crypto: sha-mb - SHA1 multibuffer job manager and glue code
[deliverable/linux.git] / arch / x86 / crypto / sha-mb / sha1_mb.c
CommitLineData
ad61e042
TC
1/*
2 * Multi buffer SHA1 algorithm Glue Code
3 *
4 * This file is provided under a dual BSD/GPLv2 license. When using or
5 * redistributing this file, you may do so under either license.
6 *
7 * GPL LICENSE SUMMARY
8 *
9 * Copyright(c) 2014 Intel Corporation.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * Contact Information:
21 * Tim Chen <tim.c.chen@linux.intel.com>
22 *
23 * BSD LICENSE
24 *
25 * Copyright(c) 2014 Intel Corporation.
26 *
27 * Redistribution and use in source and binary forms, with or without
28 * modification, are permitted provided that the following conditions
29 * are met:
30 *
31 * * Redistributions of source code must retain the above copyright
32 * notice, this list of conditions and the following disclaimer.
33 * * Redistributions in binary form must reproduce the above copyright
34 * notice, this list of conditions and the following disclaimer in
35 * the documentation and/or other materials provided with the
36 * distribution.
37 * * Neither the name of Intel Corporation nor the names of its
38 * contributors may be used to endorse or promote products derived
39 * from this software without specific prior written permission.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
52 */
53
54#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55
56#include <crypto/internal/hash.h>
57#include <linux/init.h>
58#include <linux/module.h>
59#include <linux/mm.h>
60#include <linux/cryptohash.h>
61#include <linux/types.h>
62#include <linux/list.h>
63#include <crypto/scatterwalk.h>
64#include <crypto/sha.h>
65#include <crypto/mcryptd.h>
66#include <crypto/crypto_wq.h>
67#include <asm/byteorder.h>
68#include <asm/i387.h>
69#include <asm/xcr.h>
70#include <asm/xsave.h>
71#include <linux/hardirq.h>
72#include <asm/fpu-internal.h>
73#include "sha_mb_ctx.h"
74
75#define FLUSH_INTERVAL 1000 /* in usec */
76
77struct mcryptd_alg_state sha1_mb_alg_state;
78
79struct sha1_mb_ctx {
80 struct mcryptd_ahash *mcryptd_tfm;
81};
82
83static inline struct mcryptd_hash_request_ctx *cast_hash_to_mcryptd_ctx(struct sha1_hash_ctx *hash_ctx)
84{
85 struct shash_desc *desc;
86
87 desc = container_of((void *) hash_ctx, struct shash_desc, __ctx);
88 return container_of(desc, struct mcryptd_hash_request_ctx, desc);
89}
90
91static inline struct ahash_request *cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx)
92{
93 return container_of((void *) ctx, struct ahash_request, __ctx);
94}
95
96static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx,
97 struct shash_desc *desc)
98{
99 rctx->flag = HASH_UPDATE;
100}
101
102asmlinkage void (*sha1_job_mgr_init)(struct sha1_mb_mgr *state);
103asmlinkage struct job_sha1* (*sha1_job_mgr_submit)(struct sha1_mb_mgr *state,
104 struct job_sha1 *job);
105asmlinkage struct job_sha1* (*sha1_job_mgr_flush)(struct sha1_mb_mgr *state);
106asmlinkage struct job_sha1* (*sha1_job_mgr_get_comp_job)(struct sha1_mb_mgr *state);
107
108inline void sha1_init_digest(uint32_t *digest)
109{
110 static const uint32_t initial_digest[SHA1_DIGEST_LENGTH] = {SHA1_H0,
