arch/tile: don't wait for migrating PTEs in an NMI handler
[deliverable/linux.git] / arch / tile / mm / pgtable.c
CommitLineData
867e359b
CM
1/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/kernel.h>
17#include <linux/errno.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
867e359b
CM
20#include <linux/highmem.h>
21#include <linux/slab.h>
22#include <linux/pagemap.h>
23#include <linux/spinlock.h>
24#include <linux/cpumask.h>
25#include <linux/module.h>
26#include <linux/io.h>
27#include <linux/vmalloc.h>
28#include <linux/smp.h>
29
867e359b
CM
30#include <asm/pgtable.h>
31#include <asm/pgalloc.h>
32#include <asm/fixmap.h>
33#include <asm/tlb.h>
34#include <asm/tlbflush.h>
35#include <asm/homecache.h>
36
37#define K(x) ((x) << (PAGE_SHIFT-10))
38
39/*
40 * The normal show_free_areas() is too verbose on Tile, with dozens
41 * of processors and often four NUMA zones each with high and lowmem.
42 */
b2b755b5 43void show_mem(unsigned int filter)
867e359b
CM
44{
45 struct zone *zone;
46
0707ad30 47 pr_err("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu"
867e359b
CM
48 " free:%lu\n slab:%lu mapped:%lu pagetables:%lu bounce:%lu"
49 " pagecache:%lu swap:%lu\n",
50 (global_page_state(NR_ACTIVE_ANON) +
51 global_page_state(NR_ACTIVE_FILE)),
52 (global_page_state(NR_INACTIVE_ANON) +
53 global_page_state(NR_INACTIVE_FILE)),
54 global_page_state(NR_FILE_DIRTY),
55 global_page_state(NR_WRITEBACK),
56 global_page_state(NR_UNSTABLE_NFS),
57 global_page_state(NR_FREE_PAGES),
58 (global_page_state(NR_SLAB_RECLAIMABLE) +
59 global_page_state(NR_SLAB_UNRECLAIMABLE)),
60 global_page_state(NR_FILE_MAPPED),
61 global_page_state(NR_PAGETABLE),
62 global_page_state(NR_BOUNCE),
63 global_page_state(NR_FILE_PAGES),
64 nr_swap_pages);
65
66 for_each_zone(zone) {
67 unsigned long flags, order, total = 0, largest_order = -1;
68
69 if (!populated_zone(zone))
70 continue;
71
867e359b
CM
72 spin_lock_irqsave(&zone->lock, flags);
73 for (order = 0; order < MAX_ORDER; order++) {
74 int nr = zone->free_area[order].nr_free;
75 total += nr << order;
76 if (nr)
77 largest_order = order;
78 }
79 spin_unlock_irqrestore(&zone->lock, flags);
0707ad30
CM
80 pr_err("Node %d %7s: %lukB (largest %luKb)\n",
81 zone_to_nid(zone), zone->name,
867e359b
CM
82 K(total), largest_order ? K(1UL) << largest_order : 0);
83 }
84}
85
86/*
87 * Associate a virtual page frame with a given physical page frame
88 * and protection flags for that frame.
89 */
90static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
91{
92 pgd_t *pgd;
93 pud_t *pud;
94 pmd_t *pmd;
95 pte_t *pte;
96
97 pgd = swapper_pg_dir + pgd_index(vaddr);
98 if (pgd_none(*pgd)) {
99 BUG();
100 return;
101 }
102 pud = pud_offset(pgd, vaddr);
103 if (pud_none(*pud)) {
104 BUG();
105 return;
106 }
107 pmd = pmd_offset(pud, vaddr);
108 if (pmd_none(*pmd)) {
109 BUG();
110 return;
111 }
112 pte = pte_offset_kernel(pmd, vaddr);
113 /* <pfn,flags> stored as-is, to permit clearing entries */
114 set_pte(pte, pfn_pte(pfn, flags));
115
116 /*
117 * It's enough to flush this one mapping.
118 * This appears conservative since it is only called
119 * from __set_fixmap.
120 */
121 local_flush_tlb_page(NULL, vaddr, PAGE_SIZE);
122}
123
867e359b
CM
124void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
125{
126 unsigned long address = __fix_to_virt(idx);
127
128 if (idx >= __end_of_fixed_addresses) {
129 BUG();
130 return;
131 }
132 set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
133}
134
135#if defined(CONFIG_HIGHPTE)
38a6f426 136pte_t *_pte_offset_map(pmd_t *dir, unsigned long address)
867e359b 137{
38a6f426 138 pte_t *pte = kmap_atomic(pmd_page(*dir)) +
867e359b
CM
139 (pmd_ptfn(*dir) << HV_LOG2_PAGE_TABLE_ALIGN) & ~PAGE_MASK;
140 return &pte[pte_index(address)];
141}
142#endif
143
76c567fb
CM
144/**
145 * shatter_huge_page() - ensure a given address is mapped by a small page.
