tile: support ftrace on tilegx
[deliverable/linux.git] / arch / tile / mm / fault.c
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 *
14 * From i386 code copyright (C) 1995 Linus Torvalds
15 */
16
17#include <linux/signal.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/errno.h>
21#include <linux/string.h>
22#include <linux/types.h>
23#include <linux/ptrace.h>
24#include <linux/mman.h>
25#include <linux/mm.h>
26#include <linux/smp.h>
867e359b
CM
27#include <linux/interrupt.h>
28#include <linux/init.h>
29#include <linux/tty.h>
30#include <linux/vt_kern.h> /* For unblank_screen() */
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/kprobes.h>
34#include <linux/hugetlb.h>
35#include <linux/syscalls.h>
36#include <linux/uaccess.h>
37
867e359b
CM
38#include <asm/pgalloc.h>
39#include <asm/sections.h>
0707ad30
CM
40#include <asm/traps.h>
41#include <asm/syscalls.h>
867e359b
CM
42
43#include <arch/interrupts.h>
44
571d76ac
CM
45static noinline void force_sig_info_fault(const char *type, int si_signo,
46 int si_code, unsigned long address,
47 int fault_num,
48 struct task_struct *tsk,
49 struct pt_regs *regs)
867e359b
CM
50{
51 siginfo_t info;
52
53 if (unlikely(tsk->pid < 2)) {
54 panic("Signal %d (code %d) at %#lx sent to %s!",
55 si_signo, si_code & 0xffff, address,
a95f8817 56 is_idle_task(tsk) ? "the idle task" : "init");
867e359b
CM
57 }
58
59 info.si_signo = si_signo;
60 info.si_errno = 0;
61 info.si_code = si_code;
62 info.si_addr = (void __user *)address;
63 info.si_trapno = fault_num;
571d76ac 64 trace_unhandled_signal(type, regs, address, si_signo);
867e359b
CM
65 force_sig_info(si_signo, &info, tsk);
66}
67
68#ifndef __tilegx__
69/*
70 * Synthesize the fault a PL0 process would get by doing a word-load of
d929b6ae 71 * an unaligned address or a high kernel address.
867e359b 72 */
6b14e419 73SYSCALL_DEFINE1(cmpxchg_badaddr, unsigned long, address)
867e359b 74{
6b14e419
CM
75 struct pt_regs *regs = current_pt_regs();
76
867e359b 77 if (address >= PAGE_OFFSET)
571d76ac
CM
78 force_sig_info_fault("atomic segfault", SIGSEGV, SEGV_MAPERR,
79 address, INT_DTLB_MISS, current, regs);
867e359b 80 else
571d76ac
CM
81 force_sig_info_fault("atomic alignment fault", SIGBUS,
82 BUS_ADRALN, address,
83 INT_UNALIGN_DATA, current, regs);
867e359b
CM
84
85 /*
86 * Adjust pc to point at the actual instruction, which is unusual
87 * for syscalls normally, but is appropriate when we are claiming
88 * that a syscall swint1 caused a page fault or bus error.
89 */
90 regs->pc -= 8;
91
92 /*
93 * Mark this as a caller-save interrupt, like a normal page fault,
94 * so that when we go through the signal handler path we will
95 * properly restore r0, r1, and r2 for the signal handler arguments.
96 */
97 regs->flags |= PT_FLAGS_CALLER_SAVES;
98
99 return 0;
100}
101#endif
102
103static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
104{
105 unsigned index = pgd_index(address);
106 pgd_t *pgd_k;
107 pud_t *pud, *pud_k;
108 pmd_t *pmd, *pmd_k;
109
110 pgd += index;
111 pgd_k = init_mm.pgd + index;
112
113 if (!pgd_present(*pgd_k))
114 return NULL;
115
116 pud = pud_offset(pgd, address);
117 pud_k = pud_offset(pgd_k, address);
118 if (!pud_present(*pud_k))
119 return NULL;
120
121 pmd = pmd_offset(pud, address);
122 pmd_k = pmd_offset(pud_k, address);
123 if (!pmd_present(*pmd_k))
124 return NULL;
1182b69c 125 if (!pmd_present(*pmd))
867e359b 126 set_pmd(pmd, *pmd_k);
1182b69c 127 else
867e359b
CM
128 BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k));
129 return pmd_k;
130}
131
132/*
51bcdf88 133 * Handle a fault on the vmalloc area.
