x86/nmi/64: Fix a paravirt stack-clobbering bug in the NMI code
[deliverable/linux.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
d7e7528b 38#include <linux/err.h>
1da177e4 39
86a1c34a
RM
40/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41#include <linux/elf-em.h>
4d732138
IM
42#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43#define __AUDIT_ARCH_64BIT 0x80000000
44#define __AUDIT_ARCH_LE 0x40000000
ea714547 45
4d732138
IM
46.code64
47.section .entry.text, "ax"
16444a8a 48
72fe4858 49#ifdef CONFIG_PARAVIRT
2be29982 50ENTRY(native_usergs_sysret64)
72fe4858
GOC
51 swapgs
52 sysretq
b3baaa13 53ENDPROC(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
f2db9382 56.macro TRACE_IRQS_IRETQ
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
5963e317
SR
65/*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78.macro TRACE_IRQS_OFF_DEBUG
4d732138 79 call debug_stack_set_zero
5963e317 80 TRACE_IRQS_OFF
4d732138 81 call debug_stack_reset
5963e317
SR
82.endm
83
84.macro TRACE_IRQS_ON_DEBUG
4d732138 85 call debug_stack_set_zero
5963e317 86 TRACE_IRQS_ON
4d732138 87 call debug_stack_reset
5963e317
SR
88.endm
89
f2db9382 90.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
5963e317
SR
93 TRACE_IRQS_ON_DEBUG
941:
95.endm
96
97#else
4d732138
IM
98# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
101#endif
102
1da177e4 103/*
4d732138 104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 105 *
4d732138 106 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
107 * then loads new ss, cs, and rip from previously programmed MSRs.
108 * rflags gets masked by a value from another MSR (so CLD and CLAC
109 * are not needed). SYSCALL does not save anything on the stack
110 * and does not change rsp.
111 *
112 * Registers on entry:
1da177e4 113 * rax system call number
b87cf63e
DV
114 * rcx return address
115 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 116 * rdi arg0
1da177e4 117 * rsi arg1
0bd7b798 118 * rdx arg2
b87cf63e 119 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
120 * r8 arg4
121 * r9 arg5
4d732138 122 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 123 *
1da177e4
LT
124 * Only called from user space.
125 *
7fcb3bc3 126 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
127 * it deals with uncanonical addresses better. SYSRET has trouble
128 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 129 */
1da177e4 130
b2502b41 131ENTRY(entry_SYSCALL_64)
9ed8e7d8
DV
132 /*
133 * Interrupts are off on entry.
134 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
135 * it is too small to ever cause noticeable irq latency.
136 */
72fe4858
GOC
137 SWAPGS_UNSAFE_STACK
138 /*
139 * A hypervisor implementation might want to use a label
140 * after the swapgs, so that it can do the swapgs
141 * for the guest and jump here on syscall.
142 */
b2502b41 143GLOBAL(entry_SYSCALL_64_after_swapgs)
72fe4858 144
4d732138
IM
145 movq %rsp, PER_CPU_VAR(rsp_scratch)
146 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8
DV
147
148 /* Construct struct pt_regs on stack */
4d732138
IM
149 pushq $__USER_DS /* pt_regs->ss */
150 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
33db1fd4 151 /*
9ed8e7d8
DV
152 * Re-enable interrupts.
