arch/tile: don't set the homecache of a PTE unless appropriate
[deliverable/linux.git] / arch / tile / mm / fault.c
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * From i386 code copyright (C) 1995 Linus Torvalds
15 */
16
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/smp.h>
867e359b
CM
27#include <linux/interrupt.h>
28#include <linux/init.h>
29#include <linux/tty.h>
30#include <linux/vt_kern.h> /* For unblank_screen() */
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/kprobes.h>
34#include <linux/hugetlb.h>
35#include <linux/syscalls.h>
36#include <linux/uaccess.h>
37
867e359b
CM
38#include <asm/pgalloc.h>
39#include <asm/sections.h>
0707ad30
CM
40#include <asm/traps.h>
41#include <asm/syscalls.h>
867e359b
CM
42
43#include <arch/interrupts.h>
44
571d76ac
CM
45static noinline void force_sig_info_fault(const char *type, int si_signo,
46 int si_code, unsigned long address,
47 int fault_num,
48 struct task_struct *tsk,
49 struct pt_regs *regs)
867e359b
CM
50{
51 siginfo_t info;
52
53 if (unlikely(tsk->pid < 2)) {
54 panic("Signal %d (code %d) at %#lx sent to %s!",
55 si_signo, si_code & 0xffff, address,
a95f8817 56 is_idle_task(tsk) ? "the idle task" : "init");
867e359b
CM
57 }
58
59 info.si_signo = si_signo;
60 info.si_errno = 0;
61 info.si_code = si_code;
62 info.si_addr = (void __user *)address;
63 info.si_trapno = fault_num;
571d76ac 64 trace_unhandled_signal(type, regs, address, si_signo);
867e359b
CM
65 force_sig_info(si_signo, &info, tsk);
66}
67
68#ifndef __tilegx__
69/*
70 * Synthesize the fault a PL0 process would get by doing a word-load of
d929b6ae 71 * an unaligned address or a high kernel address.
867e359b 72 */
d929b6ae
CM
73SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address,
74 struct pt_regs *, regs)
867e359b
CM
75{
76 if (address >= PAGE_OFFSET)
571d76ac
CM
77 force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
78 address, INT_DTLB_MISS, current, regs);
867e359b 79 else
571d76ac
CM
80 force_sig_info_fault("atomic alignment fault", SIGBUS,
81 BUS_ADRALN, address,
82 INT_UNALIGN_DATA, current, regs);
867e359b
CM
83
84 /*
85 * Adjust pc to point at the actual instruction, which is unusual
86 * for syscalls normally, but is appropriate when we are claiming
87 * that a syscall swint1 caused a page fault or bus error.
88 */
89 regs->pc -= 8;
90
91 /*
92 * Mark this as a caller-save interrupt, like a normal page fault,
93 * so that when we go through the signal handler path we will
94 * properly restore r0, r1, and r2 for the signal handler arguments.
95 */
96 regs->flags |= PT_FLAGS_CALLER_SAVES;
97
98 return 0;
99}
100#endif
101
102static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
103{
104 unsigned index = pgd_index(address);
105 pgd_t *pgd_k;
106 pud_t *pud, *pud_k;
107 pmd_t *pmd, *pmd_k;
108
109 pgd += index;
110 pgd_k = init_mm.pgd + index;
111
112 if (!pgd_present(*pgd_k))
113 return NULL;
114
115 pud = pud_offset(pgd, address);
116 pud_k = pud_offset(pgd_k, address);
117 if (!pud_present(*pud_k))
118 return NULL;
119
120 pmd = pmd_offset(pud, address);
121 pmd_k = pmd_offset(pud_k, address);
122 if (!pmd_present(*pmd_k))
123 return NULL;
124 if (!pmd_present(*pmd)) {
125 set_pmd(pmd, *pmd_k);
126 arch_flush_lazy_mmu_mode();
127 } else
128 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
129 return pmd_k;
130}
131
132/*
51bcdf88 133 * Handle a fault on the vmalloc area.
867e359b
CM
134 */
135static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
136{
137 pmd_t *pmd_k;
138 pte_t *pte_k;
139
140 /* Make sure we are in vmalloc area */
141 if (!(address >= VMALLOC_START && address < VMALLOC_END))
142 return -1;
143
144 /*
145 * Synchronize this task's top level page-table
146 * with the 'reference' page table.