111 SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 };
112 memcpy(digest, initial_digest, sizeof(initial_digest));
113}
114
115inline uint32_t sha1_pad(uint8_t padblock[SHA1_BLOCK_SIZE * 2],
116 uint32_t total_len)
117{
118 uint32_t i = total_len & (SHA1_BLOCK_SIZE - 1);
119
120 memset(&padblock[i], 0, SHA1_BLOCK_SIZE);
121 padblock[i] = 0x80;
122
123 i += ((SHA1_BLOCK_SIZE - 1) &
124 (0 - (total_len + SHA1_PADLENGTHFIELD_SIZE + 1)))
125 + 1 + SHA1_PADLENGTHFIELD_SIZE;
126
127#if SHA1_PADLENGTHFIELD_SIZE == 16
128 *((uint64_t *) &padblock[i - 16]) = 0;
129#endif
130
131 *((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3);
132
133 /* Number of extra blocks to hash */
134 return i >> SHA1_LOG2_BLOCK_SIZE;
135}
136
137static struct sha1_hash_ctx *sha1_ctx_mgr_resubmit(struct sha1_ctx_mgr *mgr, struct sha1_hash_ctx *ctx)
138{
139 while (ctx) {
140 if (ctx->status & HASH_CTX_STS_COMPLETE) {
141 /* Clear PROCESSING bit */
142 ctx->status = HASH_CTX_STS_COMPLETE;
143 return ctx;
144 }
145
146 /*
147 * If the extra blocks are empty, begin hashing what remains
148 * in the user's buffer.
149 */
150 if (ctx->partial_block_buffer_length == 0 &&
151 ctx->incoming_buffer_length) {
152
153 const void *buffer = ctx->incoming_buffer;
154 uint32_t len = ctx->incoming_buffer_length;
155 uint32_t copy_len;
156
157 /*
158 * Only entire blocks can be hashed.
159 * Copy remainder to extra blocks buffer.
160 */
161 copy_len = len & (SHA1_BLOCK_SIZE-1);
162
163 if (copy_len) {
164 len -= copy_len;
165 memcpy(ctx->partial_block_buffer,
166 ((const char *) buffer + len),
167 copy_len);
168 ctx->partial_block_buffer_length = copy_len;
169 }
170
171 ctx->incoming_buffer_length = 0;
172
173 /* len should be a multiple of the block size now */
174 assert((len % SHA1_BLOCK_SIZE) == 0);
175
176 /* Set len to the number of blocks to be hashed */
177 len >>= SHA1_LOG2_BLOCK_SIZE;
178
179 if (len) {
180
181 ctx->job.buffer = (uint8_t *) buffer;
182 ctx->job.len = len;
183 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr,
184 &ctx->job);
185 continue;
186 }
187 }
188
189 /*
190 * If the extra blocks are not empty, then we are
191 * either on the last block(s) or we need more
192 * user input before continuing.
193 */
194 if (ctx->status & HASH_CTX_STS_LAST) {
195
196 uint8_t *buf = ctx->partial_block_buffer;
197 uint32_t n_extra_blocks = sha1_pad(buf, ctx->total_length);
198
199 ctx->status = (HASH_CTX_STS_PROCESSING |
200 HASH_CTX_STS_COMPLETE);
201 ctx->job.buffer = buf;
202 ctx->job.len = (uint32_t) n_extra_blocks;
203 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
204 continue;
205 }
206
207 if (ctx)
208 ctx->status = HASH_CTX_STS_IDLE;
209 return ctx;
210 }
211
212 return NULL;
213}
214
215struct sha1_hash_ctx *sha1_ctx_mgr_get_comp_ctx(struct sha1_ctx_mgr *mgr)
216{
217 /*
218 * If get_comp_job returns NULL, there are no jobs complete.
219 * If get_comp_job returns a job, verify that it is safe to return to the user.
220 * If it is not ready, resubmit the job to finish processing.
221 * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
222 * Otherwise, all jobs currently being managed by the hash_ctx_mgr still need processing.