146 *
147 * This function converts a huge PTE mapping kernel LOWMEM into a bunch
148 * of small PTEs with the same caching. No cache flush required, but we
149 * must do a global TLB flush.
150 *
151 * Any caller that wishes to modify a kernel mapping that might
152 * have been made with a huge page should call this function,
153 * since doing so properly avoids race conditions with installing the
154 * newly-shattered page and then flushing all the TLB entries.
155 *
156 * @addr: Address at which to shatter any existing huge page.
157 */
158void shatter_huge_page(unsigned long addr)
159{
160 pgd_t *pgd;
161 pud_t *pud;
162 pmd_t *pmd;
163 unsigned long flags = 0; /* happy compiler */
164#ifdef __PAGETABLE_PMD_FOLDED
165 struct list_head *pos;
166#endif
167
168 /* Get a pointer to the pmd entry that we need to change. */
169 addr &= HPAGE_MASK;
170 BUG_ON(pgd_addr_invalid(addr));
171 BUG_ON(addr < PAGE_OFFSET); /* only for kernel LOWMEM */
172 pgd = swapper_pg_dir + pgd_index(addr);
173 pud = pud_offset(pgd, addr);
174 BUG_ON(!pud_present(*pud));
175 pmd = pmd_offset(pud, addr);
176 BUG_ON(!pmd_present(*pmd));
177 if (!pmd_huge_page(*pmd))
178 return;
179
180 /*
181 * Grab the pgd_lock, since we may need it to walk the pgd_list,
182 * and since we need some kind of lock here to avoid races.
183 */
184 spin_lock_irqsave(&pgd_lock, flags);
185 if (!pmd_huge_page(*pmd)) {
186 /* Lost the race to convert the huge page. */
187 spin_unlock_irqrestore(&pgd_lock, flags);
188 return;
189 }
190
191 /* Shatter the huge page into the preallocated L2 page table. */
192 pmd_populate_kernel(&init_mm, pmd,
193 get_prealloc_pte(pte_pfn(*(pte_t *)pmd)));
194
195#ifdef __PAGETABLE_PMD_FOLDED
196 /* Walk every pgd on the system and update the pmd there. */
197 list_for_each(pos, &pgd_list) {
198 pmd_t *copy_pmd;
199 pgd = list_to_pgd(pos) + pgd_index(addr);
200 pud = pud_offset(pgd, addr);
201 copy_pmd = pmd_offset(pud, addr);
202 __set_pmd(copy_pmd, *pmd);
203 }
204#endif
205
206 /* Tell every cpu to notice the change. */
207 flush_remote(0, 0, NULL, addr, HPAGE_SIZE, HPAGE_SIZE,
208 cpu_possible_mask, NULL, 0);
209
210 /* Hold the lock until the TLB flush is finished to avoid races. */
211 spin_unlock_irqrestore(&pgd_lock, flags);
212}
213
867e359b
CM
214/*
215 * List of all pgd's needed so it can invalidate entries in both cached
216 * and uncached pgd's. This is essentially codepath-based locking
217 * against pageattr.c; it is the unique case in which a valid change
218 * of kernel pagetables can't be lazily synchronized by vmalloc faults.
219 * vmalloc faults work because attached pagetables are never freed.
220 * The locking scheme was chosen on the basis of manfred's
221 * recommendations and having no core impact whatsoever.
222 * -- wli
223 */
224DEFINE_SPINLOCK(pgd_lock);
225LIST_HEAD(pgd_list);
226
227static inline void pgd_list_add(pgd_t *pgd)
228{
229 list_add(pgd_to_list(pgd), &pgd_list);
230}
231
232static inline void pgd_list_del(pgd_t *pgd)
233{
234 list_del(pgd_to_list(pgd));
235}
236
237#define KERNEL_PGD_INDEX_START pgd_index(PAGE_OFFSET)
238#define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_INDEX_START)
239
240static void pgd_ctor(pgd_t *pgd)
241{
242 unsigned long flags;
243
244 memset(pgd, 0, KERNEL_PGD_INDEX_START*sizeof(pgd_t));
245 spin_lock_irqsave(&pgd_lock, flags);
246
247#ifndef __tilegx__
248 /*
249 * Check that the user interrupt vector has no L2.
250 * It never should for the swapper, and new page tables
251 * should always start with an empty user interrupt vector.