867e359b
CM
134 */
135static inline int vmalloc_fault(pgd_t *pgd, unsigned long address)
136{
137 pmd_t *pmd_k;
138 pte_t *pte_k;
139
140 /* Make sure we are in vmalloc area */
141 if (!(address >= VMALLOC_START && address < VMALLOC_END))
142 return -1;
143
144 /*
145 * Synchronize this task's top level page-table
146 * with the 'reference' page table.
147 */
148 pmd_k = vmalloc_sync_one(pgd, address);
149 if (!pmd_k)
150 return -1;
151 if (pmd_huge(*pmd_k))
152 return 0; /* support TILE huge_vmap() API */
153 pte_k = pte_offset_kernel(pmd_k, address);
154 if (!pte_present(*pte_k))
155 return -1;
156 return 0;
157}
158
159/* Wait until this PTE has completed migration. */
160static void wait_for_migration(pte_t *pte)
161{
162 if (pte_migrating(*pte)) {
163 /*
164 * Wait until the migrater fixes up this pte.
165 * We scale the loop count by the clock rate so we'll wait for
166 * a few seconds here.
167 */
168 int retries = 0;
169 int bound = get_clock_rate();
170 while (pte_migrating(*pte)) {
171 barrier();
172 if (++retries > bound)
173 panic("Hit migrating PTE (%#llx) and"
174 " page PFN %#lx still migrating",
175 pte->val, pte_pfn(*pte));
176 }
177 }
178}
179
180/*
181 * It's not generally safe to use "current" to get the page table pointer,
182 * since we might be running an oprofile interrupt in the middle of a
183 * task switch.
184 */
185static pgd_t *get_current_pgd(void)
186{
187 HV_Context ctx = hv_inquire_context();
188 unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT;
189 struct page *pgd_page = pfn_to_page(pgd_pfn);
621b1955 190 BUG_ON(PageHighMem(pgd_page));
867e359b
CM
191 return (pgd_t *) __va(ctx.page_table);
192}
193
194/*
195 * We can receive a page fault from a migrating PTE at any time.
196 * Handle it by just waiting until the fault resolves.
197 *
198 * It's also possible to get a migrating kernel PTE that resolves
199 * itself during the downcall from hypervisor to Linux. We just check
200 * here to see if the PTE seems valid, and if so we retry it.
201 *
202 * NOTE! We MUST NOT take any locks for this case. We may be in an
203 * interrupt or a critical region, and must do as little as possible.
204 * Similarly, we can't use atomic ops here, since we may be handling a
205 * fault caused by an atomic op access.
48292738
CM
206 *
207 * If we find a migrating PTE while we're in an NMI context, and we're
208 * at a PC that has a registered exception handler, we don't wait,
209 * since this thread may (e.g.) have been interrupted while migrating
210 * its own stack, which would then cause us to self-deadlock.
867e359b
CM
211 */
212static int handle_migrating_pte(pgd_t *pgd, int fault_num,
48292738 213 unsigned long address, unsigned long pc,
867e359b
CM
214 int is_kernel_mode, int write)
215{
216 pud_t *pud;
217 pmd_t *pmd;
218 pte_t *pte;
219 pte_t pteval;
220
221 if (pgd_addr_invalid(address))
222 return 0;
223
224 pgd += pgd_index(address);
225 pud = pud_offset(pgd, address);
226 if (!pud || !pud_present(*pud))
227 return 0;
228 pmd = pmd_offset(pud, address);
229 if (!pmd || !pmd_present(*pmd))
230 return 0;
231 pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) :
232 pte_offset_kernel(pmd, address);
233 pteval = *pte;
234 if (pte_migrating(pteval)) {
48292738
CM
235 if (in_nmi() && search_exception_tables(pc))
236 return 0;
867e359b
CM
237 wait_for_migration(pte);
238 return 1;
239 }
240
241 if (!is_kernel_mode || !pte_present(pteval))
242 return 0;
243 if (fault_num == INT_ITLB_MISS) {
244 if (pte_exec(pteval))
245 return 1;
246 } else if (write) {
247 if (pte_write(pteval))
248 return 1;
249 } else {
250 if (pte_read(pteval))
251 return 1;
252 }
253
254 return 0;
255}
256
257/*
258 * This routine is responsible for faulting in user pages.
