[PATCH] i386: Enable bank 0 on non K7 Athlon
[deliverable/linux.git] / arch / sparc64 / kernel / smp.c
CommitLineData
1da177e4
LT
1/* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
4 */
5
6#include <linux/module.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
13#include <linux/smp_lock.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/delay.h>
17#include <linux/init.h>
18#include <linux/spinlock.h>
19#include <linux/fs.h>
20#include <linux/seq_file.h>
21#include <linux/cache.h>
22#include <linux/jiffies.h>
23#include <linux/profile.h>
24#include <linux/bootmem.h>
25
26#include <asm/head.h>
27#include <asm/ptrace.h>
28#include <asm/atomic.h>
29#include <asm/tlbflush.h>
30#include <asm/mmu_context.h>
31#include <asm/cpudata.h>
32
33#include <asm/irq.h>
6d24c8dc 34#include <asm/irq_regs.h>
1da177e4
LT
35#include <asm/page.h>
36#include <asm/pgtable.h>
37#include <asm/oplib.h>
38#include <asm/uaccess.h>
39#include <asm/timer.h>
40#include <asm/starfire.h>
41#include <asm/tlb.h>
56fb4df6 42#include <asm/sections.h>
07f8e5f3 43#include <asm/prom.h>
1da177e4 44
1da177e4
LT
45extern void calibrate_delay(void);
46
47/* Please don't make this stuff initdata!!! --DaveM */
777a4475 48unsigned char boot_cpu_id;
1da177e4 49
c12a8289
AM
50cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
51cpumask_t phys_cpu_present_map __read_mostly = CPU_MASK_NONE;
8935dced
DM
52cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly =
53 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
1da177e4
LT
54static cpumask_t smp_commenced_mask;
55static cpumask_t cpu_callout_map;
56
57void smp_info(struct seq_file *m)
58{
59 int i;
60
61 seq_printf(m, "State:\n");
394e3902
AM
62 for_each_online_cpu(i)
63 seq_printf(m, "CPU%d:\t\tonline\n", i);
1da177e4
LT
64}
65
66void smp_bogo(struct seq_file *m)
67{
68 int i;
69
394e3902
AM
70 for_each_online_cpu(i)
71 seq_printf(m,
72 "Cpu%dBogo\t: %lu.%02lu\n"
73 "Cpu%dClkTck\t: %016lx\n",
74 i, cpu_data(i).udelay_val / (500000/HZ),
75 (cpu_data(i).udelay_val / (5000/HZ)) % 100,
76 i, cpu_data(i).clock_tick);
1da177e4
LT
77}
78
79void __init smp_store_cpu_info(int id)
80{
07f8e5f3
DM
81 struct device_node *dp;
82 int def;
1da177e4 83
1da177e4
LT
84 cpu_data(id).udelay_val = loops_per_jiffy;
85
07f8e5f3
DM
86 cpu_find_by_mid(id, &dp);
87 cpu_data(id).clock_tick =
88 of_getintprop_default(dp, "clock-frequency", 0);
1da177e4 89
f03b8a54 90 def = ((tlb_type == hypervisor) ? (8 * 1024) : (16 * 1024));
07f8e5f3
DM
91 cpu_data(id).dcache_size =
92 of_getintprop_default(dp, "dcache-size", def);
f03b8a54
DM
93
94 def = 32;
80dc0d6b 95 cpu_data(id).dcache_line_size =
07f8e5f3 96 of_getintprop_default(dp, "dcache-line-size", def);
f03b8a54
DM
97
98 def = 16 * 1024;
07f8e5f3
DM
99 cpu_data(id).icache_size =
100 of_getintprop_default(dp, "icache-size", def);
f03b8a54
DM
101
102 def = 32;
80dc0d6b 103 cpu_data(id).icache_line_size =
07f8e5f3 104 of_getintprop_default(dp, "icache-line-size", def);
f03b8a54
DM
105
106 def = ((tlb_type == hypervisor) ?
107 (3 * 1024 * 1024) :
108 (4 * 1024 * 1024));
07f8e5f3
DM
109 cpu_data(id).ecache_size =
110 of_getintprop_default(dp, "ecache-size", def);
f03b8a54
DM
111
112 def = 64;
80dc0d6b 113 cpu_data(id).ecache_line_size =
07f8e5f3 114 of_getintprop_default(dp, "ecache-line-size", def);
f03b8a54 115
80dc0d6b
DM
116 printk("CPU[%d]: Caches "
117 "D[sz(%d):line_sz(%d)] "
118 "I[sz(%d):line_sz(%d)] "
119 "E[sz(%d):line_sz(%d)]\n",
120 id,
121 cpu_data(id).dcache_size, cpu_data(id).dcache_line_size,
122 cpu_data(id).icache_size, cpu_data(id).icache_line_size,
123 cpu_data(id).ecache_size, cpu_data(id).ecache_line_size);
1da177e4
LT
124}
125
112f4871 126extern void setup_sparc64_timer(void);
1da177e4
LT
127
128static volatile unsigned long callin_flag = 0;
129
1da177e4
LT
130void __init smp_callin(void)
131{
132 int cpuid = hard_smp_processor_id();
133
56fb4df6 134 __local_per_cpu_offset = __per_cpu_offset(cpuid);
1da177e4 135
4a07e646 136 if (tlb_type == hypervisor)
490384e7 137 sun4v_ktsb_register();
481295f9 138
56fb4df6 139 __flush_tlb_all();
1da177e4 140
112f4871 141 setup_sparc64_timer();
1da177e4 142
816242da
DM
143 if (cheetah_pcache_forced_on)
144 cheetah_enable_pcache();
145
1da177e4
LT
146 local_irq_enable();
147
148 calibrate_delay();
149 smp_store_cpu_info(cpuid);
150 callin_flag = 1;
151 __asm__ __volatile__("membar #Sync\n\t"
152 "flush %%g6" : : : "memory");
153
154 /* Clear this or we will die instantly when we
155 * schedule back to this idler...