153 * We use 'rsp_scratch' as a scratch space, hence irq-off block above
154 * must execute atomically in the face of possible interrupt-driven
155 * task preemption. We must enable interrupts only after we're done
156 * with using rsp_scratch:
33db1fd4
DV
157 */
158 ENABLE_INTERRUPTS(CLBR_NONE)
4d732138
IM
159 pushq %r11 /* pt_regs->flags */
160 pushq $__USER_CS /* pt_regs->cs */
161 pushq %rcx /* pt_regs->ip */
162 pushq %rax /* pt_regs->orig_ax */
163 pushq %rdi /* pt_regs->di */
164 pushq %rsi /* pt_regs->si */
165 pushq %rdx /* pt_regs->dx */
166 pushq %rcx /* pt_regs->cx */
167 pushq $-ENOSYS /* pt_regs->ax */
168 pushq %r8 /* pt_regs->r8 */
169 pushq %r9 /* pt_regs->r9 */
170 pushq %r10 /* pt_regs->r10 */
171 pushq %r11 /* pt_regs->r11 */
172 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
173
174 testl $_TIF_WORK_SYSCALL_ENTRY, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
175 jnz tracesys
b2502b41 176entry_SYSCALL_64_fastpath:
fca460f9 177#if __SYSCALL_MASK == ~0
4d732138 178 cmpq $__NR_syscall_max, %rax
fca460f9 179#else
4d732138
IM
180 andl $__SYSCALL_MASK, %eax
181 cmpl $__NR_syscall_max, %eax
fca460f9 182#endif
4d732138
IM
183 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
184 movq %r10, %rcx
185 call *sys_call_table(, %rax, 8)
186 movq %rax, RAX(%rsp)
146b2b09 1871:
1da177e4 188/*
146b2b09
DV
189 * Syscall return path ending with SYSRET (fast path).
190 * Has incompletely filled pt_regs.
0bd7b798 191 */
10cd706d 192 LOCKDEP_SYS_EXIT
4416c5a6
DV
193 /*
194 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
195 * it is too small to ever cause noticeable irq latency.
196 */
72fe4858 197 DISABLE_INTERRUPTS(CLBR_NONE)
b3494a4a
AL
198
199 /*
200 * We must check ti flags with interrupts (or at least preemption)
201 * off because we must *never* return to userspace without
202 * processing exit work that is enqueued if we're preempted here.
203 * In particular, returning to userspace with any of the one-shot
204 * flags (TIF_NOTIFY_RESUME, TIF_USER_RETURN_NOTIFY, etc) set is
205 * very bad.
206 */
4d732138
IM
207 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
208 jnz int_ret_from_sys_call_irqs_off /* Go to the slow path */
b3494a4a 209
29722cd4 210 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138
IM
211 movq RIP(%rsp), %rcx
212 movq EFLAGS(%rsp), %r11
213 movq RSP(%rsp), %rsp
b87cf63e 214 /*
4d732138 215 * 64-bit SYSRET restores rip from rcx,
b87cf63e
DV
216 * rflags from r11 (but RF and VM bits are forced to 0),
217 * cs and ss are loaded from MSRs.
4416c5a6 218 * Restoration of rflags re-enables interrupts.
61f01dd9
AL
219 *
220 * NB: On AMD CPUs with the X86_BUG_SYSRET_SS_ATTRS bug, the ss
221 * descriptor is not reinitialized. This means that we should
222 * avoid SYSRET with SS == NULL, which could happen if we schedule,
223 * exit the kernel, and re-enter using an interrupt vector. (All
224 * interrupt entries on x86_64 set SS to NULL.) We prevent that
225 * from happening by reloading SS in __switch_to. (Actually
226 * detecting the failure in 64-bit userspace is tricky but can be
227 * done.)
b87cf63e 228 */
2be29982 229 USERGS_SYSRET64
1da177e4 230
29ea1b25
AL
231GLOBAL(int_ret_from_sys_call_irqs_off)
232 TRACE_IRQS_ON
233 ENABLE_INTERRUPTS(CLBR_NONE)
234 jmp int_ret_from_sys_call
235
7fcb3bc3 236 /* Do syscall entry tracing */
0bd7b798 237tracesys:
4d732138
IM
238 movq %rsp, %rdi
239 movl $AUDIT_ARCH_X86_64, %esi
240 call syscall_trace_enter_phase1
241 test %rax, %rax
242 jnz tracesys_phase2 /* if needed, run the slow path */
243 RESTORE_C_REGS_EXCEPT_RAX /* else restore clobbered regs */
244 movq ORIG_RAX(%rsp), %rax
245 jmp entry_SYSCALL_64_fastpath /* and return to the fast path */
1dcf74f6
AL
246
247tracesys_phase2:
76f5df43 248 SAVE_EXTRA_REGS
4d732138
IM
249 movq %rsp, %rdi
250 movl $AUDIT_ARCH_X86_64, %esi
251 movq %rax, %rdx
252 call syscall_trace_enter_phase2
1dcf74f6 253
d4d67150 254 /*
e90e147c 255 * Reload registers from stack in case ptrace changed them.