259 * It passes the work off to one of the appropriate routines.
260 * It returns true if the fault was successfully handled.
261 */
262static int handle_page_fault(struct pt_regs *regs,
263 int fault_num,
264 int is_page_fault,
265 unsigned long address,
266 int write)
267{
268 struct task_struct *tsk;
269 struct mm_struct *mm;
270 struct vm_area_struct *vma;
271 unsigned long stack_offset;
272 int fault;
273 int si_code;
274 int is_kernel_mode;
275 pgd_t *pgd;
4ce6bea2 276 unsigned int flags;
867e359b
CM
277
278 /* on TILE, protection faults are always writes */
279 if (!is_page_fault)
280 write = 1;
281
4ce6bea2
KC
282 flags = (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
283 (write ? FAULT_FLAG_WRITE : 0));
284
867e359b
CM
285 is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL);
286
287 tsk = validate_current();
288
289 /*
290 * Check to see if we might be overwriting the stack, and bail
291 * out if so. The page fault code is a relatively likely
292 * place to get trapped in an infinite regress, and once we
293 * overwrite the whole stack, it becomes very hard to recover.
294 */
295 stack_offset = stack_pointer & (THREAD_SIZE-1);
296 if (stack_offset < THREAD_SIZE / 8) {
0707ad30 297 pr_alert("Potential stack overrun: sp %#lx\n",
867e359b
CM
298 stack_pointer);
299 show_regs(regs);
0707ad30 300 pr_alert("Killing current process %d/%s\n",
867e359b
CM
301 tsk->pid, tsk->comm);
302 do_group_exit(SIGKILL);
303 }
304
305 /*
306 * Early on, we need to check for migrating PTE entries;
307 * see homecache.c. If we find a migrating PTE, we wait until
25985edc 308 * the backing page claims to be done migrating, then we proceed.
867e359b
CM
309 * For kernel PTEs, we rewrite the PTE and return and retry.
310 * Otherwise, we treat the fault like a normal "no PTE" fault,
311 * rather than trying to patch up the existing PTE.
312 */
313 pgd = get_current_pgd();
48292738 314 if (handle_migrating_pte(pgd, fault_num, address, regs->pc,
867e359b
CM
315 is_kernel_mode, write))
316 return 1;
317
318 si_code = SEGV_MAPERR;
319
320 /*
321 * We fault-in kernel-space virtual memory on-demand. The
322 * 'reference' page table is init_mm.pgd.
323 *
324 * NOTE! We MUST NOT take any locks for this case. We may
325 * be in an interrupt or a critical region, and should
326 * only copy the information from the master page table,
327 * nothing more.
328 *
329 * This verifies that the fault happens in kernel space
330 * and that the fault was not a protection fault.
331 */
332 if (unlikely(address >= TASK_SIZE &&
333 !is_arch_mappable_range(address, 0))) {
334 if (is_kernel_mode && is_page_fault &&
335 vmalloc_fault(pgd, address) >= 0)
336 return 1;
337 /*
338 * Don't take the mm semaphore here. If we fixup a prefetch
339 * fault we could otherwise deadlock.
340 */
341 mm = NULL; /* happy compiler */
342 vma = NULL;
343 goto bad_area_nosemaphore;
344 }
345
346 /*
347 * If we're trying to touch user-space addresses, we must
348 * be either at PL0, or else with interrupts enabled in the
b230ff2d
CM
349 * kernel, so either way we can re-enable interrupts here
350 * unless we are doing atomic access to user space with
351 * interrupts disabled.
867e359b 352 */
b230ff2d
CM
353 if (!(regs->flags & PT_FLAGS_DISABLE_IRQ))
354 local_irq_enable();
867e359b
CM
355
356 mm = tsk->mm;
357
358 /*
359 * If we're in an interrupt, have no user context or are running in an
360 * atomic region then we must not take the fault.
