1025 * If the address space is non-shared (ie. mm->count == 1) we avoid
1026 * cross calls when we want to flush the currently running process's
1027 * tlb state. This is done by clearing all cpu bits except the current
1028 * processor's in current->active_mm->cpu_vm_mask and performing the
1029 * flush locally only. This will force any subsequent cpus which run
1030 * this task to flush the context from the local tlb if the process
1031 * migrates to another cpu (again).
1032 *
1033 * 3) For shared address spaces (threads) and swapping we bite the
1034 * bullet for most cases and perform the cross call (but only to
1035 * the cpus listed in cpu_vm_mask).
1036 *
1037 * The performance gain from "optimizing" away the cross call for threads is
1038 * questionable (in theory the big win for threads is the massive sharing of
1039 * address space state across processors).
1040 */
62dbec78
DM
1041
1042/* This currently is only used by the hugetlb arch pre-fault
1043 * hook on UltraSPARC-III+ and later when changing the pagesize
1044 * bits of the context register for an address space.
1045 */
1da177e4
LT
1046void smp_flush_tlb_mm(struct mm_struct *mm)
1047{
62dbec78
DM
1048 u32 ctx = CTX_HWBITS(mm->context);
1049 int cpu = get_cpu();
1da177e4 1050
62dbec78
DM
1051 if (atomic_read(&mm->mm_users) == 1) {
1052 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1053 goto local_flush_and_out;
1054 }
1da177e4 1055
62dbec78
DM
1056 smp_cross_call_masked(&xcall_flush_tlb_mm,
1057 ctx, 0, 0,
1058 mm->cpu_vm_mask);
1da177e4 1059
62dbec78
DM
1060local_flush_and_out:
1061 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1062
62dbec78 1063 put_cpu();
1da177e4
LT
1064}
1065
1066void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1067{
1068 u32 ctx = CTX_HWBITS(mm->context);
1069 int cpu = get_cpu();
1070
dedeb002 1071 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 1072 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
1073 else
1074 smp_cross_call_masked(&xcall_flush_tlb_pending,
1075 ctx, nr, (unsigned long) vaddrs,
1076 mm->cpu_vm_mask);
1da177e4 1077
1da177e4
LT
1078 __flush_tlb_pending(ctx, nr, vaddrs);
1079
1080 put_cpu();
1081}
1082
1083void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1084{
1085 start &= PAGE_MASK;
1086 end = PAGE_ALIGN(end);
1087 if (start != end) {
1088 smp_cross_call(&xcall_flush_tlb_kernel_range,
1089 0, start, end);
1090
1091 __flush_tlb_kernel_range(start, end);
1092 }
1093}
1094
1095/* CPU capture. */
1096/* #define CAPTURE_DEBUG */
1097extern unsigned long xcall_capture;
1098
1099static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1100static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1101static unsigned long penguins_are_doing_time;
1102
1103void smp_capture(void)
1104{
1105 int result = atomic_add_ret(1, &smp_capture_depth);
1106
1107 if (result == 1) {
1108 int ncpus = num_online_cpus();
1109
1110#ifdef CAPTURE_DEBUG
1111 printk("CPU[%d]: Sending penguins to jail...",
1112 smp_processor_id());
1113#endif
1114 penguins_are_doing_time = 1;
4f07118f 1115 membar_storestore_loadstore();
1da177e4
LT
1116 atomic_inc(&smp_capture_registry);
1117 smp_cross_call(&xcall_capture, 0, 0, 0);
1118 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1119 rmb();
1da177e4
LT
1120#ifdef CAPTURE_DEBUG
1121 printk("done\n");
1122#endif
1123 }
1124}
1125
1126void smp_release(void)
1127{
1128 if (atomic_dec_and_test(&smp_capture_depth)) {
1129#ifdef CAPTURE_DEBUG
1130 printk("CPU[%d]: Giving pardon to "
1131 "imprisoned penguins\n",
1132 smp_processor_id());
1133#endif
1134 penguins_are_doing_time = 0;
4f07118f 1135 membar_storeload_storestore();
1da177e4
LT
1136 atomic_dec(&smp_capture_registry);
1137 }
1138}
1139
1140/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1141 * can service tlb flush xcalls...