1dcf74f6 256 * We don't reload %rax because syscall_trace_entry_phase2() returned
d4d67150
RM
257 * the value it wants us to use in the table lookup.
258 */
76f5df43
DV
259 RESTORE_C_REGS_EXCEPT_RAX
260 RESTORE_EXTRA_REGS
fca460f9 261#if __SYSCALL_MASK == ~0
4d732138 262 cmpq $__NR_syscall_max, %rax
fca460f9 263#else
4d732138
IM
264 andl $__SYSCALL_MASK, %eax
265 cmpl $__NR_syscall_max, %eax
fca460f9 266#endif
4d732138
IM
267 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
268 movq %r10, %rcx /* fixup for C */
269 call *sys_call_table(, %rax, 8)
270 movq %rax, RAX(%rsp)
a6de5a21 2711:
7fcb3bc3 272 /* Use IRET because user could have changed pt_regs->foo */
0bd7b798
AH
273
274/*
1da177e4 275 * Syscall return path ending with IRET.
7fcb3bc3 276 * Has correct iret frame.
bcddc015 277 */
bc8b2b92 278GLOBAL(int_ret_from_sys_call)
76f5df43 279 SAVE_EXTRA_REGS
29ea1b25
AL
280 movq %rsp, %rdi
281 call syscall_return_slowpath /* returns with IRQs disabled */
76f5df43 282 RESTORE_EXTRA_REGS
29ea1b25 283 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
284
285 /*
286 * Try to use SYSRET instead of IRET if we're returning to
287 * a completely clean 64-bit userspace context.
288 */
4d732138
IM
289 movq RCX(%rsp), %rcx
290 movq RIP(%rsp), %r11
291 cmpq %rcx, %r11 /* RCX == RIP */
292 jne opportunistic_sysret_failed
fffbb5dc
DV
293
294 /*
295 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
296 * in kernel space. This essentially lets the user take over
17be0aec 297 * the kernel, since userspace controls RSP.
fffbb5dc 298 *
17be0aec 299 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc
DV
300 * to be updated to remain correct on both old and new CPUs.
301 */
302 .ifne __VIRTUAL_MASK_SHIFT - 47
303 .error "virtual address width changed -- SYSRET checks need update"
304 .endif
4d732138 305
17be0aec
DV
306 /* Change top 16 bits to be the sign-extension of 47th bit */
307 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
308 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 309
17be0aec
DV
310 /* If this changed %rcx, it was not canonical */
311 cmpq %rcx, %r11
312 jne opportunistic_sysret_failed
fffbb5dc 313
4d732138
IM
314 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
315 jne opportunistic_sysret_failed
fffbb5dc 316
4d732138
IM
317 movq R11(%rsp), %r11
318 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
319 jne opportunistic_sysret_failed
fffbb5dc
DV
320
321 /*
322 * SYSRET can't restore RF. SYSRET can restore TF, but unlike IRET,
323 * restoring TF results in a trap from userspace immediately after
324 * SYSRET. This would cause an infinite loop whenever #DB happens
325 * with register state that satisfies the opportunistic SYSRET
326 * conditions. For example, single-stepping this user code:
327 *
4d732138 328 * movq $stuck_here, %rcx
fffbb5dc
DV
329 * pushfq
330 * popq %r11
331 * stuck_here:
332 *
333 * would never get past 'stuck_here'.
334 */
4d732138
IM
335 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
336 jnz opportunistic_sysret_failed
fffbb5dc
DV
337
338 /* nothing to check for RSP */
339
4d732138
IM
340 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
341 jne opportunistic_sysret_failed
fffbb5dc
DV
342
343 /*
4d732138
IM
344 * We win! This label is here just for ease of understanding
345 * perf profiles. Nothing jumps here.