361 */
362 if (in_atomic() || !mm) {
363 vma = NULL; /* happy compiler */
364 goto bad_area_nosemaphore;
365 }
366
367 /*
368 * When running in the kernel we expect faults to occur only to
369 * addresses in user space. All other faults represent errors in the
370 * kernel and should generate an OOPS. Unfortunately, in the case of an
371 * erroneous fault occurring in a code path which already holds mmap_sem
372 * we will deadlock attempting to validate the fault against the
373 * address space. Luckily the kernel only validly references user
374 * space from well defined areas of code, which are listed in the
375 * exceptions table.
376 *
377 * As the vast majority of faults will be valid we will only perform
378 * the source reference check when there is a possibility of a deadlock.
379 * Attempt to lock the address space, if we cannot we then validate the
380 * source. If this is invalid we can skip the address space check,
381 * thus avoiding the deadlock.
382 */
383 if (!down_read_trylock(&mm->mmap_sem)) {
384 if (is_kernel_mode &&
385 !search_exception_tables(regs->pc)) {
386 vma = NULL; /* happy compiler */
387 goto bad_area_nosemaphore;
388 }
4ce6bea2
KC
389
390retry:
867e359b
CM
391 down_read(&mm->mmap_sem);
392 }
393
394 vma = find_vma(mm, address);
395 if (!vma)
396 goto bad_area;
397 if (vma->vm_start <= address)
398 goto good_area;
399 if (!(vma->vm_flags & VM_GROWSDOWN))
400 goto bad_area;
401 if (regs->sp < PAGE_OFFSET) {
402 /*
403 * accessing the stack below sp is always a bug.
404 */
405 if (address < regs->sp)
406 goto bad_area;
407 }
408 if (expand_stack(vma, address))
409 goto bad_area;
410
411/*
412 * Ok, we have a good vm_area for this memory access, so
413 * we can handle it..
414 */
415good_area:
416 si_code = SEGV_ACCERR;
417 if (fault_num == INT_ITLB_MISS) {
418 if (!(vma->vm_flags & VM_EXEC))
419 goto bad_area;
420 } else if (write) {
421#ifdef TEST_VERIFY_AREA
422 if (!is_page_fault && regs->cs == KERNEL_CS)
0707ad30 423 pr_err("WP fault at "REGFMT"\n", regs->eip);
867e359b
CM
424#endif
425 if (!(vma->vm_flags & VM_WRITE))
426 goto bad_area;
427 } else {
428 if (!is_page_fault || !(vma->vm_flags & VM_READ))
429 goto bad_area;
430 }
431
432 survive:
433 /*
434 * If for any reason at all we couldn't handle the fault,
435 * make sure we exit gracefully rather than endlessly redo
436 * the fault.
437 */
4ce6bea2
KC
438 fault = handle_mm_fault(mm, vma, address, flags);
439
440 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
441 return 0;
442
867e359b
CM
443 if (unlikely(fault & VM_FAULT_ERROR)) {
444 if (fault & VM_FAULT_OOM)
445 goto out_of_memory;
446 else if (fault & VM_FAULT_SIGBUS)
447 goto do_sigbus;
448 BUG();
449 }
4ce6bea2
KC
450 if (flags & FAULT_FLAG_ALLOW_RETRY) {
451 if (fault & VM_FAULT_MAJOR)
452 tsk->maj_flt++;
453 else
454 tsk->min_flt++;
455 if (fault & VM_FAULT_RETRY) {
456 flags &= ~FAULT_FLAG_ALLOW_RETRY;
45cac65b 457 flags |= FAULT_FLAG_TRIED;
4ce6bea2
KC
458
459 /*
460 * No need to up_read(&mm->mmap_sem) as we would
461 * have already released it in __lock_page_or_retry
462 * in mm/filemap.c.
463 */
464 goto retry;
465 }
466 }
867e359b 467
0707ad30 468#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
867e359b
CM
469 /*
470 * If this was an asynchronous fault,
471 * restart the appropriate engine.