252 */
253 BUG_ON(((u64 *)swapper_pg_dir)[pgd_index(MEM_USER_INTRPT)] != 0);
254#endif
255
76c567fb
CM
256 memcpy(pgd + KERNEL_PGD_INDEX_START,
257 swapper_pg_dir + KERNEL_PGD_INDEX_START,
258 KERNEL_PGD_PTRS * sizeof(pgd_t));
867e359b
CM
259
260 pgd_list_add(pgd);
261 spin_unlock_irqrestore(&pgd_lock, flags);
262}
263
264static void pgd_dtor(pgd_t *pgd)
265{
266 unsigned long flags; /* can be called from interrupt context */
267
268 spin_lock_irqsave(&pgd_lock, flags);
269 pgd_list_del(pgd);
270 spin_unlock_irqrestore(&pgd_lock, flags);
271}
272
273pgd_t *pgd_alloc(struct mm_struct *mm)
274{
275 pgd_t *pgd = kmem_cache_alloc(pgd_cache, GFP_KERNEL);
276 if (pgd)
277 pgd_ctor(pgd);
278 return pgd;
279}
280
281void pgd_free(struct mm_struct *mm, pgd_t *pgd)
282{
283 pgd_dtor(pgd);
284 kmem_cache_free(pgd_cache, pgd);
285}
286
287
288#define L2_USER_PGTABLE_PAGES (1 << L2_USER_PGTABLE_ORDER)
289
290struct page *pte_alloc_one(struct mm_struct *mm, unsigned long address)
291{
76c567fb 292 gfp_t flags = GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO;
867e359b 293 struct page *p;
76c567fb
CM
294#if L2_USER_PGTABLE_ORDER > 0
295 int i;
296#endif
867e359b
CM
297
298#ifdef CONFIG_HIGHPTE
299 flags |= __GFP_HIGHMEM;
300#endif
301
302 p = alloc_pages(flags, L2_USER_PGTABLE_ORDER);
303 if (p == NULL)
304 return NULL;
305
76c567fb
CM
306#if L2_USER_PGTABLE_ORDER > 0
307 /*
308 * Make every page have a page_count() of one, not just the first.
309 * We don't use __GFP_COMP since it doesn't look like it works
310 * correctly with tlb_remove_page().
311 */
312 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
313 init_page_count(p+i);
314 inc_zone_page_state(p+i, NR_PAGETABLE);
315 }
316#endif
317
867e359b
CM
318 pgtable_page_ctor(p);
319 return p;
320}
321
322/*
323 * Free page immediately (used in __pte_alloc if we raced with another
324 * process). We have to correct whatever pte_alloc_one() did before
325 * returning the pages to the allocator.
326 */
327void pte_free(struct mm_struct *mm, struct page *p)
328{
76c567fb
CM
329 int i;
330
867e359b 331 pgtable_page_dtor(p);
76c567fb
CM
332 __free_page(p);
333
334 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
335 __free_page(p+i);
336 dec_zone_page_state(p+i, NR_PAGETABLE);
337 }
867e359b
CM
338}
339
340void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte,
341 unsigned long address)
342{
343 int i;
344
345 pgtable_page_dtor(pte);
76c567fb
CM
346 tlb_remove_page(tlb, pte);
347
348 for (i = 1; i < L2_USER_PGTABLE_PAGES; ++i) {
342d87ef 349 tlb_remove_page(tlb, pte + i);
76c567fb
CM
350 dec_zone_page_state(pte + i, NR_PAGETABLE);
351 }
867e359b
CM
352}
353
354#ifndef __tilegx__
355
356/*
357 * FIXME: needs to be atomic vs hypervisor writes. For now we make the
358 * window of vulnerability a bit smaller by doing an unlocked 8-bit update.
359 */
360int ptep_test_and_clear_young(struct vm_area_struct *vma,
361 unsigned long addr, pte_t *ptep)
362{
363#if HV_PTE_INDEX_ACCESSED < 8 || HV_PTE_INDEX_ACCESSED >= 16
364# error Code assumes HV_PTE "accessed" bit in second byte
365#endif
366 u8 *tmp = (u8 *)ptep;
367 u8 second_byte = tmp[1];
368 if (!(second_byte & (1 << (HV_PTE_INDEX_ACCESSED - 8))))
369 return 0;
370 tmp[1] = second_byte & ~(1 << (HV_PTE_INDEX_ACCESSED - 8));
371 return 1;
372}
373
374/*
375 * This implementation is atomic vs hypervisor writes, since the hypervisor
376 * always writes the low word (where "accessed" and "dirty" are) and this
377 * routine only writes the high word.