1142 */
1143extern void prom_world(int);
96c6e0d8 1144
1da177e4
LT
1145void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1146{
1da177e4
LT
1147 clear_softint(1 << irq);
1148
1149 preempt_disable();
1150
1151 __asm__ __volatile__("flushw");
1da177e4
LT
1152 prom_world(1);
1153 atomic_inc(&smp_capture_registry);
4f07118f 1154 membar_storeload_storestore();
1da177e4 1155 while (penguins_are_doing_time)
4f07118f 1156 rmb();
1da177e4
LT
1157 atomic_dec(&smp_capture_registry);
1158 prom_world(0);
1159
1160 preempt_enable();
1161}
1162
1da177e4
LT
1163#define prof_multiplier(__cpu) cpu_data(__cpu).multiplier
1164#define prof_counter(__cpu) cpu_data(__cpu).counter
1165
1166void smp_percpu_timer_interrupt(struct pt_regs *regs)
1167{
1168 unsigned long compare, tick, pstate;
1169 int cpu = smp_processor_id();
1170 int user = user_mode(regs);
1171
1172 /*
1173 * Check for level 14 softint.
1174 */
1175 {
1176 unsigned long tick_mask = tick_ops->softint_mask;
1177
1178 if (!(get_softint() & tick_mask)) {
1179 extern void handler_irq(int, struct pt_regs *);
1180
1181 handler_irq(14, regs);
1182 return;
1183 }
1184 clear_softint(tick_mask);
1185 }
1186
1187 do {
1188 profile_tick(CPU_PROFILING, regs);
1189 if (!--prof_counter(cpu)) {
1190 irq_enter();
1191
1192 if (cpu == boot_cpu_id) {
1193 kstat_this_cpu.irqs[0]++;
1194 timer_tick_interrupt(regs);
1195 }
1196
1197 update_process_times(user);
1198
1199 irq_exit();
1200
1201 prof_counter(cpu) = prof_multiplier(cpu);
1202 }
1203
1204 /* Guarantee that the following sequences execute
1205 * uninterrupted.
1206 */
1207 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1208 "wrpr %0, %1, %%pstate"
1209 : "=r" (pstate)
1210 : "i" (PSTATE_IE));
1211
1212 compare = tick_ops->add_compare(current_tick_offset);
1213 tick = tick_ops->get_tick();
1214
1215 /* Restore PSTATE_IE. */
1216 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1217 : /* no outputs */
1218 : "r" (pstate));
1219 } while (time_after_eq(tick, compare));
1220}
1221
1222static void __init smp_setup_percpu_timer(void)
1223{
1224 int cpu = smp_processor_id();
1225 unsigned long pstate;
1226
1227 prof_counter(cpu) = prof_multiplier(cpu) = 1;
1228
1229 /* Guarantee that the following sequences execute
1230 * uninterrupted.
1231 */
1232 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
1233 "wrpr %0, %1, %%pstate"
1234 : "=r" (pstate)
1235 : "i" (PSTATE_IE));
1236
1237 tick_ops->init_tick(current_tick_offset);
1238
1239 /* Restore PSTATE_IE. */
1240 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
1241 : /* no outputs */
1242 : "r" (pstate));
1243}
1244
1245void __init smp_tick_init(void)
1246{
1247 boot_cpu_id = hard_smp_processor_id();
1248 current_tick_offset = timer_tick_offset;
1249
1250 cpu_set(boot_cpu_id, cpu_online_map);
1251 prof_counter(boot_cpu_id) = prof_multiplier(boot_cpu_id) = 1;
1252}
1253
1254/* /proc/profile writes can call this, don't __init it please. */
1255static DEFINE_SPINLOCK(prof_setup_lock);
1256
1257int setup_profiling_timer(unsigned int multiplier)
1258{
1259 unsigned long flags;
1260 int i;
1261
1262 if ((!multiplier) || (timer_tick_offset / multiplier) < 1000)
1263 return -EINVAL;
1264
1265 spin_lock_irqsave(&prof_setup_lock, flags);
1266 for (i = 0; i < NR_CPUS; i++)
1267 prof_multiplier(i) = multiplier;
1268 current_tick_offset = (timer_tick_offset / multiplier);
1269 spin_unlock_irqrestore(&prof_setup_lock, flags);
1270
1271 return 0;
1272}
1273
7abea921 1274/* Constrain the number of cpus to max_cpus. */
1da177e4
LT
1275void __init smp_prepare_cpus(unsigned int max_cpus)
1276{
1da177e4 1277 if (num_possible_cpus() > max_cpus) {
7abea921
DM
1278 int instance, mid;
1279
1da177e4
LT
1280 instance = 0;
1281 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1282 if (mid != boot_cpu_id) {
1283 cpu_clear(mid, phys_cpu_present_map);
1284 if (num_possible_cpus() <= max_cpus)
1285 break;
1286 }
1287 instance++;
1288 }
1289 }
1290
1291 smp_store_cpu_info(boot_cpu_id);
1292}
1293
7abea921
DM
1294/* Set this up early so that things like the scheduler can init
1295 * properly. We use the same cpu mask for both the present and
1296 * possible cpu map.