472 */
473 switch (fault_num) {
474#if CHIP_HAS_TILE_DMA()
475 case INT_DMATLB_MISS:
476 case INT_DMATLB_MISS_DWNCL:
477 case INT_DMATLB_ACCESS:
478 case INT_DMATLB_ACCESS_DWNCL:
479 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
480 break;
481#endif
482#if CHIP_HAS_SN_PROC()
483 case INT_SNITLB_MISS:
484 case INT_SNITLB_MISS_DWNCL:
485 __insn_mtspr(SPR_SNCTL,
486 __insn_mfspr(SPR_SNCTL) &
487 ~SPR_SNCTL__FRZPROC_MASK);
488 break;
489#endif
490 }
0707ad30 491#endif
867e359b
CM
492
493 up_read(&mm->mmap_sem);
494 return 1;
495
496/*
497 * Something tried to access memory that isn't in our memory map..
498 * Fix it, but check if it's kernel or user first..
499 */
500bad_area:
501 up_read(&mm->mmap_sem);
502
503bad_area_nosemaphore:
504 /* User mode accesses just cause a SIGSEGV */
505 if (!is_kernel_mode) {
506 /*
507 * It's possible to have interrupts off here.
508 */
509 local_irq_enable();
510
571d76ac
CM
511 force_sig_info_fault("segfault", SIGSEGV, si_code, address,
512 fault_num, tsk, regs);
867e359b
CM
513 return 0;
514 }
515
516no_context:
517 /* Are we prepared to handle this kernel fault? */
518 if (fixup_exception(regs))
519 return 0;
520
521/*
522 * Oops. The kernel tried to access some bad page. We'll have to
523 * terminate things with extreme prejudice.
524 */
525
526 bust_spinlocks(1);
527
528 /* FIXME: no lookup_address() yet */
529#ifdef SUPPORT_LOOKUP_ADDRESS
530 if (fault_num == INT_ITLB_MISS) {
531 pte_t *pte = lookup_address(address);
532
533 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
0707ad30 534 pr_crit("kernel tried to execute"
867e359b
CM
535 " non-executable page - exploit attempt?"
536 " (uid: %d)\n", current->uid);
537 }
538#endif
539 if (address < PAGE_SIZE)
0707ad30 540 pr_alert("Unable to handle kernel NULL pointer dereference\n");
867e359b 541 else
0707ad30
CM
542 pr_alert("Unable to handle kernel paging request\n");
543 pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n",
544 address, regs->pc);
867e359b
CM
545
546 show_regs(regs);
547
548 if (unlikely(tsk->pid < 2)) {
549 panic("Kernel page fault running %s!",
a95f8817 550 is_idle_task(tsk) ? "the idle task" : "init");
867e359b
CM
551 }
552
553 /*
554 * More FIXME: we should probably copy the i386 here and
555 * implement a generic die() routine. Not today.
556 */
557#ifdef SUPPORT_DIE
558 die("Oops", regs);
559#endif
560 bust_spinlocks(1);
561
562 do_group_exit(SIGKILL);
563
564/*
565 * We ran out of memory, or some other thing happened to us that made
566 * us unable to handle the page fault gracefully.
567 */
568out_of_memory:
569 up_read(&mm->mmap_sem);
570 if (is_global_init(tsk)) {
571 yield();
572 down_read(&mm->mmap_sem);
573 goto survive;
574 }
609838cf
JW
575 if (is_kernel_mode)
576 goto no_context;
577 pagefault_out_of_memory();
578 return 0;
867e359b
CM
579
580do_sigbus:
581 up_read(&mm->mmap_sem);
582
583 /* Kernel mode? Handle exceptions or die */
584 if (is_kernel_mode)
585 goto no_context;
586
571d76ac
CM
587 force_sig_info_fault("bus error", SIGBUS, BUS_ADRERR, address,
588 fault_num, tsk, regs);
867e359b
CM
589 return 0;
590}
591
592#ifndef __tilegx__
593
867e359b
CM
594/* We must release ICS before panicking or we won't get anywhere. */
595#define ics_panic(fmt, ...) do { \
596 __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \
597 panic(fmt, __VA_ARGS__); \
598} while (0)
599
867e359b
CM
600/*
601 * When we take an ITLB or DTLB fault or access violation in the
602 * supervisor while the critical section bit is set, the hypervisor is
a78c942d 603 * reluctant to write new values into the EX_CONTEXT_K_x registers,
867e359b
CM
604 * since that might indicate we have not yet squirreled the SPR
605 * contents away and can thus safely take a recursive interrupt.
a78c942d 606 * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2.
c745a8a1
CM
607 *
608 * Note that this routine is called before homecache_tlb_defer_enter(),
609 * which means that we can properly unlock any atomics that might
610 * be used there (good), but also means we must be very sensitive
611 * to not touch any data structures that might be located in memory
612 * that could migrate, as we could be entering the kernel on a dataplane
613 * cpu that has been deferring kernel TLB updates. This means, for
614 * example, that we can't migrate init_mm or its pgd.