156 */
db7d9a4e 157 current_thread_info()->new_child = 0;
1da177e4
LT
158
159 /* Attach to the address space of init_task. */
160 atomic_inc(&init_mm.mm_count);
161 current->active_mm = &init_mm;
162
163 while (!cpu_isset(cpuid, smp_commenced_mask))
4f07118f 164 rmb();
1da177e4
LT
165
166 cpu_set(cpuid, cpu_online_map);
5bfb5d69
NP
167
168 /* idle thread is expected to have preempt disabled */
169 preempt_disable();
1da177e4
LT
170}
171
172void cpu_panic(void)
173{
174 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
175 panic("SMP bolixed\n");
176}
177
1da177e4
LT
178/* This tick register synchronization scheme is taken entirely from
179 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
180 *
181 * The only change I've made is to rework it so that the master
182 * initiates the synchonization instead of the slave. -DaveM
183 */
184
185#define MASTER 0
186#define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
187
188#define NUM_ROUNDS 64 /* magic value */
189#define NUM_ITERS 5 /* likewise */
190
191static DEFINE_SPINLOCK(itc_sync_lock);
192static unsigned long go[SLAVE + 1];
193
194#define DEBUG_TICK_SYNC 0
195
196static inline long get_delta (long *rt, long *master)
197{
198 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
199 unsigned long tcenter, t0, t1, tm;
200 unsigned long i;
201
202 for (i = 0; i < NUM_ITERS; i++) {
203 t0 = tick_ops->get_tick();
204 go[MASTER] = 1;
4f07118f 205 membar_storeload();
1da177e4 206 while (!(tm = go[SLAVE]))
4f07118f 207 rmb();
1da177e4 208 go[SLAVE] = 0;
4f07118f 209 wmb();
1da177e4
LT
210 t1 = tick_ops->get_tick();
211
212 if (t1 - t0 < best_t1 - best_t0)
213 best_t0 = t0, best_t1 = t1, best_tm = tm;
214 }
215
216 *rt = best_t1 - best_t0;
217 *master = best_tm - best_t0;
218
219 /* average best_t0 and best_t1 without overflow: */
220 tcenter = (best_t0/2 + best_t1/2);
221 if (best_t0 % 2 + best_t1 % 2 == 2)
222 tcenter++;
223 return tcenter - best_tm;
224}
225
226void smp_synchronize_tick_client(void)
227{
228 long i, delta, adj, adjust_latency = 0, done = 0;
229 unsigned long flags, rt, master_time_stamp, bound;
230#if DEBUG_TICK_SYNC
231 struct {
232 long rt; /* roundtrip time */
233 long master; /* master's timestamp */
234 long diff; /* difference between midpoint and master's timestamp */
235 long lat; /* estimate of itc adjustment latency */
236 } t[NUM_ROUNDS];
237#endif
238
239 go[MASTER] = 1;
240
241 while (go[MASTER])
4f07118f 242 rmb();
1da177e4
LT
243
244 local_irq_save(flags);
245 {
246 for (i = 0; i < NUM_ROUNDS; i++) {
247 delta = get_delta(&rt, &master_time_stamp);
248 if (delta == 0) {
249 done = 1; /* let's lock on to this... */
250 bound = rt;
251 }
252
253 if (!done) {
254 if (i > 0) {
255 adjust_latency += -delta;
256 adj = -delta + adjust_latency/4;
257 } else
258 adj = -delta;
259
112f4871 260 tick_ops->add_tick(adj);
1da177e4
LT
261 }
262#if DEBUG_TICK_SYNC
263 t[i].rt = rt;
264 t[i].master = master_time_stamp;
265 t[i].diff = delta;
266 t[i].lat = adjust_latency/4;
267#endif
268 }
269 }
270 local_irq_restore(flags);
271
272#if DEBUG_TICK_SYNC
273 for (i = 0; i < NUM_ROUNDS; i++)
274 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
275 t[i].rt, t[i].master, t[i].diff, t[i].lat);
276#endif
277
278 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU (last diff %ld cycles,"
279 "maxerr %lu cycles)\n", smp_processor_id(), delta, rt);
280}
281
282static void smp_start_sync_tick_client(int cpu);
283
284static void smp_synchronize_one_tick(int cpu)
285{
286 unsigned long flags, i;
287
288 go[MASTER] = 0;
289
290 smp_start_sync_tick_client(cpu);
291
292 /* wait for client to be ready */
293 while (!go[MASTER])
4f07118f 294 rmb();
1da177e4
LT
295
296 /* now let the client proceed into his loop */
297 go[MASTER] = 0;
4f07118f 298 membar_storeload();
1da177e4
LT
299
300 spin_lock_irqsave(&itc_sync_lock, flags);
301 {
302 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
303 while (!go[MASTER])
4f07118f 304 rmb();
1da177e4 305 go[MASTER] = 0;
4f07118f 306 wmb();
1da177e4 307 go[SLAVE] = tick_ops->get_tick();
4f07118f 308 membar_storeload();
1da177e4
LT
309 }
310 }
311 spin_unlock_irqrestore(&itc_sync_lock, flags);
312}
313
72aff53f
DM
314extern void sun4v_init_mondo_queues(int use_bootmem, int cpu, int alloc, int load);
315
1da177e4
LT
316extern unsigned long sparc64_cpu_startup;
317
318/* The OBP cpu startup callback truncates the 3rd arg cookie to
319 * 32-bits (I think) so to be safe we have it read the pointer
320 * contained here so we work on >4GB machines. -DaveM
321 */
322static struct thread_info *cpu_new_thread = NULL;
323
324static int __devinit smp_boot_one_cpu(unsigned int cpu)
325{
326 unsigned long entry =
327 (unsigned long)(&sparc64_cpu_startup);
328 unsigned long cookie =
329 (unsigned long)(&cpu_new_thread);
330 struct task_struct *p;
7890f794 331 int timeout, ret;
1da177e4
LT
332
333 p = fork_idle(cpu);
334 callin_flag = 0;
f3169641 335 cpu_new_thread = task_thread_info(p);
1da177e4
LT
336 cpu_set(cpu, cpu_callout_map);
337
7890f794 338 if (tlb_type == hypervisor) {
72aff53f
DM
339 /* Alloc the mondo queues, cpu will load them. */
340 sun4v_init_mondo_queues(0, cpu, 1, 0);
341
7890f794
DM
342 prom_startcpu_cpuid(cpu, entry, cookie);
343 } else {
07f8e5f3 344 struct device_node *dp;
7890f794 345
07f8e5f3
DM
346 cpu_find_by_mid(cpu, &dp);
347 prom_startcpu(dp->node, entry, cookie);
7890f794 348 }
1da177e4
LT
349
350 for (timeout = 0; timeout < 5000000; timeout++) {
351 if (callin_flag)
352 break;
353 udelay(100);
354 }
72aff53f 355
1da177e4
LT
356 if (callin_flag) {
357 ret = 0;
358 } else {
359 printk("Processor %d is stuck.\n", cpu);
360 cpu_clear(cpu, cpu_callout_map);
361 ret = -ENODEV;
362 }
363 cpu_new_thread = NULL;
364
365 return ret;
366}
367
368static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
369{
370 u64 result, target;
371 int stuck, tmp;
372
373 if (this_is_starfire) {
374 /* map to real upaid */
375 cpu = (((cpu & 0x3c) << 1) |
376 ((cpu & 0x40) >> 4) |
377 (cpu & 0x3));
378 }
379
380 target = (cpu << 14) | 0x70;
381again:
382 /* Ok, this is the real Spitfire Errata #54.