fffbb5dc
DV
346 */
347syscall_return_via_sysret:
17be0aec
DV
348 /* rcx and r11 are already restored (see code above) */
349 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 350 movq RSP(%rsp), %rsp
fffbb5dc 351 USERGS_SYSRET64
fffbb5dc
DV
352
353opportunistic_sysret_failed:
354 SWAPGS
355 jmp restore_c_regs_and_iret
b2502b41 356END(entry_SYSCALL_64)
0bd7b798 357
fffbb5dc 358
1d4b4b29
AV
359 .macro FORK_LIKE func
360ENTRY(stub_\func)
76f5df43 361 SAVE_EXTRA_REGS 8
4d732138 362 jmp sys_\func
1d4b4b29
AV
363END(stub_\func)
364 .endm
365
366 FORK_LIKE clone
367 FORK_LIKE fork
368 FORK_LIKE vfork
1da177e4 369
1da177e4 370ENTRY(stub_execve)
fc3e958a
DV
371 call sys_execve
372return_from_execve:
373 testl %eax, %eax
374 jz 1f
375 /* exec failed, can use fast SYSRET code path in this case */
376 ret
3771:
378 /* must use IRET code path (pt_regs->cs may have changed) */
379 addq $8, %rsp
380 ZERO_EXTRA_REGS
4d732138 381 movq %rax, RAX(%rsp)
fc3e958a 382 jmp int_ret_from_sys_call
4b787e0b 383END(stub_execve)
a37f34a3
DV
384/*
385 * Remaining execve stubs are only 7 bytes long.
386 * ENTRY() often aligns to 16 bytes, which in this case has no benefits.
387 */
388 .align 8
389GLOBAL(stub_execveat)
fc3e958a
DV
390 call sys_execveat
391 jmp return_from_execve
27d6ec7a
DD
392END(stub_execveat)
393
ac7f5dfb 394#if defined(CONFIG_X86_X32_ABI) || defined(CONFIG_IA32_EMULATION)
a37f34a3
DV
395 .align 8
396GLOBAL(stub_x32_execve)
ac7f5dfb 397GLOBAL(stub32_execve)
05f1752d
DV
398 call compat_sys_execve
399 jmp return_from_execve
ac7f5dfb 400END(stub32_execve)
05f1752d 401END(stub_x32_execve)
a37f34a3
DV
402 .align 8
403GLOBAL(stub_x32_execveat)
a37f34a3 404GLOBAL(stub32_execveat)
0f90fb97
DV
405 call compat_sys_execveat
406 jmp return_from_execve
0f90fb97 407END(stub32_execveat)
ac7f5dfb 408END(stub_x32_execveat)
0f90fb97
DV
409#endif
410
1da177e4
LT
411/*
412 * sigreturn is special because it needs to restore all registers on return.
413 * This cannot be done with SYSRET, so use the IRET return path instead.
0bd7b798 414 */
1da177e4 415ENTRY(stub_rt_sigreturn)
31f0119b
DV
416 /*
417 * SAVE_EXTRA_REGS result is not normally needed:
418 * sigreturn overwrites all pt_regs->GPREGS.
419 * But sigreturn can fail (!), and there is no easy way to detect that.
420 * To make sure RESTORE_EXTRA_REGS doesn't restore garbage on error,
421 * we SAVE_EXTRA_REGS here.
422 */
423 SAVE_EXTRA_REGS 8
4d732138 424 call sys_rt_sigreturn
31f0119b
DV
425return_from_stub:
426 addq $8, %rsp
76f5df43 427 RESTORE_EXTRA_REGS
4d732138
IM
428 movq %rax, RAX(%rsp)
429 jmp int_ret_from_sys_call
4b787e0b 430END(stub_rt_sigreturn)
1da177e4 431
c5a37394 432#ifdef CONFIG_X86_X32_ABI
c5a37394 433ENTRY(stub_x32_rt_sigreturn)
31f0119b 434 SAVE_EXTRA_REGS 8
4d732138
IM
435 call sys32_x32_rt_sigreturn
436 jmp return_from_stub
c5a37394 437END(stub_x32_rt_sigreturn)
c5a37394
PA
438#endif
439
1eeb207f
DV
440/*
441 * A newly forked process directly context switches into this address.
442 *
443 * rdi: prev task we switched from
444 */
445ENTRY(ret_from_fork)
1eeb207f 446
4d732138 447 LOCK ; btr $TIF_FORK, TI_flags(%r8)
1eeb207f 448
4d732138
IM
449 pushq $0x0002
450 popfq /* reset kernel eflags */
1eeb207f 451
4d732138 452 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 453
1eeb207f
DV
454 RESTORE_EXTRA_REGS
455
4d732138 456 testb $3, CS(%rsp) /* from kernel_thread? */
1eeb207f 457
1e3fbb8a
AL
458 /*
459 * By the time we get here, we have no idea whether our pt_regs,
460 * ti flags, and ti status came from the 64-bit SYSCALL fast path,
138bd56a 461 * the slow path, or one of the 32-bit compat paths.