147 */
148 pmd_k = vmalloc_sync_one(pgd, address);
149 if (!pmd_k)
150 return -1;
151 if (pmd_huge(*pmd_k))
152 return 0; /* support TILE huge_vmap() API */
153 pte_k = pte_offset_kernel(pmd_k, address);
154 if (!pte_present(*pte_k))
155 return -1;
156 return 0;
157}
158
159/* Wait until this PTE has completed migration. */
160static void wait_for_migration(pte_t *pte)
161{
162 if (pte_migrating(*pte)) {
163 /*
164 * Wait until the migrater fixes up this pte.
165 * We scale the loop count by the clock rate so we'll wait for
166 * a few seconds here.
167 */
168 int retries = 0;
169 int bound = get_clock_rate();
170 while (pte_migrating(*pte)) {
171 barrier();
172 if (++retries > bound)
173 panic("Hit migrating PTE (%#llx) and"
174 " page PFN %#lx still migrating",
175 pte->val, pte_pfn(*pte));
176 }
177 }
178}
179
180/*
181 * It's not generally safe to use "current" to get the page table pointer,
182 * since we might be running an oprofile interrupt in the middle of a
183 * task switch.
184 */
185static pgd_t *get_current_pgd(void)
186{
187 HV_Context ctx = hv_inquire_context();
188 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
189 struct page *pgd_page = pfn_to_page(pgd_pfn);
190 BUG_ON(PageHighMem(pgd_page)); /* oops, HIGHPTE? */
191 return (pgd_t *) __va(ctx.page_table);
192}
193
194/*
195 * We can receive a page fault from a migrating PTE at any time.
196 * Handle it by just waiting until the fault resolves.
197 *
198 * It's also possible to get a migrating kernel PTE that resolves
199 * itself during the downcall from hypervisor to Linux. We just check
200 * here to see if the PTE seems valid, and if so we retry it.
201 *
202 * NOTE! We MUST NOT take any locks for this case. We may be in an
203 * interrupt or a critical region, and must do as little as possible.
204 * Similarly, we can't use atomic ops here, since we may be handling a
205 * fault caused by an atomic op access.
48292738
CM
206 *
207 * If we find a migrating PTE while we're in an NMI context, and we're
208 * at a PC that has a registered exception handler, we don't wait,
209 * since this thread may (e.g.) have been interrupted while migrating
210 * its own stack, which would then cause us to self-deadlock.
867e359b
CM
211 */
212static int handle_migrating_pte(pgd_t *pgd, int fault_num,
48292738 213 unsigned long address, unsigned long pc,
867e359b
CM
214 int is_kernel_mode, int write)
215{
216 pud_t *pud;
217 pmd_t *pmd;
218 pte_t *pte;
219 pte_t pteval;
220
221 if (pgd_addr_invalid(address))
222 return 0;
223
224 pgd += pgd_index(address);
225 pud = pud_offset(pgd, address);
226 if (!pud || !pud_present(*pud))
227 return 0;
228 pmd = pmd_offset(pud, address);
229 if (!pmd || !pmd_present(*pmd))
230 return 0;
231 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
232 pte_offset_kernel(pmd, address);
233 pteval = *pte;
234 if (pte_migrating(pteval)) {
48292738
CM
235 if (in_nmi() && search_exception_tables(pc))
236 return 0;
867e359b
CM
237 wait_for_migration(pte);
238 return 1;
239 }
240
241 if (!is_kernel_mode || !pte_present(pteval))
242 return 0;
243 if (fault_num == INT_ITLB_MISS) {
244 if (pte_exec(pteval))
245 return 1;
246 } else if (write) {
247 if (pte_write(pteval))
248 return 1;
249 } else {
250 if (pte_read(pteval))
251 return 1;
252 }
253
254 return 0;
255}
256
257/*
258 * This routine is responsible for faulting in user pages.
259 * It passes the work off to one of the appropriate routines.
260 * It returns true if the fault was successfully handled.