223 */
224 struct sha1_hash_ctx *ctx;
225
226 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_get_comp_job(&mgr->mgr);
227 return sha1_ctx_mgr_resubmit(mgr, ctx);
228}
229
230void sha1_ctx_mgr_init(struct sha1_ctx_mgr *mgr)
231{
232 sha1_job_mgr_init(&mgr->mgr);
233}
234
235struct sha1_hash_ctx *sha1_ctx_mgr_submit(struct sha1_ctx_mgr *mgr,
236 struct sha1_hash_ctx *ctx,
237 const void *buffer,
238 uint32_t len,
239 int flags)
240{
241 if (flags & (~HASH_ENTIRE)) {
242 /* User should not pass anything other than FIRST, UPDATE, or LAST */
243 ctx->error = HASH_CTX_ERROR_INVALID_FLAGS;
244 return ctx;
245 }
246
247 if (ctx->status & HASH_CTX_STS_PROCESSING) {
248 /* Cannot submit to a currently processing job. */
249 ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING;
250 return ctx;
251 }
252
253 if ((ctx->status & HASH_CTX_STS_COMPLETE) && !(flags & HASH_FIRST)) {
254 /* Cannot update a finished job. */
255 ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED;
256 return ctx;
257 }
258
259
260 if (flags & HASH_FIRST) {
261 /* Init digest */
262 sha1_init_digest(ctx->job.result_digest);
263
264 /* Reset byte counter */
265 ctx->total_length = 0;
266
267 /* Clear extra blocks */
268 ctx->partial_block_buffer_length = 0;
269 }
270
271 /* If we made it here, there were no errors during this call to submit */
272 ctx->error = HASH_CTX_ERROR_NONE;
273
274 /* Store buffer ptr info from user */
275 ctx->incoming_buffer = buffer;
276 ctx->incoming_buffer_length = len;
277
278 /* Store the user's request flags and mark this ctx as currently being processed. */
279 ctx->status = (flags & HASH_LAST) ?
280 (HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) :
281 HASH_CTX_STS_PROCESSING;
282
283 /* Advance byte counter */
284 ctx->total_length += len;
285
286 /*
287 * If there is anything currently buffered in the extra blocks,
288 * append to it until it contains a whole block.
289 * Or if the user's buffer contains less than a whole block,
290 * append as much as possible to the extra block.
291 */
292 if ((ctx->partial_block_buffer_length) | (len < SHA1_BLOCK_SIZE)) {
293 /* Compute how many bytes to copy from user buffer into extra block */
294 uint32_t copy_len = SHA1_BLOCK_SIZE - ctx->partial_block_buffer_length;
295 if (len < copy_len)
296 copy_len = len;
297
298 if (copy_len) {
299 /* Copy and update relevant pointers and counters */
300 memcpy(&ctx->partial_block_buffer[ctx->partial_block_buffer_length],
301 buffer, copy_len);
302
303 ctx->partial_block_buffer_length += copy_len;
304 ctx->incoming_buffer = (const void *)((const char *)buffer + copy_len);
305 ctx->incoming_buffer_length = len - copy_len;
306 }
307
308 /* The extra block should never contain more than 1 block here */
309 assert(ctx->partial_block_buffer_length <= SHA1_BLOCK_SIZE);
310
311 /* If the extra block buffer contains exactly 1 block, it can be hashed. */
312 if (ctx->partial_block_buffer_length >= SHA1_BLOCK_SIZE) {
313 ctx->partial_block_buffer_length = 0;
314
315 ctx->job.buffer = ctx->partial_block_buffer;
316 ctx->job.len = 1;
317 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
318 }
319 }
320
321 return sha1_ctx_mgr_resubmit(mgr, ctx);
322}
323
324struct sha1_hash_ctx *sha1_ctx_mgr_flush(struct sha1_ctx_mgr *mgr)
325{
326 struct sha1_hash_ctx *ctx;
327
328 while (1) {
329 ctx = (struct sha1_hash_ctx *) sha1_job_mgr_flush(&mgr->mgr);
330
331 /* If flush returned 0, there are no more jobs in flight. */
332 if (!ctx)
333 return NULL;
334
335 /*
336 * If flush returned a job, resubmit the job to finish processing.