378 */
379void ptep_set_wrprotect(struct mm_struct *mm,
380 unsigned long addr, pte_t *ptep)
381{
382#if HV_PTE_INDEX_WRITABLE < 32
383# error Code assumes HV_PTE "writable" bit in high word
384#endif
385 u32 *tmp = (u32 *)ptep;
386 tmp[1] = tmp[1] & ~(1 << (HV_PTE_INDEX_WRITABLE - 32));
387}
388
389#endif
390
391pte_t *virt_to_pte(struct mm_struct* mm, unsigned long addr)
392{
393 pgd_t *pgd;
394 pud_t *pud;
395 pmd_t *pmd;
396
397 if (pgd_addr_invalid(addr))
398 return NULL;
399
400 pgd = mm ? pgd_offset(mm, addr) : swapper_pg_dir + pgd_index(addr);
401 pud = pud_offset(pgd, addr);
402 if (!pud_present(*pud))
403 return NULL;
404 pmd = pmd_offset(pud, addr);
405 if (pmd_huge_page(*pmd))
406 return (pte_t *)pmd;
407 if (!pmd_present(*pmd))
408 return NULL;
409 return pte_offset_kernel(pmd, addr);
410}
411
412pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu)
413{
414 unsigned int width = smp_width;
415 int x = cpu % width;
416 int y = cpu / width;
417 BUG_ON(y >= smp_height);
418 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
419 BUG_ON(cpu < 0 || cpu >= NR_CPUS);
420 BUG_ON(!cpu_is_valid_lotar(cpu));
421 return hv_pte_set_lotar(prot, HV_XY_TO_LOTAR(x, y));
422}
423
424int get_remote_cache_cpu(pgprot_t prot)
425{
426 HV_LOTAR lotar = hv_pte_get_lotar(prot);
427 int x = HV_LOTAR_X(lotar);
428 int y = HV_LOTAR_Y(lotar);
429 BUG_ON(hv_pte_get_mode(prot) != HV_PTE_MODE_CACHE_TILE_L3);
430 return x + y * smp_width;
431}
432
76c567fb
CM
433/*
434 * Convert a kernel VA to a PA and homing information.
435 */
436int va_to_cpa_and_pte(void *va, unsigned long long *cpa, pte_t *pte)
867e359b 437{
76c567fb
CM
438 struct page *page = virt_to_page(va);
439 pte_t null_pte = { 0 };
867e359b 440
76c567fb
CM
441 *cpa = __pa(va);
442
443 /* Note that this is not writing a page table, just returning a pte. */
444 *pte = pte_set_home(null_pte, page_home(page));
867e359b 445
76c567fb
CM
446 return 0; /* return non-zero if not hfh? */
447}
448EXPORT_SYMBOL(va_to_cpa_and_pte);
449
450void __set_pte(pte_t *ptep, pte_t pte)
451{
867e359b
CM
452#ifdef __tilegx__
453 *ptep = pte;
454#else
76c567fb
CM
455# if HV_PTE_INDEX_PRESENT >= 32 || HV_PTE_INDEX_MIGRATING >= 32
456# error Must write the present and migrating bits last
457# endif
458 if (pte_present(pte)) {
459 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
460 barrier();
461 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
462 } else {
463 ((u32 *)ptep)[0] = (u32)(pte_val(pte));
464 barrier();
465 ((u32 *)ptep)[1] = (u32)(pte_val(pte) >> 32);
466 }
467#endif /* __tilegx__ */
468}
469
470void set_pte(pte_t *ptep, pte_t pte)
471{
472 struct page *page = pfn_to_page(pte_pfn(pte));
473
474 /* Update the home of a PTE if necessary */
475 pte = pte_set_home(pte, page_home(page));
476
477 __set_pte(ptep, pte);
867e359b
CM
478}
479
480/* Can this mm load a PTE with cached_priority set? */
481static inline int mm_is_priority_cached(struct mm_struct *mm)
482{
483 return mm->context.priority_cached;
484}
485
486/*
487 * Add a priority mapping to an mm_context and
488 * notify the hypervisor if this is the first one.
489 */
490void start_mm_caching(struct mm_struct *mm)
491{
492 if (!mm_is_priority_cached(mm)) {
493 mm->context.priority_cached = -1U;
494 hv_set_caching(-1U);
495 }
496}
497
498/*
499 * Validate and return the priority_cached flag. We know if it's zero
500 * that we don't need to scan, since we immediately set it non-zero
501 * when we first consider a MAP_CACHE_PRIORITY mapping.