261 */
262static int handle_page_fault(struct pt_regs *regs,
263 int fault_num,
264 int is_page_fault,
265 unsigned long address,
266 int write)
267{
268 struct task_struct *tsk;
269 struct mm_struct *mm;
270 struct vm_area_struct *vma;
271 unsigned long stack_offset;
272 int fault;
273 int si_code;
274 int is_kernel_mode;
275 pgd_t *pgd;
276
277 /* on TILE, protection faults are always writes */
278 if (!is_page_fault)
279 write = 1;
280
281 is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
282
283 tsk = validate_current();
284
285 /*
286 * Check to see if we might be overwriting the stack, and bail
287 * out if so. The page fault code is a relatively likely
288 * place to get trapped in an infinite regress, and once we
289 * overwrite the whole stack, it becomes very hard to recover.
290 */
291 stack_offset = stack_pointer & (THREAD_SIZE-1);
292 if (stack_offset < THREAD_SIZE / 8) {
0707ad30 293 pr_alert("Potential stack overrun: sp %#lx\n",
867e359b
CM
294 stack_pointer);
295 show_regs(regs);
0707ad30 296 pr_alert("Killing current process %d/%s\n",
867e359b
CM
297 tsk->pid, tsk->comm);
298 do_group_exit(SIGKILL);
299 }
300
301 /*
302 * Early on, we need to check for migrating PTE entries;
303 * see homecache.c. If we find a migrating PTE, we wait until
25985edc 304 * the backing page claims to be done migrating, then we proceed.
867e359b
CM
305 * For kernel PTEs, we rewrite the PTE and return and retry.
306 * Otherwise, we treat the fault like a normal "no PTE" fault,
307 * rather than trying to patch up the existing PTE.
308 */
309 pgd = get_current_pgd();
48292738 310 if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
867e359b
CM
311 is_kernel_mode, write))
312 return 1;
313
314 si_code = SEGV_MAPERR;
315
316 /*
317 * We fault-in kernel-space virtual memory on-demand. The
318 * 'reference' page table is init_mm.pgd.
319 *
320 * NOTE! We MUST NOT take any locks for this case. We may
321 * be in an interrupt or a critical region, and should
322 * only copy the information from the master page table,
323 * nothing more.
324 *
325 * This verifies that the fault happens in kernel space
326 * and that the fault was not a protection fault.
327 */
328 if (unlikely(address >= TASK_SIZE &&
329 !is_arch_mappable_range(address, 0))) {
330 if (is_kernel_mode && is_page_fault &&
331 vmalloc_fault(pgd, address) >= 0)
332 return 1;
333 /*
334 * Don't take the mm semaphore here. If we fixup a prefetch
335 * fault we could otherwise deadlock.
336 */
337 mm = NULL; /* happy compiler */
338 vma = NULL;
339 goto bad_area_nosemaphore;
340 }
341
342 /*
343 * If we're trying to touch user-space addresses, we must
344 * be either at PL0, or else with interrupts enabled in the
345 * kernel, so either way we can re-enable interrupts here.
346 */
347 local_irq_enable();
348
349 mm = tsk->mm;
350
351 /*
352 * If we're in an interrupt, have no user context or are running in an
353 * atomic region then we must not take the fault.
354 */
355 if (in_atomic() || !mm) {
356 vma = NULL; /* happy compiler */
357 goto bad_area_nosemaphore;
358 }
359
360 /*
361 * When running in the kernel we expect faults to occur only to
362 * addresses in user space. All other faults represent errors in the
363 * kernel and should generate an OOPS. Unfortunately, in the case of an
364 * erroneous fault occurring in a code path which already holds mmap_sem
365 * we will deadlock attempting to validate the fault against the
366 * address space. Luckily the kernel only validly references user
367 * space from well defined areas of code, which are listed in the
368 * exceptions table.
369 *
370 * As the vast majority of faults will be valid we will only perform
371 * the source reference check when there is a possibility of a deadlock.
372 * Attempt to lock the address space, if we cannot we then validate the
373 * source. If this is invalid we can skip the address space check,
374 * thus avoiding the deadlock.
375 */
376 if (!down_read_trylock(&mm->mmap_sem)) {
377 if (is_kernel_mode &&
378 !search_exception_tables(regs->pc)) {
379 vma = NULL; /* happy compiler */
380 goto bad_area_nosemaphore;
381 }
382 down_read(&mm->mmap_sem);
383 }
384
385 vma = find_vma(mm, address);
386 if (!vma)
387 goto bad_area;
388 if (vma->vm_start <= address)
389 goto good_area;
390 if (!(vma->vm_flags & VM_GROWSDOWN))
391 goto bad_area;
392 if (regs->sp < PAGE_OFFSET) {
393 /*
394 * accessing the stack below sp is always a bug.