383 * One must read back from a UDB internal register
384 * after writes to the UDB interrupt dispatch, but
385 * before the membar Sync for that write.
386 * So we use the high UDB control register (ASI 0x7f,
387 * ADDR 0x20) for the dummy read. -DaveM
388 */
389 tmp = 0x40;
390 __asm__ __volatile__(
391 "wrpr %1, %2, %%pstate\n\t"
392 "stxa %4, [%0] %3\n\t"
393 "stxa %5, [%0+%8] %3\n\t"
394 "add %0, %8, %0\n\t"
395 "stxa %6, [%0+%8] %3\n\t"
396 "membar #Sync\n\t"
397 "stxa %%g0, [%7] %3\n\t"
398 "membar #Sync\n\t"
399 "mov 0x20, %%g1\n\t"
400 "ldxa [%%g1] 0x7f, %%g0\n\t"
401 "membar #Sync"
402 : "=r" (tmp)
403 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
404 "r" (data0), "r" (data1), "r" (data2), "r" (target),
405 "r" (0x10), "0" (tmp)
406 : "g1");
407
408 /* NOTE: PSTATE_IE is still clear. */
409 stuck = 100000;
410 do {
411 __asm__ __volatile__("ldxa [%%g0] %1, %0"
412 : "=r" (result)
413 : "i" (ASI_INTR_DISPATCH_STAT));
414 if (result == 0) {
415 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
416 : : "r" (pstate));
417 return;
418 }
419 stuck -= 1;
420 if (stuck == 0)
421 break;
422 } while (result & 0x1);
423 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
424 : : "r" (pstate));
425 if (stuck == 0) {
426 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
427 smp_processor_id(), result);
428 } else {
429 udelay(2);
430 goto again;
431 }
432}
433
434static __inline__ void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
435{
436 u64 pstate;
437 int i;
438
439 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
440 for_each_cpu_mask(i, mask)
441 spitfire_xcall_helper(data0, data1, data2, pstate, i);
442}
443
444/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
445 * packet, but we have no use for that. However we do take advantage of
446 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
447 */
448static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
449{
450 u64 pstate, ver;
92704a1c 451 int nack_busy_id, is_jbus;
1da177e4
LT
452
453 if (cpus_empty(mask))
454 return;
455
456 /* Unfortunately, someone at Sun had the brilliant idea to make the
457 * busy/nack fields hard-coded by ITID number for this Ultra-III
458 * derivative processor.
459 */
460 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
92704a1c
DM
461 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
462 (ver >> 32) == __SERRANO_ID);
1da177e4
LT
463
464 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
465
466retry:
467 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
468 : : "r" (pstate), "i" (PSTATE_IE));
469
470 /* Setup the dispatch data registers. */
471 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
472 "stxa %1, [%4] %6\n\t"
473 "stxa %2, [%5] %6\n\t"
474 "membar #Sync\n\t"
475 : /* no outputs */
476 : "r" (data0), "r" (data1), "r" (data2),
477 "r" (0x40), "r" (0x50), "r" (0x60),
478 "i" (ASI_INTR_W));
479
480 nack_busy_id = 0;
481 {
482 int i;
483
484 for_each_cpu_mask(i, mask) {
485 u64 target = (i << 14) | 0x70;
486
92704a1c 487 if (!is_jbus)
1da177e4
LT
488 target |= (nack_busy_id << 24);
489 __asm__ __volatile__(
490 "stxa %%g0, [%0] %1\n\t"
491 "membar #Sync\n\t"
492 : /* no outputs */
493 : "r" (target), "i" (ASI_INTR_W));
494 nack_busy_id++;
495 }
496 }
497
498 /* Now, poll for completion. */
499 {
500 u64 dispatch_stat;
501 long stuck;
502
503 stuck = 100000 * nack_busy_id;
504 do {
505 __asm__ __volatile__("ldxa [%%g0] %1, %0"
506 : "=r" (dispatch_stat)
507 : "i" (ASI_INTR_DISPATCH_STAT));
508 if (dispatch_stat == 0UL) {
509 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
510 : : "r" (pstate));
511 return;
512 }
513 if (!--stuck)
514 break;
515 } while (dispatch_stat & 0x5555555555555555UL);
516
517 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
518 : : "r" (pstate));
519
520 if ((dispatch_stat & ~(0x5555555555555555UL)) == 0) {
521 /* Busy bits will not clear, continue instead
522 * of freezing up on this cpu.