337 */
338 ctx = sha1_ctx_mgr_resubmit(mgr, ctx);
339
340 /*
341 * If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
342 * Otherwise, all jobs currently being managed by the sha1_ctx_mgr
343 * still need processing. Loop.
344 */
345 if (ctx)
346 return ctx;
347 }
348}
349
350static int sha1_mb_init(struct shash_desc *desc)
351{
352 struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);
353
354 hash_ctx_init(sctx);
355 sctx->job.result_digest[0] = SHA1_H0;
356 sctx->job.result_digest[1] = SHA1_H1;
357 sctx->job.result_digest[2] = SHA1_H2;
358 sctx->job.result_digest[3] = SHA1_H3;
359 sctx->job.result_digest[4] = SHA1_H4;
360 sctx->total_length = 0;
361 sctx->partial_block_buffer_length = 0;
362 sctx->status = HASH_CTX_STS_IDLE;
363
364 return 0;
365}
366
367static int sha1_mb_set_results(struct mcryptd_hash_request_ctx *rctx)
368{
369 int i;
370 struct sha1_hash_ctx *sctx = shash_desc_ctx(&rctx->desc);
371 __be32 *dst = (__be32 *) rctx->out;
372
373 for (i = 0; i < 5; ++i)
374 dst[i] = cpu_to_be32(sctx->job.result_digest[i]);
375
376 return 0;
377}
378
379static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx,
380 struct mcryptd_alg_cstate *cstate, bool flush)
381{
382 int flag = HASH_UPDATE;
383 int nbytes, err = 0;
384 struct mcryptd_hash_request_ctx *rctx = *ret_rctx;
385 struct sha1_hash_ctx *sha_ctx;
386
387 /* more work ? */
388 while (!(rctx->flag & HASH_DONE)) {
389 nbytes = crypto_ahash_walk_done(&rctx->walk, 0);
390 if (nbytes < 0) {
391 err = nbytes;
392 goto out;
393 }
394 /* check if the walk is done */
395 if (crypto_ahash_walk_last(&rctx->walk)) {
396 rctx->flag |= HASH_DONE;
397 if (rctx->flag & HASH_FINAL)
398 flag |= HASH_LAST;
399
400 }
401 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(&rctx->desc);
402 kernel_fpu_begin();
403 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag);
404 if (!sha_ctx) {
405 if (flush)
406 sha_ctx = sha1_ctx_mgr_flush(cstate->mgr);
407 }
408 kernel_fpu_end();
409 if (sha_ctx)
410 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
411 else {
412 rctx = NULL;
413 goto out;
414 }
415 }
416
417 /* copy the results */
418 if (rctx->flag & HASH_FINAL)
419 sha1_mb_set_results(rctx);
420
421out:
422 *ret_rctx = rctx;
423 return err;
424}
425
426static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx,
427 struct mcryptd_alg_cstate *cstate,
428 int err)
429{
430 struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
431 struct sha1_hash_ctx *sha_ctx;
432 struct mcryptd_hash_request_ctx *req_ctx;
433 int ret;
434
435 /* remove from work list */
436 spin_lock(&cstate->work_lock);
437 list_del(&rctx->waiter);
438 spin_unlock(&cstate->work_lock);
439
440 if (irqs_disabled())
441 rctx->complete(&req->base, err);
442 else {
443 local_bh_disable();
444 rctx->complete(&req->base, err);
445 local_bh_enable();
446 }
447
448 /* check to see if there are other jobs that are done */
449 sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
450 while (sha_ctx) {
451 req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx);
452 ret = sha_finish_walk(&req_ctx, cstate, false);
453 if (req_ctx) {
454 spin_lock(&cstate->work_lock);
455 list_del(&req_ctx->waiter);
456 spin_unlock(&cstate->work_lock);
457
458 req = cast_mcryptd_ctx_to_req(req_ctx);
459 if (irqs_disabled())
460 rctx->complete(&req->base, ret);
461 else {
462 local_bh_disable();
463 rctx->complete(&req->base, ret);
464 local_bh_enable();
465 }
466 }