867e359b
CM
615 */
616struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num,
617 unsigned long address,
618 unsigned long info)
619{
620 unsigned long pc = info & ~1;
621 int write = info & 1;
622 pgd_t *pgd = get_current_pgd();
623
624 /* Retval is 1 at first since we will handle the fault fully. */
625 struct intvec_state state = {
626 do_page_fault, fault_num, address, write, 1
627 };
628
629 /* Validate that we are plausibly in the right routine. */
630 if ((pc & 0x7) != 0 || pc < PAGE_OFFSET ||
631 (fault_num != INT_DTLB_MISS &&
632 fault_num != INT_DTLB_ACCESS)) {
633 unsigned long old_pc = regs->pc;
634 regs->pc = pc;
635 ics_panic("Bad ICS page fault args:"
636 " old PC %#lx, fault %d/%d at %#lx\n",
637 old_pc, fault_num, write, address);
638 }
639
640 /* We might be faulting on a vmalloc page, so check that first. */
641 if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0)
642 return state;
643
644 /*
645 * If we faulted with ICS set in sys_cmpxchg, we are providing
646 * a user syscall service that should generate a signal on
647 * fault. We didn't set up a kernel stack on initial entry to
648 * sys_cmpxchg, but instead had one set up by the fault, which
649 * (because sys_cmpxchg never releases ICS) came to us via the
a78c942d 650 * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are
867e359b
CM
651 * still referencing the original user code. We release the
652 * atomic lock and rewrite pt_regs so that it appears that we
653 * came from user-space directly, and after we finish the
654 * fault we'll go back to user space and re-issue the swint.
655 * This way the backtrace information is correct if we need to
656 * emit a stack dump at any point while handling this.
657 *
658 * Must match register use in sys_cmpxchg().
659 */
660 if (pc >= (unsigned long) sys_cmpxchg &&
661 pc < (unsigned long) __sys_cmpxchg_end) {
662#ifdef CONFIG_SMP
663 /* Don't unlock before we could have locked. */
664 if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) {
665 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
666 __atomic_fault_unlock(lock_ptr);
667 }
668#endif
669 regs->sp = regs->regs[27];
670 }
671
672 /*
673 * We can also fault in the atomic assembly, in which
674 * case we use the exception table to do the first-level fixup.
675 * We may re-fixup again in the real fault handler if it
676 * turns out the faulting address is just bad, and not,
677 * for example, migrating.
678 */
679 else if (pc >= (unsigned long) __start_atomic_asm_code &&
680 pc < (unsigned long) __end_atomic_asm_code) {
681 const struct exception_table_entry *fixup;
682#ifdef CONFIG_SMP
683 /* Unlock the atomic lock. */
684 int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]);
685 __atomic_fault_unlock(lock_ptr);
686#endif
687 fixup = search_exception_tables(pc);
688 if (!fixup)
689 ics_panic("ICS atomic fault not in table:"
690 " PC %#lx, fault %d", pc, fault_num);
691 regs->pc = fixup->fixup;
692 regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0);
693 }
694
867e359b
CM
695 /*
696 * Now that we have released the atomic lock (if necessary),
697 * it's safe to spin if the PTE that caused the fault was migrating.
698 */
699 if (fault_num == INT_DTLB_ACCESS)
700 write = 1;
48292738 701 if (handle_migrating_pte(pgd, fault_num, address, pc, 1, write))
867e359b
CM
702 return state;
703
704 /* Return zero so that we continue on with normal fault handling. */
705 state.retval = 0;
706 return state;
707}
708
709#endif /* !__tilegx__ */
710
711/*
712 * This routine handles page faults. It determines the address, and the
713 * problem, and then passes it handle_page_fault() for normal DTLB and
714 * ITLB issues, and for DMA or SN processor faults when we are in user
715 * space. For the latter, if we're in kernel mode, we just save the
716 * interrupt away appropriately and return immediately. We can't do
717 * page faults for user code while in kernel mode.