523 */
524 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
525 smp_processor_id(), dispatch_stat);
526 } else {
527 int i, this_busy_nack = 0;
528
529 /* Delay some random time with interrupts enabled
530 * to prevent deadlock.
531 */
532 udelay(2 * nack_busy_id);
533
534 /* Clear out the mask bits for cpus which did not
535 * NACK us.
536 */
537 for_each_cpu_mask(i, mask) {
538 u64 check_mask;
539
92704a1c 540 if (is_jbus)
1da177e4
LT
541 check_mask = (0x2UL << (2*i));
542 else
543 check_mask = (0x2UL <<
544 this_busy_nack);
545 if ((dispatch_stat & check_mask) == 0)
546 cpu_clear(i, mask);
547 this_busy_nack += 2;
548 }
549
550 goto retry;
551 }
552 }
553}
554
1d2f1f90 555/* Multi-cpu list version. */
a43fe0e7
DM
556static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
557{
b830ab66
DM
558 struct trap_per_cpu *tb;
559 u16 *cpu_list;
560 u64 *mondo;
561 cpumask_t error_mask;
562 unsigned long flags, status;
3cab0c3e 563 int cnt, retries, this_cpu, prev_sent, i;
b830ab66
DM
564
565 /* We have to do this whole thing with interrupts fully disabled.
566 * Otherwise if we send an xcall from interrupt context it will
567 * corrupt both our mondo block and cpu list state.
568 *
569 * One consequence of this is that we cannot use timeout mechanisms
570 * that depend upon interrupts being delivered locally. So, for
571 * example, we cannot sample jiffies and expect it to advance.
572 *
573 * Fortunately, udelay() uses %stick/%tick so we can use that.
574 */
575 local_irq_save(flags);
576
577 this_cpu = smp_processor_id();
578 tb = &trap_block[this_cpu];
1d2f1f90 579
b830ab66 580 mondo = __va(tb->cpu_mondo_block_pa);
1d2f1f90
DM
581 mondo[0] = data0;
582 mondo[1] = data1;
583 mondo[2] = data2;
584 wmb();
585
b830ab66
DM
586 cpu_list = __va(tb->cpu_list_pa);
587
588 /* Setup the initial cpu list. */
589 cnt = 0;
590 for_each_cpu_mask(i, mask)
591 cpu_list[cnt++] = i;
592
593 cpus_clear(error_mask);
1d2f1f90 594 retries = 0;
3cab0c3e 595 prev_sent = 0;
1d2f1f90 596 do {
3cab0c3e 597 int forward_progress, n_sent;
1d2f1f90 598
b830ab66
DM
599 status = sun4v_cpu_mondo_send(cnt,
600 tb->cpu_list_pa,
601 tb->cpu_mondo_block_pa);
602
603 /* HV_EOK means all cpus received the xcall, we're done. */
604 if (likely(status == HV_EOK))
1d2f1f90 605 break;
b830ab66 606
3cab0c3e
DM
607 /* First, see if we made any forward progress.
608 *
609 * The hypervisor indicates successful sends by setting
610 * cpu list entries to the value 0xffff.
b830ab66 611 */
3cab0c3e 612 n_sent = 0;
b830ab66 613 for (i = 0; i < cnt; i++) {
3cab0c3e
DM
614 if (likely(cpu_list[i] == 0xffff))
615 n_sent++;
1d2f1f90
DM
616 }
617
3cab0c3e
DM
618 forward_progress = 0;
619 if (n_sent > prev_sent)
620 forward_progress = 1;
621
622 prev_sent = n_sent;
623
b830ab66
DM
624 /* If we get a HV_ECPUERROR, then one or more of the cpus
625 * in the list are in error state. Use the cpu_state()
626 * hypervisor call to find out which cpus are in error state.
627 */
628 if (unlikely(status == HV_ECPUERROR)) {
629 for (i = 0; i < cnt; i++) {
630 long err;
631 u16 cpu;
632
633 cpu = cpu_list[i];
634 if (cpu == 0xffff)
635 continue;
636
637 err = sun4v_cpu_state(cpu);
638 if (err >= 0 &&
639 err == HV_CPU_STATE_ERROR) {
3cab0c3e 640 cpu_list[i] = 0xffff;
b830ab66
DM
641 cpu_set(cpu, error_mask);
642 }
643 }
644 } else if (unlikely(status != HV_EWOULDBLOCK))
645 goto fatal_mondo_error;
646
3cab0c3e
DM
647 /* Don't bother rewriting the CPU list, just leave the
648 * 0xffff and non-0xffff entries in there and the
649 * hypervisor will do the right thing.
650 *
651 * Only advance timeout state if we didn't make any
652 * forward progress.
653 */
b830ab66
DM
654 if (unlikely(!forward_progress)) {
655 if (unlikely(++retries > 10000))
656 goto fatal_mondo_timeout;
657
658 /* Delay a little bit to let other cpus catch up
659 * on their cpu mondo queue work.
660 */
661 udelay(2 * cnt);
662 }
1d2f1f90
DM
663 } while (1);
664
b830ab66
DM
665 local_irq_restore(flags);
666
667 if (unlikely(!cpus_empty(error_mask)))
668 goto fatal_mondo_cpu_error;
669
670 return;
671
672fatal_mondo_cpu_error:
673 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
674 "were in error state\n",
675 this_cpu);
676 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
677 for_each_cpu_mask(i, error_mask)
678 printk("%d ", i);
679 printk("]\n");
680 return;
681
682fatal_mondo_timeout:
683 local_irq_restore(flags);
684 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
685 " progress after %d retries.\n",
686 this_cpu, retries);
687 goto dump_cpu_list_and_out;
688
689fatal_mondo_error:
690 local_irq_restore(flags);
691 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
692 this_cpu, status);
693 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
694 "mondo_block_pa(%lx)\n",
695 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
696
697dump_cpu_list_and_out:
698 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
699 for (i = 0; i < cnt; i++)
700 printk("%u ", cpu_list[i]);
701 printk("]\n");
1d2f1f90 702}
a43fe0e7 703
1da177e4
LT
704/* Send cross call to all processors mentioned in MASK
705 * except self.