467 sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
468 }
469
470 return 0;
471}
472
473static void sha1_mb_add_list(struct mcryptd_hash_request_ctx *rctx,
474 struct mcryptd_alg_cstate *cstate)
475{
476 unsigned long next_flush;
477 unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL);
478
479 /* initialize tag */
480 rctx->tag.arrival = jiffies; /* tag the arrival time */
481 rctx->tag.seq_num = cstate->next_seq_num++;
482 next_flush = rctx->tag.arrival + delay;
483 rctx->tag.expire = next_flush;
484
485 spin_lock(&cstate->work_lock);
486 list_add_tail(&rctx->waiter, &cstate->work_list);
487 spin_unlock(&cstate->work_lock);
488
489 mcryptd_arm_flusher(cstate, delay);
490}
491
492static int sha1_mb_update(struct shash_desc *desc, const u8 *data,
493 unsigned int len)
494{
495 struct mcryptd_hash_request_ctx *rctx =
496 container_of(desc, struct mcryptd_hash_request_ctx, desc);
497 struct mcryptd_alg_cstate *cstate =
498 this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
499
500 struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
501 struct sha1_hash_ctx *sha_ctx;
502 int ret = 0, nbytes;
503
504
505 /* sanity check */
506 if (rctx->tag.cpu != smp_processor_id()) {
507 pr_err("mcryptd error: cpu clash\n");
508 goto done;
509 }
510
511 /* need to init context */
512 req_ctx_init(rctx, desc);
513
514 nbytes = crypto_ahash_walk_first(req, &rctx->walk);
515
516 if (nbytes < 0) {
517 ret = nbytes;
518 goto done;
519 }
520
521 if (crypto_ahash_walk_last(&rctx->walk))
522 rctx->flag |= HASH_DONE;
523
524 /* submit */
525 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
526 sha1_mb_add_list(rctx, cstate);
527 kernel_fpu_begin();
528 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, HASH_UPDATE);
529 kernel_fpu_end();
530
531 /* check if anything is returned */
532 if (!sha_ctx)
533 return -EINPROGRESS;
534
535 if (sha_ctx->error) {
536 ret = sha_ctx->error;
537 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
538 goto done;
539 }
540
541 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
542 ret = sha_finish_walk(&rctx, cstate, false);
543
544 if (!rctx)
545 return -EINPROGRESS;
546done:
547 sha_complete_job(rctx, cstate, ret);
548 return ret;
549}
550
551static int sha1_mb_finup(struct shash_desc *desc, const u8 *data,
552 unsigned int len, u8 *out)
553{
554 struct mcryptd_hash_request_ctx *rctx =
555 container_of(desc, struct mcryptd_hash_request_ctx, desc);
556 struct mcryptd_alg_cstate *cstate =
557 this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
558
559 struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
560 struct sha1_hash_ctx *sha_ctx;
561 int ret = 0, flag = HASH_UPDATE, nbytes;
562
563 /* sanity check */
564 if (rctx->tag.cpu != smp_processor_id()) {
565 pr_err("mcryptd error: cpu clash\n");
566 goto done;
567 }
568
569 /* need to init context */
570 req_ctx_init(rctx, desc);
571
572 nbytes = crypto_ahash_walk_first(req, &rctx->walk);
573
574 if (nbytes < 0) {
575 ret = nbytes;
576 goto done;
577 }
578
579 if (crypto_ahash_walk_last(&rctx->walk)) {
580 rctx->flag |= HASH_DONE;
581 flag = HASH_LAST;
582 }
583 rctx->out = out;
584
585 /* submit */
586 rctx->flag |= HASH_FINAL;
587 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
588 sha1_mb_add_list(rctx, cstate);
589
590 kernel_fpu_begin();
591 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data, nbytes, flag);
592 kernel_fpu_end();
593
594 /* check if anything is returned */