395 */
396 if (address < regs->sp)
397 goto bad_area;
398 }
399 if (expand_stack(vma, address))
400 goto bad_area;
401
402/*
403 * Ok, we have a good vm_area for this memory access, so
404 * we can handle it..
405 */
406good_area:
407 si_code = SEGV_ACCERR;
408 if (fault_num == INT_ITLB_MISS) {
409 if (!(vma->vm_flags & VM_EXEC))
410 goto bad_area;
411 } else if (write) {
412#ifdef TEST_VERIFY_AREA
413 if (!is_page_fault && regs->cs == KERNEL_CS)
0707ad30 414 pr_err("WP fault at "REGFMT"\n", regs->eip);
867e359b
CM
415#endif
416 if (!(vma->vm_flags & VM_WRITE))
417 goto bad_area;
418 } else {
419 if (!is_page_fault || !(vma->vm_flags & VM_READ))
420 goto bad_area;
421 }
422
423 survive:
424 /*
425 * If for any reason at all we couldn't handle the fault,
426 * make sure we exit gracefully rather than endlessly redo
427 * the fault.
428 */
429 fault = handle_mm_fault(mm, vma, address, write);
430 if (unlikely(fault & VM_FAULT_ERROR)) {
431 if (fault & VM_FAULT_OOM)
432 goto out_of_memory;
433 else if (fault & VM_FAULT_SIGBUS)
434 goto do_sigbus;
435 BUG();
436 }
437 if (fault & VM_FAULT_MAJOR)
438 tsk->maj_flt++;
439 else
440 tsk->min_flt++;
441
0707ad30 442#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
867e359b
CM
443 /*
444 * If this was an asynchronous fault,
445 * restart the appropriate engine.
446 */
447 switch (fault_num) {
448#if CHIP_HAS_TILE_DMA()
449 case INT_DMATLB_MISS:
450 case INT_DMATLB_MISS_DWNCL:
451 case INT_DMATLB_ACCESS:
452 case INT_DMATLB_ACCESS_DWNCL:
453 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
454 break;
455#endif
456#if CHIP_HAS_SN_PROC()
457 case INT_SNITLB_MISS:
458 case INT_SNITLB_MISS_DWNCL:
459 __insn_mtspr(SPR_SNCTL,
460 __insn_mfspr(SPR_SNCTL) &
461 ~SPR_SNCTL__FRZPROC_MASK);
462 break;
463#endif
464 }
0707ad30 465#endif
867e359b
CM
466
467 up_read(&mm->mmap_sem);
468 return 1;
469
470/*
471 * Something tried to access memory that isn't in our memory map..
472 * Fix it, but check if it's kernel or user first..
473 */
474bad_area:
475 up_read(&mm->mmap_sem);
476
477bad_area_nosemaphore:
478 /* User mode accesses just cause a SIGSEGV */
479 if (!is_kernel_mode) {
480 /*
481 * It's possible to have interrupts off here.
482 */
483 local_irq_enable();
484
571d76ac
CM
485 force_sig_info_fault("segfault", SIGSEGV, si_code, address,
486 fault_num, tsk, regs);
867e359b
CM
487 return 0;
488 }
489
490no_context:
491 /* Are we prepared to handle this kernel fault? */
492 if (fixup_exception(regs))
493 return 0;
494
495/*
496 * Oops. The kernel tried to access some bad page. We'll have to
497 * terminate things with extreme prejudice.
498 */
499
500 bust_spinlocks(1);
501
502 /* FIXME: no lookup_address() yet */
503#ifdef SUPPORT_LOOKUP_ADDRESS
504 if (fault_num == INT_ITLB_MISS) {
505 pte_t *pte = lookup_address(address);
506
507 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
0707ad30 508 pr_crit("kernel tried to execute"
867e359b
CM
509 " non-executable page - exploit attempt?"