706 */
707static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
708{
709 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
710 int this_cpu = get_cpu();
711
712 cpus_and(mask, mask, cpu_online_map);
713 cpu_clear(this_cpu, mask);
714
715 if (tlb_type == spitfire)
716 spitfire_xcall_deliver(data0, data1, data2, mask);
a43fe0e7 717 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1da177e4 718 cheetah_xcall_deliver(data0, data1, data2, mask);
a43fe0e7
DM
719 else
720 hypervisor_xcall_deliver(data0, data1, data2, mask);
1da177e4
LT
721 /* NOTE: Caller runs local copy on master. */
722
723 put_cpu();
724}
725
726extern unsigned long xcall_sync_tick;
727
728static void smp_start_sync_tick_client(int cpu)
729{
730 cpumask_t mask = cpumask_of_cpu(cpu);
731
732 smp_cross_call_masked(&xcall_sync_tick,
733 0, 0, 0, mask);
734}
735
736/* Send cross call to all processors except self. */
737#define smp_cross_call(func, ctx, data1, data2) \
738 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
739
740struct call_data_struct {
741 void (*func) (void *info);
742 void *info;
743 atomic_t finished;
744 int wait;
745};
746
aa1d1a0a 747static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
1da177e4
LT
748static struct call_data_struct *call_data;
749
750extern unsigned long xcall_call_function;
751
aa1d1a0a
DM
752/**
753 * smp_call_function(): Run a function on all other CPUs.
754 * @func: The function to run. This must be fast and non-blocking.
755 * @info: An arbitrary pointer to pass to the function.
756 * @nonatomic: currently unused.
757 * @wait: If true, wait (atomically) until function has completed on other CPUs.
758 *
759 * Returns 0 on success, else a negative status code. Does not return until
760 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
761 *
1da177e4
LT
762 * You must not call this function with disabled interrupts or from a
763 * hardware interrupt handler or from a bottom half handler.
764 */
bd40791e
DM
765static int smp_call_function_mask(void (*func)(void *info), void *info,
766 int nonatomic, int wait, cpumask_t mask)
1da177e4
LT
767{
768 struct call_data_struct data;
ee29074d 769 int cpus;
1da177e4 770
1da177e4
LT
771 /* Can deadlock when called with interrupts disabled */
772 WARN_ON(irqs_disabled());
773
774 data.func = func;
775 data.info = info;
776 atomic_set(&data.finished, 0);
777 data.wait = wait;
778
779 spin_lock(&call_lock);
780
ee29074d
DM
781 cpu_clear(smp_processor_id(), mask);
782 cpus = cpus_weight(mask);
783 if (!cpus)
784 goto out_unlock;
785
1da177e4 786 call_data = &data;
aa1d1a0a 787 mb();
1da177e4 788
bd40791e 789 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
1da177e4 790
aa1d1a0a
DM
791 /* Wait for response */
792 while (atomic_read(&data.finished) != cpus)
793 cpu_relax();
1da177e4 794
ee29074d 795out_unlock:
1da177e4
LT
796 spin_unlock(&call_lock);
797
798 return 0;
1da177e4
LT
799}
800
bd40791e
DM
801int smp_call_function(void (*func)(void *info), void *info,
802 int nonatomic, int wait)
803{
804 return smp_call_function_mask(func, info, nonatomic, wait,
805 cpu_online_map);
806}
807
1da177e4
LT
808void smp_call_function_client(int irq, struct pt_regs *regs)
809{
810 void (*func) (void *info) = call_data->func;
811 void *info = call_data->info;
812
813 clear_softint(1 << irq);
814 if (call_data->wait) {
815 /* let initiator proceed only after completion */
816 func(info);
817 atomic_inc(&call_data->finished);
818 } else {
819 /* let initiator proceed after getting data */
820 atomic_inc(&call_data->finished);
821 func(info);
822 }
823}
824
bd40791e
DM
825static void tsb_sync(void *info)
826{
6f25f398 827 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
bd40791e
DM
828 struct mm_struct *mm = info;
829
6f25f398
DM
830 /* It is not valid to test "currrent->active_mm == mm" here.
831 *
832 * The value of "current" is not changed atomically with
833 * switch_mm(). But that's OK, we just need to check the
834 * current cpu's trap block PGD physical address.