1297 */
1298void __init smp_setup_cpu_possible_map(void)
1299{
1300 int instance, mid;
1301
1302 instance = 0;
1303 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1304 if (mid < NR_CPUS)
1305 cpu_set(mid, phys_cpu_present_map);
1306 instance++;
1307 }
1308}
1309
1da177e4
LT
1310void __devinit smp_prepare_boot_cpu(void)
1311{
56fb4df6
DM
1312 int cpu = hard_smp_processor_id();
1313
1314 if (cpu >= NR_CPUS) {
1da177e4
LT
1315 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
1316 prom_halt();
1317 }
1318
56fb4df6
DM
1319 current_thread_info()->cpu = cpu;
1320 __local_per_cpu_offset = __per_cpu_offset(cpu);
1da177e4
LT
1321
1322 cpu_set(smp_processor_id(), cpu_online_map);
1323 cpu_set(smp_processor_id(), phys_cpu_present_map);
1324}
1325
1326int __devinit __cpu_up(unsigned int cpu)
1327{
1328 int ret = smp_boot_one_cpu(cpu);
1329
1330 if (!ret) {
1331 cpu_set(cpu, smp_commenced_mask);
1332 while (!cpu_isset(cpu, cpu_online_map))
1333 mb();
1334 if (!cpu_isset(cpu, cpu_online_map)) {
1335 ret = -ENODEV;
1336 } else {
02fead75
DM
1337 /* On SUN4V, writes to %tick and %stick are
1338 * not allowed.
1339 */
1340 if (tlb_type != hypervisor)
1341 smp_synchronize_one_tick(cpu);
1da177e4
LT
1342 }
1343 }
1344 return ret;
1345}
1346
1347void __init smp_cpus_done(unsigned int max_cpus)
1348{
1349 unsigned long bogosum = 0;
1350 int i;
1351
1352 for (i = 0; i < NR_CPUS; i++) {
1353 if (cpu_online(i))
1354 bogosum += cpu_data(i).udelay_val;
1355 }
1356 printk("Total of %ld processors activated "
1357 "(%lu.%02lu BogoMIPS).\n",
1358 (long) num_online_cpus(),
1359 bogosum/(500000/HZ),
1360 (bogosum/(5000/HZ))%100);
1361}
1362
1da177e4
LT
1363void smp_send_reschedule(int cpu)
1364{
64c7c8f8 1365 smp_receive_signal(cpu);
1da177e4
LT
1366}
1367
1368/* This is a nop because we capture all other cpus
1369 * anyways when making the PROM active.
1370 */
1371void smp_send_stop(void)
1372{
1373}
1374
d369ddd2
DM
1375unsigned long __per_cpu_base __read_mostly;
1376unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1377
1378EXPORT_SYMBOL(__per_cpu_base);
1379EXPORT_SYMBOL(__per_cpu_shift);
1380
1381void __init setup_per_cpu_areas(void)
1382{
1383 unsigned long goal, size, i;
1384 char *ptr;
1da177e4
LT
1385
1386 /* Copy section for each CPU (we discard the original) */
56fb4df6 1387 goal = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
1da177e4
LT
1388#ifdef CONFIG_MODULES
1389 if (goal < PERCPU_ENOUGH_ROOM)
1390 goal = PERCPU_ENOUGH_ROOM;
1391#endif
1392 __per_cpu_shift = 0;
1393 for (size = 1UL; size < goal; size <<= 1UL)
1394 __per_cpu_shift++;
1395
56fb4df6 1396 ptr = alloc_bootmem(size * NR_CPUS);
1da177e4
LT
1397
1398 __per_cpu_base = ptr - __per_cpu_start;
1399
1da177e4
LT
1400 for (i = 0; i < NR_CPUS; i++, ptr += size)
1401 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1da177e4 1402}
This page took 0.176628 seconds and 5 git commands to generate.