595 if (!sha_ctx)
596 return -EINPROGRESS;
597
598 if (sha_ctx->error) {
599 ret = sha_ctx->error;
600 goto done;
601 }
602
603 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
604 ret = sha_finish_walk(&rctx, cstate, false);
605 if (!rctx)
606 return -EINPROGRESS;
607done:
608 sha_complete_job(rctx, cstate, ret);
609 return ret;
610}
611
612static int sha1_mb_final(struct shash_desc *desc, u8 *out)
613{
614 struct mcryptd_hash_request_ctx *rctx =
615 container_of(desc, struct mcryptd_hash_request_ctx, desc);
616 struct mcryptd_alg_cstate *cstate =
617 this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
618
619 struct sha1_hash_ctx *sha_ctx;
620 int ret = 0;
621 u8 data;
622
623 /* sanity check */
624 if (rctx->tag.cpu != smp_processor_id()) {
625 pr_err("mcryptd error: cpu clash\n");
626 goto done;
627 }
628
629 /* need to init context */
630 req_ctx_init(rctx, desc);
631
632 rctx->out = out;
633 rctx->flag |= HASH_DONE | HASH_FINAL;
634
635 sha_ctx = (struct sha1_hash_ctx *) shash_desc_ctx(desc);
636 /* flag HASH_FINAL and 0 data size */
637 sha1_mb_add_list(rctx, cstate);
638 kernel_fpu_begin();
639 sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, &data, 0, HASH_LAST);
640 kernel_fpu_end();
641
642 /* check if anything is returned */
643 if (!sha_ctx)
644 return -EINPROGRESS;
645
646 if (sha_ctx->error) {
647 ret = sha_ctx->error;
648 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
649 goto done;
650 }
651
652 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
653 ret = sha_finish_walk(&rctx, cstate, false);
654 if (!rctx)
655 return -EINPROGRESS;
656done:
657 sha_complete_job(rctx, cstate, ret);
658 return ret;
659}
660
661static int sha1_mb_export(struct shash_desc *desc, void *out)
662{
663 struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);
664
665 memcpy(out, sctx, sizeof(*sctx));
666
667 return 0;
668}
669
670static int sha1_mb_import(struct shash_desc *desc, const void *in)
671{
672 struct sha1_hash_ctx *sctx = shash_desc_ctx(desc);
673
674 memcpy(sctx, in, sizeof(*sctx));
675
676 return 0;
677}
678
679
680static struct shash_alg sha1_mb_shash_alg = {
681 .digestsize = SHA1_DIGEST_SIZE,
682 .init = sha1_mb_init,
683 .update = sha1_mb_update,
684 .final = sha1_mb_final,
685 .finup = sha1_mb_finup,
686 .export = sha1_mb_export,
687 .import = sha1_mb_import,
688 .descsize = sizeof(struct sha1_hash_ctx),
689 .statesize = sizeof(struct sha1_hash_ctx),
690 .base = {
691 .cra_name = "__sha1-mb",
692 .cra_driver_name = "__intel_sha1-mb",
693 .cra_priority = 100,
694 /*
695 * use ASYNC flag as some buffers in multi-buffer
696 * algo may not have completed before hashing thread sleep
697 */
698 .cra_flags = CRYPTO_ALG_TYPE_SHASH | CRYPTO_ALG_ASYNC,
699 .cra_blocksize = SHA1_BLOCK_SIZE,
700 .cra_module = THIS_MODULE,
701 .cra_list = LIST_HEAD_INIT(sha1_mb_shash_alg.base.cra_list),
702 }
703};
704
705static int sha1_mb_async_init(struct ahash_request *req)
706{
707 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
708 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
709 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
710 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
711
712 memcpy(mcryptd_req, req, sizeof(*req));
713 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
714 return crypto_ahash_init(mcryptd_req);
715}
716
717static int sha1_mb_async_update(struct ahash_request *req)
718{
719 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