66ad4efa 462 * Use IRET code path to return, since it can safely handle
1e3fbb8a
AL
463 * all of the above.
464 */
66ad4efa 465 jnz int_ret_from_sys_call
1eeb207f 466
4d732138
IM
467 /*
468 * We came from kernel_thread
469 * nb: we depend on RESTORE_EXTRA_REGS above
470 */
471 movq %rbp, %rdi
472 call *%rbx
473 movl $0, RAX(%rsp)
1eeb207f 474 RESTORE_EXTRA_REGS
4d732138 475 jmp int_ret_from_sys_call
1eeb207f
DV
476END(ret_from_fork)
477
939b7871 478/*
3304c9c3
DV
479 * Build the entry stubs with some assembler magic.
480 * We pack 1 stub into every 8-byte block.
939b7871 481 */
3304c9c3 482 .align 8
939b7871 483ENTRY(irq_entries_start)
3304c9c3
DV
484 vector=FIRST_EXTERNAL_VECTOR
485 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
4d732138 486 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
487 vector=vector+1
488 jmp common_interrupt
3304c9c3
DV
489 .align 8
490 .endr
939b7871
PA
491END(irq_entries_start)
492
d99015b1 493/*
1da177e4
LT
494 * Interrupt entry/exit.
495 *
496 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
497 *
498 * Entry runs with interrupts off.
499 */
1da177e4 500
722024db 501/* 0(%rsp): ~(interrupt number) */
1da177e4 502 .macro interrupt func
f6f64681 503 cld
ff467594
AL
504 ALLOC_PT_GPREGS_ON_STACK
505 SAVE_C_REGS
506 SAVE_EXTRA_REGS
76f5df43 507
ff467594 508 testb $3, CS(%rsp)
dde74f2e 509 jz 1f
02bc7768
AL
510
511 /*
512 * IRQ from user mode. Switch to kernel gsbase and inform context
513 * tracking that we're in kernel mode.
514 */
f6f64681 515 SWAPGS
02bc7768
AL
516#ifdef CONFIG_CONTEXT_TRACKING
517 call enter_from_user_mode
518#endif
519
76f5df43 5201:
f6f64681 521 /*
e90e147c 522 * Save previous stack pointer, optionally switch to interrupt stack.
f6f64681
DV
523 * irq_count is used to check if a CPU is already on an interrupt stack
524 * or not. While this is essentially redundant with preempt_count it is
525 * a little cheaper to use a separate counter in the PDA (short of
526 * moving irq_enter into assembly, which would be too much work)
527 */
a586f98e 528 movq %rsp, %rdi
4d732138
IM
529 incl PER_CPU_VAR(irq_count)
530 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
a586f98e 531 pushq %rdi
f6f64681
DV
532 /* We entered an interrupt context - irqs are off: */
533 TRACE_IRQS_OFF
534
a586f98e 535 call \func /* rdi points to pt_regs */
1da177e4
LT
536 .endm
537
722024db
AH
538 /*
539 * The interrupt stubs push (~vector+0x80) onto the stack and
540 * then jump to common_interrupt.