835 */
836 if (tp->pgd_paddr == __pa(mm->pgd))
bd40791e
DM
837 tsb_context_switch(mm);
838}
839
840void smp_tsb_sync(struct mm_struct *mm)
841{
842 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
843}
844
1da177e4
LT
845extern unsigned long xcall_flush_tlb_mm;
846extern unsigned long xcall_flush_tlb_pending;
847extern unsigned long xcall_flush_tlb_kernel_range;
1da177e4
LT
848extern unsigned long xcall_report_regs;
849extern unsigned long xcall_receive_signal;
ee29074d 850extern unsigned long xcall_new_mmu_context_version;
1da177e4
LT
851
852#ifdef DCACHE_ALIASING_POSSIBLE
853extern unsigned long xcall_flush_dcache_page_cheetah;
854#endif
855extern unsigned long xcall_flush_dcache_page_spitfire;
856
857#ifdef CONFIG_DEBUG_DCFLUSH
858extern atomic_t dcpage_flushes;
859extern atomic_t dcpage_flushes_xcall;
860#endif
861
862static __inline__ void __local_flush_dcache_page(struct page *page)
863{
864#ifdef DCACHE_ALIASING_POSSIBLE
865 __flush_dcache_page(page_address(page),
866 ((tlb_type == spitfire) &&
867 page_mapping(page) != NULL));
868#else
869 if (page_mapping(page) != NULL &&
870 tlb_type == spitfire)
871 __flush_icache_page(__pa(page_address(page)));
872#endif
873}
874
875void smp_flush_dcache_page_impl(struct page *page, int cpu)
876{
877 cpumask_t mask = cpumask_of_cpu(cpu);
a43fe0e7
DM
878 int this_cpu;
879
880 if (tlb_type == hypervisor)
881 return;
1da177e4
LT
882
883#ifdef CONFIG_DEBUG_DCFLUSH
884 atomic_inc(&dcpage_flushes);
885#endif
a43fe0e7
DM
886
887 this_cpu = get_cpu();
888
1da177e4
LT
889 if (cpu == this_cpu) {
890 __local_flush_dcache_page(page);
891 } else if (cpu_online(cpu)) {
892 void *pg_addr = page_address(page);
893 u64 data0;
894
895 if (tlb_type == spitfire) {
896 data0 =
897 ((u64)&xcall_flush_dcache_page_spitfire);
898 if (page_mapping(page) != NULL)
899 data0 |= ((u64)1 << 32);
900 spitfire_xcall_deliver(data0,
901 __pa(pg_addr),
902 (u64) pg_addr,
903 mask);
a43fe0e7 904 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
905#ifdef DCACHE_ALIASING_POSSIBLE
906 data0 =
907 ((u64)&xcall_flush_dcache_page_cheetah);
908 cheetah_xcall_deliver(data0,
909 __pa(pg_addr),
910 0, mask);
911#endif
912 }
913#ifdef CONFIG_DEBUG_DCFLUSH
914 atomic_inc(&dcpage_flushes_xcall);
915#endif
916 }
917
918 put_cpu();
919}
920
921void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
922{
923 void *pg_addr = page_address(page);
924 cpumask_t mask = cpu_online_map;
925 u64 data0;
a43fe0e7
DM
926 int this_cpu;
927
928 if (tlb_type == hypervisor)
929 return;
930
931 this_cpu = get_cpu();
1da177e4
LT
932
933 cpu_clear(this_cpu, mask);
934
935#ifdef CONFIG_DEBUG_DCFLUSH
936 atomic_inc(&dcpage_flushes);
937#endif
938 if (cpus_empty(mask))
939 goto flush_self;
940 if (tlb_type == spitfire) {
941 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
942 if (page_mapping(page) != NULL)
943 data0 |= ((u64)1 << 32);
944 spitfire_xcall_deliver(data0,
945 __pa(pg_addr),
946 (u64) pg_addr,
947 mask);
a43fe0e7 948 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1da177e4
LT
949#ifdef DCACHE_ALIASING_POSSIBLE
950 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
951 cheetah_xcall_deliver(data0,
952 __pa(pg_addr),
953 0, mask);
954#endif
955 }
956#ifdef CONFIG_DEBUG_DCFLUSH
957 atomic_inc(&dcpage_flushes_xcall);
958#endif
959 flush_self:
960 __local_flush_dcache_page(page);
961
962 put_cpu();
963}
964
a0663a79
DM
965static void __smp_receive_signal_mask(cpumask_t mask)
966{
967 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
968}
969
1da177e4
LT
970void smp_receive_signal(int cpu)
971{
972 cpumask_t mask = cpumask_of_cpu(cpu);
973
a0663a79
DM
974 if (cpu_online(cpu))
975 __smp_receive_signal_mask(mask);
1da177e4
LT
976}
977
978void smp_receive_signal_client(int irq, struct pt_regs *regs)
ee29074d
DM
979{
980 clear_softint(1 << irq);
981}
982
983void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1da177e4 984{
a0663a79 985 struct mm_struct *mm;
ee29074d 986 unsigned long flags;
a0663a79 987
1da177e4 988 clear_softint(1 << irq);
a0663a79
DM
989
990 /* See if we need to allocate a new TLB context because
991 * the version of the one we are using is now out of date.
992 */
993 mm = current->active_mm;
ee29074d
DM
994 if (unlikely(!mm || (mm == &init_mm)))
995 return;
a0663a79 996
ee29074d 997 spin_lock_irqsave(&mm->context.lock, flags);
aac0aadf 998
ee29074d
DM
999 if (unlikely(!CTX_VALID(mm->context)))
1000 get_new_mmu_context(mm);
aac0aadf 1001
ee29074d 1002 spin_unlock_irqrestore(&mm->context.lock, flags);
aac0aadf 1003
ee29074d
DM
1004 load_secondary_context(mm);
1005 __flush_tlb_mm(CTX_HWBITS(mm->context),
1006 SECONDARY_CONTEXT);
a0663a79
DM
1007}
1008
1009void smp_new_mmu_context_version(void)
1010{
ee29074d 1011 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1da177e4
LT
1012}
1013
1014void smp_report_regs(void)
1015{
1016 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1017}
1018
1da177e4
LT
1019/* We know that the window frames of the user have been flushed
1020 * to the stack before we get here because all callers of us
1021 * are flush_tlb_*() routines, and these run after flush_cache_*()
1022 * which performs the flushw.
1023 *
1024 * The SMP TLB coherency scheme we use works as follows:
1025 *
1026 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1027 * space has (potentially) executed on, this is the heuristic
1028 * we use to avoid doing cross calls.
1029 *
1030 * Also, for flushing from kswapd and also for clones, we
1031 * use cpu_vm_mask as the list of cpus to make run the TLB.
1032 *
1033 * 2) TLB context numbers are shared globally across all processors
1034 * in the system, this allows us to play several games to avoid
1035 * cross calls.
1036 *
1037 * One invariant is that when a cpu switches to a process, and
1038 * that processes tsk->active_mm->cpu_vm_mask does not have the
1039 * current cpu's bit set, that tlb context is flushed locally.