718 */
719void do_page_fault(struct pt_regs *regs, int fault_num,
720 unsigned long address, unsigned long write)
721{
722 int is_page_fault;
723
2f9ac29e
CM
724#ifdef __tilegx__
725 /*
726 * We don't need early do_page_fault_ics() support, since unlike
727 * Pro we don't need to worry about unlocking the atomic locks.
728 * There is only one current case in GX where we touch any memory
729 * under ICS other than our own kernel stack, and we handle that
730 * here. (If we crash due to trying to touch our own stack,
731 * we're in too much trouble for C code to help out anyway.)
732 */
733 if (write & ~1) {
734 unsigned long pc = write & ~1;
735 if (pc >= (unsigned long) __start_unalign_asm_code &&
736 pc < (unsigned long) __end_unalign_asm_code) {
737 struct thread_info *ti = current_thread_info();
738 /*
739 * Our EX_CONTEXT is still what it was from the
740 * initial unalign exception, but now we've faulted
741 * on the JIT page. We would like to complete the
742 * page fault however is appropriate, and then retry
743 * the instruction that caused the unalign exception.
744 * Our state has been "corrupted" by setting the low
745 * bit in "sp", and stashing r0..r3 in the
746 * thread_info area, so we revert all of that, then
747 * continue as if this were a normal page fault.
748 */
749 regs->sp &= ~1UL;
750 regs->regs[0] = ti->unalign_jit_tmp[0];
751 regs->regs[1] = ti->unalign_jit_tmp[1];
752 regs->regs[2] = ti->unalign_jit_tmp[2];
753 regs->regs[3] = ti->unalign_jit_tmp[3];
754 write &= 1;
755 } else {
756 pr_alert("%s/%d: ICS set at page fault at %#lx: %#lx\n",
757 current->comm, current->pid, pc, address);
758 show_regs(regs);
759 do_group_exit(SIGKILL);
760 return;
761 }
762 }
763#else
867e359b
CM
764 /* This case should have been handled by do_page_fault_ics(). */
765 BUG_ON(write & ~1);
2f9ac29e 766#endif
867e359b
CM
767
768#if CHIP_HAS_TILE_DMA()
769 /*
770 * If it's a DMA fault, suspend the transfer while we're
771 * handling the miss; we'll restart after it's handled. If we
772 * don't suspend, it's possible that this process could swap
773 * out and back in, and restart the engine since the DMA is
774 * still 'running'.
775 */
776 if (fault_num == INT_DMATLB_MISS ||
777 fault_num == INT_DMATLB_ACCESS ||
778 fault_num == INT_DMATLB_MISS_DWNCL ||
779 fault_num == INT_DMATLB_ACCESS_DWNCL) {
780 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
781 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
782 SPR_DMA_STATUS__BUSY_MASK)
783 ;
784 }
785#endif
786
787 /* Validate fault num and decide if this is a first-time page fault. */
788 switch (fault_num) {
789 case INT_ITLB_MISS:
790 case INT_DTLB_MISS:
791#if CHIP_HAS_TILE_DMA()
792 case INT_DMATLB_MISS:
793 case INT_DMATLB_MISS_DWNCL:
794#endif
795#if CHIP_HAS_SN_PROC()
796 case INT_SNITLB_MISS:
797 case INT_SNITLB_MISS_DWNCL:
798#endif
799 is_page_fault = 1;
800 break;
801
802 case INT_DTLB_ACCESS:
803#if CHIP_HAS_TILE_DMA()
804 case INT_DMATLB_ACCESS:
805 case INT_DMATLB_ACCESS_DWNCL:
806#endif
807 is_page_fault = 0;
808 break;
809
810 default:
811 panic("Bad fault number %d in do_page_fault", fault_num);
812 }
813
313ce674 814#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
867e359b
CM
815 if (EX1_PL(regs->ex1) != USER_PL) {
816 struct async_tlb *async;
817 switch (fault_num) {
818#if CHIP_HAS_TILE_DMA()
819 case INT_DMATLB_MISS:
820 case INT_DMATLB_ACCESS:
821 case INT_DMATLB_MISS_DWNCL:
822 case INT_DMATLB_ACCESS_DWNCL:
823 async = &current->thread.dma_async_tlb;
824 break;
825#endif
826#if CHIP_HAS_SN_PROC()
827 case INT_SNITLB_MISS:
828 case INT_SNITLB_MISS_DWNCL:
829 async = &current->thread.sn_async_tlb;
830 break;
831#endif
832 default:
833 async = NULL;
834 }
835 if (async) {
836
837 /*
838 * No vmalloc check required, so we can allow
839 * interrupts immediately at this point.