541 */
939b7871
PA
542 .p2align CONFIG_X86_L1_CACHE_SHIFT
543common_interrupt:
ee4eb87b 544 ASM_CLAC
4d732138 545 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 546 interrupt do_IRQ
34061f13 547 /* 0(%rsp): old RSP */
7effaa88 548ret_from_intr:
72fe4858 549 DISABLE_INTERRUPTS(CLBR_NONE)
2601e64d 550 TRACE_IRQS_OFF
4d732138 551 decl PER_CPU_VAR(irq_count)
625dbc3b 552
a2bbe750 553 /* Restore saved previous stack */
ff467594 554 popq %rsp
625dbc3b 555
03335e95 556 testb $3, CS(%rsp)
dde74f2e 557 jz retint_kernel
4d732138 558
02bc7768 559 /* Interrupt came from user space */
10cd706d 560 LOCKDEP_SYS_EXIT_IRQ
02bc7768
AL
561GLOBAL(retint_user)
562 mov %rsp,%rdi
563 call prepare_exit_to_usermode
2601e64d 564 TRACE_IRQS_IRETQ
72fe4858 565 SWAPGS
ff467594 566 jmp restore_regs_and_iret
2601e64d 567
627276cb 568/* Returning to kernel space */
6ba71b76 569retint_kernel:
627276cb
DV
570#ifdef CONFIG_PREEMPT
571 /* Interrupts are off */
572 /* Check if we need preemption */
4d732138 573 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 574 jnc 1f
4d732138 5750: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 576 jnz 1f
627276cb 577 call preempt_schedule_irq
36acef25 578 jmp 0b
6ba71b76 5791:
627276cb 580#endif
2601e64d
IM
581 /*
582 * The iretq could re-enable interrupts:
583 */
584 TRACE_IRQS_IRETQ
fffbb5dc
DV
585
586/*
587 * At this label, code paths which return to kernel and to user,
588 * which come from interrupts/exception and from syscalls, merge.
589 */
ff467594
AL
590restore_regs_and_iret:
591 RESTORE_EXTRA_REGS
fffbb5dc 592restore_c_regs_and_iret:
76f5df43
DV
593 RESTORE_C_REGS
594 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
595 INTERRUPT_RETURN
596
597ENTRY(native_iret)
3891a04a
PA
598 /*
599 * Are we returning to a stack segment from the LDT? Note: in
600 * 64-bit mode SS:RSP on the exception stack is always valid.
601 */
34273f41 602#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
603 testb $4, (SS-RIP)(%rsp)
604 jnz native_irq_return_ldt
34273f41 605#endif
3891a04a 606
af726f21 607.global native_irq_return_iret
7209a75d 608native_irq_return_iret:
b645af2d
AL
609 /*
610 * This may fault. Non-paranoid faults on return to userspace are
611 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
612 * Double-faults due to espfix64 are handled in do_double_fault.
613 * Other faults here are fatal.
614 */
1da177e4 615 iretq
3701d863 616
34273f41 617#ifdef CONFIG_X86_ESPFIX64
7209a75d 618native_irq_return_ldt:
4d732138
IM
619 pushq %rax
620 pushq %rdi
3891a04a 621 SWAPGS
4d732138
IM
622 movq PER_CPU_VAR(espfix_waddr), %rdi
623 movq %rax, (0*8)(%rdi) /* RAX */
624 movq (2*8)(%rsp), %rax /* RIP */
625 movq %rax, (1*8)(%rdi)
626 movq (3*8)(%rsp), %rax /* CS */
627 movq %rax, (2*8)(%rdi)
628 movq (4*8)(%rsp), %rax /* RFLAGS */
629 movq %rax, (3*8)(%rdi)
630 movq (6*8)(%rsp), %rax /* SS */
631 movq %rax, (5*8)(%rdi)
632 movq (5*8)(%rsp), %rax /* RSP */
633 movq %rax, (4*8)(%rdi)
634 andl $0xffff0000, %eax
635 popq %rdi
636 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 637 SWAPGS
4d732138
IM
638 movq %rax, %rsp
639 popq %rax
640 jmp native_irq_return_iret
34273f41 641#endif
4b787e0b 642END(common_interrupt)
3891a04a 643
1da177e4
LT
644/*
645 * APIC interrupts.