510 " (uid: %d)\n", current->uid);
511 }
512#endif
513 if (address < PAGE_SIZE)
0707ad30 514 pr_alert("Unable to handle kernel NULL pointer dereference\n");
867e359b 515 else
0707ad30
CM
516 pr_alert("Unable to handle kernel paging request\n");
517 pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
518 address, regs->pc);
867e359b
CM
519
520 show_regs(regs);
521
522 if (unlikely(tsk->pid < 2)) {
523 panic("Kernel page fault running %s!",
a95f8817 524 is_idle_task(tsk) ? "the idle task" : "init");
867e359b
CM
525 }
526
527 /*
528 * More FIXME: we should probably copy the i386 here and
529 * implement a generic die() routine. Not today.
530 */
531#ifdef SUPPORT_DIE
532 die("Oops", regs);
533#endif
534 bust_spinlocks(1);
535
536 do_group_exit(SIGKILL);
537
538/*
539 * We ran out of memory, or some other thing happened to us that made
540 * us unable to handle the page fault gracefully.
541 */
542out_of_memory:
543 up_read(&mm->mmap_sem);
544 if (is_global_init(tsk)) {
545 yield();
546 down_read(&mm->mmap_sem);
547 goto survive;
548 }
0707ad30 549 pr_alert("VM: killing process %s\n", tsk->comm);
867e359b
CM
550 if (!is_kernel_mode)
551 do_group_exit(SIGKILL);
552 goto no_context;
553
554do_sigbus:
555 up_read(&mm->mmap_sem);
556
557 /* Kernel mode? Handle exceptions or die */
558 if (is_kernel_mode)
559 goto no_context;
560
571d76ac
CM
561 force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
562 fault_num, tsk, regs);
867e359b
CM
563 return 0;
564}
565
566#ifndef __tilegx__
567
867e359b
CM
568/* We must release ICS before panicking or we won't get anywhere. */
569#define ics_panic(fmt, ...) do { \
570 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
571 panic(fmt, __VA_ARGS__); \
572} while (0)
573
867e359b
CM
574/*
575 * When we take an ITLB or DTLB fault or access violation in the
576 * supervisor while the critical section bit is set, the hypervisor is
a78c942d 577 * reluctant to write new values into the EX_CONTEXT_K_x registers,
867e359b
CM
578 * since that might indicate we have not yet squirreled the SPR
579 * contents away and can thus safely take a recursive interrupt.
a78c942d 580 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
c745a8a1
CM
581 *
582 * Note that this routine is called before homecache_tlb_defer_enter(),
583 * which means that we can properly unlock any atomics that might
584 * be used there (good), but also means we must be very sensitive
585 * to not touch any data structures that might be located in memory
586 * that could migrate, as we could be entering the kernel on a dataplane
587 * cpu that has been deferring kernel TLB updates. This means, for
588 * example, that we can't migrate init_mm or its pgd.
867e359b
CM
589 */
590struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
591 unsigned long address,
592 unsigned long info)
593{
594 unsigned long pc = info & ~1;
595 int write = info & 1;
596 pgd_t *pgd = get_current_pgd();
597
598 /* Retval is 1 at first since we will handle the fault fully. */
599 struct intvec_state state = {
600 do_page_fault, fault_num, address, write, 1
601 };
602
603 /* Validate that we are plausibly in the right routine. */
604 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
605 (fault_num != INT_DTLB_MISS &&
606 fault_num != INT_DTLB_ACCESS)) {
607 unsigned long old_pc = regs->pc;
608 regs->pc = pc;
609 ics_panic("Bad ICS page fault args:"
610 " old PC %#lx, fault %d/%d at %#lx\n",
611 old_pc, fault_num, write, address);
612 }
613
614 /* We might be faulting on a vmalloc page, so check that first. */
615 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
616 return state;
617
618 /*
619 * If we faulted with ICS set in sys_cmpxchg, we are providing
620 * a user syscall service that should generate a signal on
621 * fault. We didn't set up a kernel stack on initial entry to
622 * sys_cmpxchg, but instead had one set up by the fault, which
623 * (because sys_cmpxchg never releases ICS) came to us via the
a78c942d 624 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
867e359b
CM
625 * still referencing the original user code. We release the
626 * atomic lock and rewrite pt_regs so that it appears that we
627 * came from user-space directly, and after we finish the
628 * fault we'll go back to user space and re-issue the swint.