720
721 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
722 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
723 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
724
725 memcpy(mcryptd_req, req, sizeof(*req));
726 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
727 return crypto_ahash_update(mcryptd_req);
728}
729
730static int sha1_mb_async_finup(struct ahash_request *req)
731{
732 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
733
734 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
735 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
736 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
737
738 memcpy(mcryptd_req, req, sizeof(*req));
739 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
740 return crypto_ahash_finup(mcryptd_req);
741}
742
743static int sha1_mb_async_final(struct ahash_request *req)
744{
745 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
746
747 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
748 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
749 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
750
751 memcpy(mcryptd_req, req, sizeof(*req));
752 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
753 return crypto_ahash_final(mcryptd_req);
754}
755
756int sha1_mb_async_digest(struct ahash_request *req)
757{
758 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
759 struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
760 struct ahash_request *mcryptd_req = ahash_request_ctx(req);
761 struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
762
763 memcpy(mcryptd_req, req, sizeof(*req));
764 ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
765 return crypto_ahash_digest(mcryptd_req);
766}
767
768static int sha1_mb_async_init_tfm(struct crypto_tfm *tfm)
769{
770 struct mcryptd_ahash *mcryptd_tfm;
771 struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
772 struct mcryptd_hash_ctx *mctx;
773
774 mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha1-mb", 0, 0);
775 if (IS_ERR(mcryptd_tfm))
776 return PTR_ERR(mcryptd_tfm);
777 mctx = crypto_ahash_ctx(&mcryptd_tfm->base);
778 mctx->alg_state = &sha1_mb_alg_state;
779 ctx->mcryptd_tfm = mcryptd_tfm;
780 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
781 sizeof(struct ahash_request) +
782 crypto_ahash_reqsize(&mcryptd_tfm->base));
783
784 return 0;
785}
786
787static void sha1_mb_async_exit_tfm(struct crypto_tfm *tfm)
788{
789 struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
790
791 mcryptd_free_ahash(ctx->mcryptd_tfm);
792}
793
794static struct ahash_alg sha1_mb_async_alg = {
795 .init = sha1_mb_async_init,
796 .update = sha1_mb_async_update,
797 .final = sha1_mb_async_final,
798 .finup = sha1_mb_async_finup,
799 .digest = sha1_mb_async_digest,
800 .halg = {
801 .digestsize = SHA1_DIGEST_SIZE,
802 .base = {
803 .cra_name = "sha1",
804 .cra_driver_name = "sha1_mb",
805 .cra_priority = 200,
806 .cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC,
807 .cra_blocksize = SHA1_BLOCK_SIZE,
808 .cra_type = &crypto_ahash_type,
809 .cra_module = THIS_MODULE,
810 .cra_list = LIST_HEAD_INIT(sha1_mb_async_alg.halg.base.cra_list),
811 .cra_init = sha1_mb_async_init_tfm,
812 .cra_exit = sha1_mb_async_exit_tfm,
813 .cra_ctxsize = sizeof(struct sha1_mb_ctx),
814 .cra_alignmask = 0,
815 },
816 },
817};
818
819unsigned long sha1_mb_flusher(struct mcryptd_alg_cstate *cstate)
820{
821 struct mcryptd_hash_request_ctx *rctx;