840 */
841 local_irq_enable();
842
843 set_thread_flag(TIF_ASYNC_TLB);
844 if (async->fault_num != 0) {
845 panic("Second async fault %d;"
846 " old fault was %d (%#lx/%ld)",
847 fault_num, async->fault_num,
848 address, write);
849 }
850 BUG_ON(fault_num == 0);
851 async->fault_num = fault_num;
852 async->is_fault = is_page_fault;
853 async->is_write = write;
854 async->address = address;
855 return;
856 }
857 }
313ce674 858#endif
867e359b
CM
859
860 handle_page_fault(regs, fault_num, is_page_fault, address, write);
861}
862
863
864#if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC()
865/*
866 * Check an async_tlb structure to see if a deferred fault is waiting,
867 * and if so pass it to the page-fault code.
868 */
869static void handle_async_page_fault(struct pt_regs *regs,
870 struct async_tlb *async)
871{
872 if (async->fault_num) {
873 /*
874 * Clear async->fault_num before calling the page-fault
875 * handler so that if we re-interrupt before returning
876 * from the function we have somewhere to put the
877 * information from the new interrupt.
878 */
879 int fault_num = async->fault_num;
880 async->fault_num = 0;
881 handle_page_fault(regs, fault_num, async->is_fault,
882 async->address, async->is_write);
883 }
884}
867e359b
CM
885
886/*
887 * This routine effectively re-issues asynchronous page faults
888 * when we are returning to user space.
889 */
890void do_async_page_fault(struct pt_regs *regs)
891{
892 /*
893 * Clear thread flag early. If we re-interrupt while processing
894 * code here, we will reset it and recall this routine before
895 * returning to user space.
896 */
897 clear_thread_flag(TIF_ASYNC_TLB);
898
899#if CHIP_HAS_TILE_DMA()
900 handle_async_page_fault(regs, &current->thread.dma_async_tlb);
901#endif
902#if CHIP_HAS_SN_PROC()
903 handle_async_page_fault(regs, &current->thread.sn_async_tlb);
904#endif
905}
313ce674
CM
906#endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */
907
867e359b
CM
908
909void vmalloc_sync_all(void)
910{
911#ifdef __tilegx__
912 /* Currently all L1 kernel pmd's are static and shared. */
e5f7bd43
CM
913 BUILD_BUG_ON(pgd_index(VMALLOC_END - PAGE_SIZE) !=
914 pgd_index(VMALLOC_START));
867e359b
CM
915#else
916 /*
917 * Note that races in the updates of insync and start aren't
918 * problematic: insync can only get set bits added, and updates to
919 * start are only improving performance (without affecting correctness
920 * if undone).
921 */
922 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
923 static unsigned long start = PAGE_OFFSET;
924 unsigned long address;
925
926 BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK);
927 for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) {
928 if (!test_bit(pgd_index(address), insync)) {
929 unsigned long flags;
930 struct list_head *pos;
931
932 spin_lock_irqsave(&pgd_lock, flags);
933 list_for_each(pos, &pgd_list)
934 if (!vmalloc_sync_one(list_to_pgd(pos),
935 address)) {
936 /* Must be at first entry in list. */
937 BUG_ON(pos != pgd_list.next);
938 break;
939 }
940 spin_unlock_irqrestore(&pgd_lock, flags);
941 if (pos != pgd_list.next)
942 set_bit(pgd_index(address), insync);
943 }
944 if (address == start && test_bit(pgd_index(address), insync))
945 start = address + PGDIR_SIZE;
946 }
947#endif
948}
This page took 0.189978 seconds and 5 git commands to generate.