0bd7b798 646 */
cf910e83 647.macro apicinterrupt3 num sym do_sym
322648d1 648ENTRY(\sym)
ee4eb87b 649 ASM_CLAC
4d732138 650 pushq $~(\num)
39e95433 651.Lcommon_\sym:
322648d1 652 interrupt \do_sym
4d732138 653 jmp ret_from_intr
322648d1
AH
654END(\sym)
655.endm
1da177e4 656
cf910e83
SA
657#ifdef CONFIG_TRACING
658#define trace(sym) trace_##sym
659#define smp_trace(sym) smp_trace_##sym
660
661.macro trace_apicinterrupt num sym
662apicinterrupt3 \num trace(\sym) smp_trace(\sym)
663.endm
664#else
665.macro trace_apicinterrupt num sym do_sym
666.endm
667#endif
668
669.macro apicinterrupt num sym do_sym
670apicinterrupt3 \num \sym \do_sym
671trace_apicinterrupt \num \sym
672.endm
673
322648d1 674#ifdef CONFIG_SMP
4d732138
IM
675apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
676apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 677#endif
1da177e4 678
03b48632 679#ifdef CONFIG_X86_UV
4d732138 680apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 681#endif
4d732138
IM
682
683apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
684apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 685
d78f2664 686#ifdef CONFIG_HAVE_KVM
4d732138
IM
687apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
688apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
d78f2664
YZ
689#endif
690
33e5ff63 691#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 692apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
693#endif
694
24fd78a8 695#ifdef CONFIG_X86_MCE_AMD
4d732138 696apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
697#endif
698
33e5ff63 699#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 700apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 701#endif
1812924b 702
322648d1 703#ifdef CONFIG_SMP
4d732138
IM
704apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
705apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
706apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 707#endif
1da177e4 708
4d732138
IM
709apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
710apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 711
e360adbe 712#ifdef CONFIG_IRQ_WORK
4d732138 713apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
714#endif
715
1da177e4
LT
716/*
717 * Exception entry points.
0bd7b798 718 */
9b476688 719#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
720
721.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 722ENTRY(\sym)
577ed45e
AL
723 /* Sanity check */
724 .if \shift_ist != -1 && \paranoid == 0
725 .error "using shift_ist requires paranoid=1"
726 .endif
727
ee4eb87b 728 ASM_CLAC
b8b1d08b 729 PARAVIRT_ADJUST_EXCEPTION_FRAME
cb5dd2c5
AL
730
731 .ifeq \has_error_code
4d732138 732 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
733 .endif
734
76f5df43 735 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
736
737 .if \paranoid
48e08d0f 738 .if \paranoid == 1
4d732138
IM
739 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
740 jnz 1f
48e08d0f 741 .endif
4d732138 742 call paranoid_entry
cb5dd2c5 743 .else
4d732138 744 call error_entry
cb5dd2c5 745 .endif
ebfc453e 746 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 747
cb5dd2c5 748 .if \paranoid
577ed45e 749 .if \shift_ist != -1
4d732138 750 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 751 .else
b8b1d08b 752 TRACE_IRQS_OFF
cb5dd2c5 753 .endif
577ed45e 754 .endif
cb5dd2c5 755
4d732138 756 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
757
758 .if \has_error_code
4d732138
IM
759 movq ORIG_RAX(%rsp), %rsi /* get error code */
760 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 761 .else
4d732138 762 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
763 .endif
764
577ed45e 765 .if \shift_ist != -1
4d732138 766 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
767 .endif
768
4d732138 769 call \do_sym
cb5dd2c5 770
577ed45e 771 .if \shift_ist != -1
4d732138 772 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
773 .endif
774
ebfc453e 775 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 776 .if \paranoid
4d732138 777 jmp paranoid_exit
cb5dd2c5 778 .else
4d732138 779 jmp error_exit
cb5dd2c5
AL
780 .endif
781
48e08d0f 782 .if \paranoid == 1
48e08d0f
AL
783 /*
784 * Paranoid entry from userspace. Switch stacks and treat it
785 * as a normal entry. This means that paranoid handlers
786 * run in real process context if user_mode(regs).