629 * This way the backtrace information is correct if we need to
630 * emit a stack dump at any point while handling this.
631 *
632 * Must match register use in sys_cmpxchg().
633 */
634 if (pc >= (unsigned long) sys_cmpxchg &&
635 pc < (unsigned long) __sys_cmpxchg_end) {
636#ifdef CONFIG_SMP
637 /* Don't unlock before we could have locked. */
638 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
639 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
640 __atomic_fault_unlock(lock_ptr);
641 }
642#endif
643 regs->sp = regs->regs[27];
644 }
645
646 /*
647 * We can also fault in the atomic assembly, in which
648 * case we use the exception table to do the first-level fixup.
649 * We may re-fixup again in the real fault handler if it
650 * turns out the faulting address is just bad, and not,
651 * for example, migrating.
652 */
653 else if (pc >= (unsigned long) __start_atomic_asm_code &&
654 pc < (unsigned long) __end_atomic_asm_code) {
655 const struct exception_table_entry *fixup;
656#ifdef CONFIG_SMP
657 /* Unlock the atomic lock. */
658 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
659 __atomic_fault_unlock(lock_ptr);
660#endif
661 fixup = search_exception_tables(pc);
662 if (!fixup)
663 ics_panic("ICS atomic fault not in table:"
664 " PC %#lx, fault %d", pc, fault_num);
665 regs->pc = fixup->fixup;
666 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
667 }
668
867e359b
CM
669 /*
670 * Now that we have released the atomic lock (if necessary),
671 * it's safe to spin if the PTE that caused the fault was migrating.
672 */
673 if (fault_num == INT_DTLB_ACCESS)
674 write = 1;
48292738 675 if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
867e359b
CM
676 return state;
677
678 /* Return zero so that we continue on with normal fault handling. */
679 state.retval = 0;
680 return state;
681}
682
683#endif /* !__tilegx__ */
684
685/*
686 * This routine handles page faults. It determines the address, and the
687 * problem, and then passes it handle_page_fault() for normal DTLB and
688 * ITLB issues, and for DMA or SN processor faults when we are in user
689 * space. For the latter, if we're in kernel mode, we just save the
690 * interrupt away appropriately and return immediately. We can't do
691 * page faults for user code while in kernel mode.
692 */
693void do_page_fault(struct pt_regs *regs, int fault_num,
694 unsigned long address, unsigned long write)
695{
696 int is_page_fault;
697
698 /* This case should have been handled by do_page_fault_ics(). */
699 BUG_ON(write & ~1);
700
701#if CHIP_HAS_TILE_DMA()
702 /*
703 * If it's a DMA fault, suspend the transfer while we're
704 * handling the miss; we'll restart after it's handled. If we
705 * don't suspend, it's possible that this process could swap
706 * out and back in, and restart the engine since the DMA is
707 * still 'running'.
708 */
709 if (fault_num == INT_DMATLB_MISS ||
710 fault_num == INT_DMATLB_ACCESS ||
711 fault_num == INT_DMATLB_MISS_DWNCL ||
712 fault_num == INT_DMATLB_ACCESS_DWNCL) {
713 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
714 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
715 SPR_DMA_STATUS__BUSY_MASK)
716 ;
717 }
718#endif
719
720 /* Validate fault num and decide if this is a first-time page fault. */
721 switch (fault_num) {
722 case INT_ITLB_MISS:
723 case INT_DTLB_MISS:
724#if CHIP_HAS_TILE_DMA()
725 case INT_DMATLB_MISS:
726 case INT_DMATLB_MISS_DWNCL:
727#endif
728#if CHIP_HAS_SN_PROC()
729 case INT_SNITLB_MISS:
730 case INT_SNITLB_MISS_DWNCL:
731#endif
732 is_page_fault = 1;
733 break;
734
735 case INT_DTLB_ACCESS:
736#if CHIP_HAS_TILE_DMA()
737 case INT_DMATLB_ACCESS:
738 case INT_DMATLB_ACCESS_DWNCL:
739#endif
740 is_page_fault = 0;
741 break;
742
743 default:
744 panic("Bad fault number %d in do_page_fault", fault_num);
745 }
746
313ce674 747#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
867e359b
CM
748 if (EX1_PL(regs->ex1) != USER_PL) {
749 struct async_tlb *async;
750 switch (fault_num) {
751#if CHIP_HAS_TILE_DMA()
752 case INT_DMATLB_MISS:
753 case INT_DMATLB_ACCESS:
754 case INT_DMATLB_MISS_DWNCL:
755 case INT_DMATLB_ACCESS_DWNCL:
756 async = &current->thread.dma_async_tlb;
757 break;
758#endif
759#if CHIP_HAS_SN_PROC()
760 case INT_SNITLB_MISS:
761 case INT_SNITLB_MISS_DWNCL:
762 async = &current->thread.sn_async_tlb;
763 break;
764#endif
765 default:
766 async = NULL;
767 }
768 if (async) {
769
770 /*
771 * No vmalloc check required, so we can allow
772 * interrupts immediately at this point.