502 *
503 * We only _try_ to acquire the mmap_sem semaphore; if we can't acquire it,
504 * since we're in an interrupt context (servicing switch_mm) we don't
505 * worry about it and don't unset the "priority_cached" field.
506 * Presumably we'll come back later and have more luck and clear
507 * the value then; for now we'll just keep the cache marked for priority.
508 */
509static unsigned int update_priority_cached(struct mm_struct *mm)
510{
511 if (mm->context.priority_cached && down_write_trylock(&mm->mmap_sem)) {
512 struct vm_area_struct *vm;
513 for (vm = mm->mmap; vm; vm = vm->vm_next) {
514 if (hv_pte_get_cached_priority(vm->vm_page_prot))
515 break;
516 }
517 if (vm == NULL)
518 mm->context.priority_cached = 0;
519 up_write(&mm->mmap_sem);
520 }
521 return mm->context.priority_cached;
522}
523
524/* Set caching correctly for an mm that we are switching to. */
525void check_mm_caching(struct mm_struct *prev, struct mm_struct *next)
526{
527 if (!mm_is_priority_cached(next)) {
528 /*
529 * If the new mm doesn't use priority caching, just see if we
530 * need the hv_set_caching(), or can assume it's already zero.
531 */
532 if (mm_is_priority_cached(prev))
533 hv_set_caching(0);
534 } else {
535 hv_set_caching(update_priority_cached(next));
536 }
537}
538
539#if CHIP_HAS_MMIO()
540
541/* Map an arbitrary MMIO address, homed according to pgprot, into VA space. */
542void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
543 pgprot_t home)
544{
545 void *addr;
546 struct vm_struct *area;
547 unsigned long offset, last_addr;
548 pgprot_t pgprot;
549
550 /* Don't allow wraparound or zero size */
551 last_addr = phys_addr + size - 1;
552 if (!size || last_addr < phys_addr)
553 return NULL;
554
555 /* Create a read/write, MMIO VA mapping homed at the requested shim. */
556 pgprot = PAGE_KERNEL;
557 pgprot = hv_pte_set_mode(pgprot, HV_PTE_MODE_MMIO);
558 pgprot = hv_pte_set_lotar(pgprot, hv_pte_get_lotar(home));
559
560 /*
561 * Mappings have to be page-aligned
562 */
563 offset = phys_addr & ~PAGE_MASK;
564 phys_addr &= PAGE_MASK;
565 size = PAGE_ALIGN(last_addr+1) - phys_addr;
566
567 /*
568 * Ok, go for it..
569 */
570 area = get_vm_area(size, VM_IOREMAP /* | other flags? */);
571 if (!area)
572 return NULL;
573 area->phys_addr = phys_addr;
574 addr = area->addr;
575 if (ioremap_page_range((unsigned long)addr, (unsigned long)addr + size,
576 phys_addr, pgprot)) {
577 remove_vm_area((void *)(PAGE_MASK & (unsigned long) addr));
578 return NULL;
579 }
580 return (__force void __iomem *) (offset + (char *)addr);
581}
582EXPORT_SYMBOL(ioremap_prot);
583
584/* Map a PCI MMIO bus address into VA space. */
585void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
586{
587 panic("ioremap for PCI MMIO is not supported");
588}
589EXPORT_SYMBOL(ioremap);
590
591/* Unmap an MMIO VA mapping. */
592void iounmap(volatile void __iomem *addr_in)
593{
594 volatile void __iomem *addr = (volatile void __iomem *)
595 (PAGE_MASK & (unsigned long __force)addr_in);
596#if 1
597 vunmap((void * __force)addr);
598#else
599 /* x86 uses this complicated flow instead of vunmap(). Is
600 * there any particular reason we should do the same? */
601 struct vm_struct *p, *o;
602
603 /* Use the vm area unlocked, assuming the caller
604 ensures there isn't another iounmap for the same address
605 in parallel. Reuse of the virtual address is prevented by
606 leaving it in the global lists until we're done with it.
607 cpa takes care of the direct mappings. */
608 read_lock(&vmlist_lock);
609 for (p = vmlist; p; p = p->next) {
610 if (p->addr == addr)
611 break;
612 }
613 read_unlock(&vmlist_lock);
614
615 if (!p) {
0707ad30 616 pr_err("iounmap: bad address %p\n", addr);
867e359b
CM
617 dump_stack();
618 return;
619 }
620
621 /* Finally remove it */
622 o = remove_vm_area((void *)addr);
623 BUG_ON(p != o || o == NULL);
624 kfree(p);
625#endif
626}
627EXPORT_SYMBOL(iounmap);
628
629#endif /* CHIP_HAS_MMIO() */
This page took 0.148891 seconds and 5 git commands to generate.