1040 *
1041 * If the address space is non-shared (ie. mm->count == 1) we avoid
1042 * cross calls when we want to flush the currently running process's
1043 * tlb state. This is done by clearing all cpu bits except the current
1044 * processor's in current->active_mm->cpu_vm_mask and performing the
1045 * flush locally only. This will force any subsequent cpus which run
1046 * this task to flush the context from the local tlb if the process
1047 * migrates to another cpu (again).
1048 *
1049 * 3) For shared address spaces (threads) and swapping we bite the
1050 * bullet for most cases and perform the cross call (but only to
1051 * the cpus listed in cpu_vm_mask).
1052 *
1053 * The performance gain from "optimizing" away the cross call for threads is
1054 * questionable (in theory the big win for threads is the massive sharing of
1055 * address space state across processors).
1056 */
62dbec78
DM
1057
1058/* This currently is only used by the hugetlb arch pre-fault
1059 * hook on UltraSPARC-III+ and later when changing the pagesize
1060 * bits of the context register for an address space.
1061 */
1da177e4
LT
1062void smp_flush_tlb_mm(struct mm_struct *mm)
1063{
62dbec78
DM
1064 u32 ctx = CTX_HWBITS(mm->context);
1065 int cpu = get_cpu();
1da177e4 1066
62dbec78
DM
1067 if (atomic_read(&mm->mm_users) == 1) {
1068 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1069 goto local_flush_and_out;
1070 }
1da177e4 1071
62dbec78
DM
1072 smp_cross_call_masked(&xcall_flush_tlb_mm,
1073 ctx, 0, 0,
1074 mm->cpu_vm_mask);
1da177e4 1075
62dbec78
DM
1076local_flush_and_out:
1077 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1da177e4 1078
62dbec78 1079 put_cpu();
1da177e4
LT
1080}
1081
1082void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1083{
1084 u32 ctx = CTX_HWBITS(mm->context);
1085 int cpu = get_cpu();
1086
dedeb002 1087 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1da177e4 1088 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
dedeb002
HD
1089 else
1090 smp_cross_call_masked(&xcall_flush_tlb_pending,
1091 ctx, nr, (unsigned long) vaddrs,
1092 mm->cpu_vm_mask);
1da177e4 1093
1da177e4
LT
1094 __flush_tlb_pending(ctx, nr, vaddrs);
1095
1096 put_cpu();
1097}
1098
1099void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1100{
1101 start &= PAGE_MASK;
1102 end = PAGE_ALIGN(end);
1103 if (start != end) {
1104 smp_cross_call(&xcall_flush_tlb_kernel_range,
1105 0, start, end);
1106
1107 __flush_tlb_kernel_range(start, end);
1108 }
1109}
1110
1111/* CPU capture. */
1112/* #define CAPTURE_DEBUG */
1113extern unsigned long xcall_capture;
1114
1115static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1116static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1117static unsigned long penguins_are_doing_time;
1118
1119void smp_capture(void)
1120{
1121 int result = atomic_add_ret(1, &smp_capture_depth);
1122
1123 if (result == 1) {
1124 int ncpus = num_online_cpus();
1125
1126#ifdef CAPTURE_DEBUG
1127 printk("CPU[%d]: Sending penguins to jail...",
1128 smp_processor_id());
1129#endif
1130 penguins_are_doing_time = 1;
4f07118f 1131 membar_storestore_loadstore();
1da177e4
LT
1132 atomic_inc(&smp_capture_registry);
1133 smp_cross_call(&xcall_capture, 0, 0, 0);
1134 while (atomic_read(&smp_capture_registry) != ncpus)
4f07118f 1135 rmb();
1da177e4
LT
1136#ifdef CAPTURE_DEBUG
1137 printk("done\n");
1138#endif
1139 }
1140}
1141
1142void smp_release(void)
1143{
1144 if (atomic_dec_and_test(&smp_capture_depth)) {
1145#ifdef CAPTURE_DEBUG
1146 printk("CPU[%d]: Giving pardon to "
1147 "imprisoned penguins\n",
1148 smp_processor_id());
1149#endif
1150 penguins_are_doing_time = 0;
4f07118f 1151 membar_storeload_storestore();
1da177e4
LT
1152 atomic_dec(&smp_capture_registry);
1153 }
1154}
1155
1156/* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1157 * can service tlb flush xcalls...
1158 */
1159extern void prom_world(int);
96c6e0d8 1160
1da177e4
LT
1161void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1162{
1da177e4
LT
1163 clear_softint(1 << irq);
1164
1165 preempt_disable();
1166
1167 __asm__ __volatile__("flushw");
1da177e4
LT
1168 prom_world(1);
1169 atomic_inc(&smp_capture_registry);
4f07118f 1170 membar_storeload_storestore();
1da177e4 1171 while (penguins_are_doing_time)
4f07118f 1172 rmb();
1da177e4
LT
1173 atomic_dec(&smp_capture_registry);
1174 prom_world(0);
1175
1176 preempt_enable();
1177}
1178
1da177e4
LT
1179void __init smp_tick_init(void)
1180{
1181 boot_cpu_id = hard_smp_processor_id();
1da177e4
LT
1182}
1183
1184/* /proc/profile writes can call this, don't __init it please. */
1da177e4
LT
1185int setup_profiling_timer(unsigned int multiplier)
1186{
777a4475 1187 return -EINVAL;
1da177e4
LT
1188}
1189
9145bcf6
DM
1190static void __init smp_tune_scheduling(void)
1191{
07f8e5f3
DM
1192 struct device_node *dp;
1193 int instance;
9145bcf6
DM
1194 unsigned int def, smallest = ~0U;
1195
1196 def = ((tlb_type == hypervisor) ?