822 unsigned long cur_time;
823 unsigned long next_flush = 0;
824 struct sha1_hash_ctx *sha_ctx;
825
826
827 cur_time = jiffies;
828
829 while (!list_empty(&cstate->work_list)) {
830 rctx = list_entry(cstate->work_list.next,
831 struct mcryptd_hash_request_ctx, waiter);
832 if time_before(cur_time, rctx->tag.expire)
833 break;
834 kernel_fpu_begin();
835 sha_ctx = (struct sha1_hash_ctx *) sha1_ctx_mgr_flush(cstate->mgr);
836 kernel_fpu_end();
837 if (!sha_ctx) {
838 pr_err("sha1_mb error: nothing got flushed for non-empty list\n");
839 break;
840 }
841 rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
842 sha_finish_walk(&rctx, cstate, true);
843 sha_complete_job(rctx, cstate, 0);
844 }
845
846 if (!list_empty(&cstate->work_list)) {
847 rctx = list_entry(cstate->work_list.next,
848 struct mcryptd_hash_request_ctx, waiter);
849 /* get the hash context and then flush time */
850 next_flush = rctx->tag.expire;
851 mcryptd_arm_flusher(cstate, get_delay(next_flush));
852 }
853 return next_flush;
854}
855
856static int __init sha1_mb_mod_init(void)
857{
858
859 int cpu;
860 int err;
861 struct mcryptd_alg_cstate *cpu_state;
862
863 /* check for dependent cpu features */
864 if (!boot_cpu_has(X86_FEATURE_AVX2) ||
865 !boot_cpu_has(X86_FEATURE_BMI2))
866 return -ENODEV;
867
868 /* initialize multibuffer structures */
869 sha1_mb_alg_state.alg_cstate = alloc_percpu(struct mcryptd_alg_cstate);
870
871 sha1_job_mgr_init = sha1_mb_mgr_init_avx2;
872 sha1_job_mgr_submit = sha1_mb_mgr_submit_avx2;
873 sha1_job_mgr_flush = sha1_mb_mgr_flush_avx2;
874 sha1_job_mgr_get_comp_job = sha1_mb_mgr_get_comp_job_avx2;
875
876 if (!sha1_mb_alg_state.alg_cstate)
877 return -ENOMEM;
878 for_each_possible_cpu(cpu) {
879 cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
880 cpu_state->next_flush = 0;
881 cpu_state->next_seq_num = 0;
882 cpu_state->flusher_engaged = false;
883 INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher);
884 cpu_state->cpu = cpu;
885 cpu_state->alg_state = &sha1_mb_alg_state;
886 cpu_state->mgr = (struct sha1_ctx_mgr *) kzalloc(sizeof(struct sha1_ctx_mgr), GFP_KERNEL);
887 if (!cpu_state->mgr)
888 goto err2;
889 sha1_ctx_mgr_init(cpu_state->mgr);
890 INIT_LIST_HEAD(&cpu_state->work_list);
891 spin_lock_init(&cpu_state->work_lock);
892 }
893 sha1_mb_alg_state.flusher = &sha1_mb_flusher;
894
895 err = crypto_register_shash(&sha1_mb_shash_alg);
896 if (err)
897 goto err2;
898 err = crypto_register_ahash(&sha1_mb_async_alg);
899 if (err)
900 goto err1;
901
902
903 return 0;
904err1:
905 crypto_unregister_shash(&sha1_mb_shash_alg);
906err2:
907 for_each_possible_cpu(cpu) {
908 cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
909 kfree(cpu_state->mgr);
910 }
911 free_percpu(sha1_mb_alg_state.alg_cstate);
912 return -ENODEV;
913}
914
915static void __exit sha1_mb_mod_fini(void)
916{
917 int cpu;
918 struct mcryptd_alg_cstate *cpu_state;
919
920 crypto_unregister_ahash(&sha1_mb_async_alg);
921 crypto_unregister_shash(&sha1_mb_shash_alg);
922 for_each_possible_cpu(cpu) {
923 cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
924 kfree(cpu_state->mgr);
925 }
926 free_percpu(sha1_mb_alg_state.alg_cstate);
927}
928
929module_init(sha1_mb_mod_init);
930module_exit(sha1_mb_mod_fini);
931
932MODULE_LICENSE("GPL");
933MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, multi buffer accelerated");
934
935MODULE_ALIAS("sha1");
This page took 0.05898 seconds and 5 git commands to generate.