773 */
774 local_irq_enable();
775
776 set_thread_flag(TIF_ASYNC_TLB);
777 if (async->fault_num != 0) {
778 panic("Second async fault %d;"
779 " old fault was %d (%#lx/%ld)",
780 fault_num, async->fault_num,
781 address, write);
782 }
783 BUG_ON(fault_num == 0);
784 async->fault_num = fault_num;
785 async->is_fault = is_page_fault;
786 async->is_write = write;
787 async->address = address;
788 return;
789 }
790 }
313ce674 791#endif
867e359b
CM
792
793 handle_page_fault(regs, fault_num, is_page_fault, address, write);
794}
795
796
797#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
798/*
799 * Check an async_tlb structure to see if a deferred fault is waiting,
800 * and if so pass it to the page-fault code.
801 */
802static void handle_async_page_fault(struct pt_regs *regs,
803 struct async_tlb *async)
804{
805 if (async->fault_num) {
806 /*
807 * Clear async->fault_num before calling the page-fault
808 * handler so that if we re-interrupt before returning
809 * from the function we have somewhere to put the
810 * information from the new interrupt.
811 */
812 int fault_num = async->fault_num;
813 async->fault_num = 0;
814 handle_page_fault(regs, fault_num, async->is_fault,
815 async->address, async->is_write);
816 }
817}
867e359b
CM
818
819/*
820 * This routine effectively re-issues asynchronous page faults
821 * when we are returning to user space.
822 */
823void do_async_page_fault(struct pt_regs *regs)
824{
825 /*
826 * Clear thread flag early. If we re-interrupt while processing
827 * code here, we will reset it and recall this routine before
828 * returning to user space.
829 */
830 clear_thread_flag(TIF_ASYNC_TLB);
831
832#if CHIP_HAS_TILE_DMA()
833 handle_async_page_fault(regs, &current->thread.dma_async_tlb);
834#endif
835#if CHIP_HAS_SN_PROC()
836 handle_async_page_fault(regs, &current->thread.sn_async_tlb);
837#endif
838}
313ce674
CM
839#endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
840
867e359b
CM
841
842void vmalloc_sync_all(void)
843{
844#ifdef __tilegx__
845 /* Currently all L1 kernel pmd's are static and shared. */
846 BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START));
847#else
848 /*
849 * Note that races in the updates of insync and start aren't
850 * problematic: insync can only get set bits added, and updates to
851 * start are only improving performance (without affecting correctness
852 * if undone).
853 */
854 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
855 static unsigned long start = PAGE_OFFSET;
856 unsigned long address;
857
858 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
859 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
860 if (!test_bit(pgd_index(address), insync)) {
861 unsigned long flags;
862 struct list_head *pos;
863
864 spin_lock_irqsave(&pgd_lock, flags);
865 list_for_each(pos, &pgd_list)
866 if (!vmalloc_sync_one(list_to_pgd(pos),
867 address)) {
868 /* Must be at first entry in list. */
869 BUG_ON(pos != pgd_list.next);
870 break;
871 }
872 spin_unlock_irqrestore(&pgd_lock, flags);
873 if (pos != pgd_list.next)
874 set_bit(pgd_index(address), insync);
875 }
876 if (address == start && test_bit(pgd_index(address), insync))
877 start = address + PGDIR_SIZE;
878 }
879#endif
880}
This page took 0.140872 seconds and 5 git commands to generate.