1197 (3 * 1024 * 1024) :
1198 (4 * 1024 * 1024));
1199
1200 instance = 0;
07f8e5f3 1201 while (!cpu_find_by_instance(instance, &dp, NULL)) {
9145bcf6
DM
1202 unsigned int val;
1203
07f8e5f3 1204 val = of_getintprop_default(dp, "ecache-size", def);
9145bcf6
DM
1205 if (val < smallest)
1206 smallest = val;
1207
1208 instance++;
1209 }
1210
1211 /* Any value less than 256K is nonsense. */
1212 if (smallest < (256U * 1024U))
1213 smallest = 256 * 1024;
1214
1215 max_cache_size = smallest;
1216
1217 if (smallest < 1U * 1024U * 1024U)
1218 printk(KERN_INFO "Using max_cache_size of %uKB\n",
1219 smallest / 1024U);
1220 else
1221 printk(KERN_INFO "Using max_cache_size of %uMB\n",
1222 smallest / 1024U / 1024U);
1223}
1224
7abea921 1225/* Constrain the number of cpus to max_cpus. */
1da177e4
LT
1226void __init smp_prepare_cpus(unsigned int max_cpus)
1227{
8935dced
DM
1228 int i;
1229
1da177e4 1230 if (num_possible_cpus() > max_cpus) {
7abea921
DM
1231 int instance, mid;
1232
1da177e4
LT
1233 instance = 0;
1234 while (!cpu_find_by_instance(instance, NULL, &mid)) {
1235 if (mid != boot_cpu_id) {
1236 cpu_clear(mid, phys_cpu_present_map);
7d3aee9a 1237 cpu_clear(mid, cpu_present_map);
1da177e4
LT
1238 if (num_possible_cpus() <= max_cpus)
1239 break;
1240 }
1241 instance++;
1242 }
1243 }
1244
a283a525 1245 for_each_possible_cpu(i) {
8935dced
DM
1246 if (tlb_type == hypervisor) {
1247 int j;
1248
1249 /* XXX get this mapping from machine description */
a283a525 1250 for_each_possible_cpu(j) {
8935dced
DM
1251 if ((j >> 2) == (i >> 2))
1252 cpu_set(j, cpu_sibling_map[i]);
1253 }
1254 } else {
1255 cpu_set(i, cpu_sibling_map[i]);
1256 }
1257 }
1258
1da177e4 1259 smp_store_cpu_info(boot_cpu_id);
9145bcf6 1260 smp_tune_scheduling();
1da177e4
LT
1261}
1262
7abea921
DM
1263/* Set this up early so that things like the scheduler can init
1264 * properly. We use the same cpu mask for both the present and
1265 * possible cpu map.
1266 */
1267void __init smp_setup_cpu_possible_map(void)
1268{
1269 int instance, mid;
1270
1271 instance = 0;
1272 while (!cpu_find_by_instance(instance, NULL, &mid)) {
7d3aee9a 1273 if (mid < NR_CPUS) {
7abea921 1274 cpu_set(mid, phys_cpu_present_map);
7d3aee9a
DM
1275 cpu_set(mid, cpu_present_map);
1276 }
7abea921
DM
1277 instance++;
1278 }
1279}
1280
1da177e4
LT
1281void __devinit smp_prepare_boot_cpu(void)
1282{
1da177e4
LT
1283}
1284
b282b6f8 1285int __cpuinit __cpu_up(unsigned int cpu)
1da177e4
LT
1286{
1287 int ret = smp_boot_one_cpu(cpu);
1288
1289 if (!ret) {
1290 cpu_set(cpu, smp_commenced_mask);
1291 while (!cpu_isset(cpu, cpu_online_map))
1292 mb();
1293 if (!cpu_isset(cpu, cpu_online_map)) {
1294 ret = -ENODEV;
1295 } else {
02fead75
DM
1296 /* On SUN4V, writes to %tick and %stick are
1297 * not allowed.
1298 */
1299 if (tlb_type != hypervisor)
1300 smp_synchronize_one_tick(cpu);
1da177e4
LT
1301 }
1302 }
1303 return ret;
1304}
1305
1306void __init smp_cpus_done(unsigned int max_cpus)
1307{
1308 unsigned long bogosum = 0;
1309 int i;
1310
394e3902
AM
1311 for_each_online_cpu(i)
1312 bogosum += cpu_data(i).udelay_val;
1da177e4
LT
1313 printk("Total of %ld processors activated "
1314 "(%lu.%02lu BogoMIPS).\n",
1315 (long) num_online_cpus(),
1316 bogosum/(500000/HZ),
1317 (bogosum/(5000/HZ))%100);
1318}
1319
1da177e4
LT
1320void smp_send_reschedule(int cpu)
1321{
64c7c8f8 1322 smp_receive_signal(cpu);
1da177e4
LT
1323}
1324
1325/* This is a nop because we capture all other cpus
1326 * anyways when making the PROM active.
1327 */
1328void smp_send_stop(void)
1329{
1330}
1331
d369ddd2
DM
1332unsigned long __per_cpu_base __read_mostly;
1333unsigned long __per_cpu_shift __read_mostly;
1da177e4
LT
1334
1335EXPORT_SYMBOL(__per_cpu_base);
1336EXPORT_SYMBOL(__per_cpu_shift);
1337
1338void __init setup_per_cpu_areas(void)
1339{
1340 unsigned long goal, size, i;
1341 char *ptr;
1da177e4
LT
1342
1343 /* Copy section for each CPU (we discard the original) */
5a089006
DM
1344 goal = PERCPU_ENOUGH_ROOM;
1345
1da177e4
LT
1346 __per_cpu_shift = 0;
1347 for (size = 1UL; size < goal; size <<= 1UL)
1348 __per_cpu_shift++;
1349
56fb4df6 1350 ptr = alloc_bootmem(size * NR_CPUS);
1da177e4
LT
1351
1352 __per_cpu_base = ptr - __per_cpu_start;
1353
1da177e4
LT
1354 for (i = 0; i < NR_CPUS; i++, ptr += size)
1355 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
951bc82c
DM
1356
1357 /* Setup %g5 for the boot cpu. */
1358 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1da177e4 1359}
This page took 0.274221 seconds and 5 git commands to generate.