787 */
7881:
4d732138 789 call error_entry
48e08d0f 790
48e08d0f 791
4d732138
IM
792 movq %rsp, %rdi /* pt_regs pointer */
793 call sync_regs
794 movq %rax, %rsp /* switch stack */
48e08d0f 795
4d732138 796 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
797
798 .if \has_error_code
4d732138
IM
799 movq ORIG_RAX(%rsp), %rsi /* get error code */
800 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 801 .else
4d732138 802 xorl %esi, %esi /* no error code */
48e08d0f
AL
803 .endif
804
4d732138 805 call \do_sym
48e08d0f 806
4d732138 807 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 808 .endif
ddeb8f21 809END(\sym)
322648d1 810.endm
b8b1d08b 811
25c74b10 812#ifdef CONFIG_TRACING
cb5dd2c5
AL
813.macro trace_idtentry sym do_sym has_error_code:req
814idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
815idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
816.endm
817#else
cb5dd2c5
AL
818.macro trace_idtentry sym do_sym has_error_code:req
819idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
820.endm
821#endif
822
4d732138
IM
823idtentry divide_error do_divide_error has_error_code=0
824idtentry overflow do_overflow has_error_code=0
825idtentry bounds do_bounds has_error_code=0
826idtentry invalid_op do_invalid_op has_error_code=0
827idtentry device_not_available do_device_not_available has_error_code=0
828idtentry double_fault do_double_fault has_error_code=1 paranoid=2
829idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
830idtentry invalid_TSS do_invalid_TSS has_error_code=1
831idtentry segment_not_present do_segment_not_present has_error_code=1
832idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
833idtentry coprocessor_error do_coprocessor_error has_error_code=0
834idtentry alignment_check do_alignment_check has_error_code=1
835idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
836
837
838 /*
839 * Reload gs selector with exception handling
840 * edi: new selector
841 */
9f9d489a 842ENTRY(native_load_gs_index)
131484c8 843 pushfq
b8aa287f 844 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 845 SWAPGS
0bd7b798 846gs_change:
4d732138
IM
847 movl %edi, %gs
8482: mfence /* workaround */
72fe4858 849 SWAPGS
131484c8 850 popfq
9f1e87ea 851 ret
6efdcfaf 852END(native_load_gs_index)
0bd7b798 853
4d732138
IM
854 _ASM_EXTABLE(gs_change, bad_gs)
855 .section .fixup, "ax"
1da177e4 856 /* running with kernelgs */
0bd7b798 857bad_gs:
4d732138
IM
858 SWAPGS /* switch back to user gs */
859 xorl %eax, %eax
860 movl %eax, %gs
861 jmp 2b
9f1e87ea 862 .previous
0bd7b798 863
2699500b 864/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 865ENTRY(do_softirq_own_stack)
4d732138
IM
866 pushq %rbp
867 mov %rsp, %rbp
868 incl PER_CPU_VAR(irq_count)
869 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
870 push %rbp /* frame pointer backlink */
871 call __do_softirq
2699500b 872 leaveq
4d732138 873 decl PER_CPU_VAR(irq_count)
ed6b676c 874 ret
7d65f4a6 875END(do_softirq_own_stack)
75154f40 876
3d75e1b8 877#ifdef CONFIG_XEN
cb5dd2c5 878idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
879
880/*
9f1e87ea
CG
881 * A note on the "critical region" in our callback handler.
882 * We want to avoid stacking callback handlers due to events occurring
883 * during handling of the last event. To do this, we keep events disabled
884 * until we've done all processing. HOWEVER, we must enable events before
885 * popping the stack frame (can't be done atomically) and so it would still
886 * be possible to get enough handler activations to overflow the stack.
887 * Although unlikely, bugs of that kind are hard to track down, so we'd
888 * like to avoid the possibility.
889 * So, on entry to the handler we detect whether we interrupted an
890 * existing activation in its critical region -- if so, we pop the current
891 * activation and restart the handler using the previous one.
892 */
4d732138
IM
893ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
894
9f1e87ea
CG
895/*
896 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
897 * see the correct pointer to the pt_regs
898 */
4d732138
IM
899 movq %rdi, %rsp /* we don't return, adjust the stack frame */
90011: incl PER_CPU_VAR(irq_count)
901 movq %rsp, %rbp
902 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
903 pushq %rbp /* frame pointer backlink */
904 call xen_evtchn_do_upcall
905 popq %rsp
906 decl PER_CPU_VAR(irq_count)
fdfd811d 907#ifndef CONFIG_PREEMPT
4d732138 908 call xen_maybe_preempt_hcall
fdfd811d 909#endif
4d732138 910 jmp error_exit
371c394a 911END(xen_do_hypervisor_callback)
3d75e1b8
JF
912
913/*
9f1e87ea
CG
914 * Hypervisor uses this for application faults while it executes.
915 * We get here for two reasons:
916 * 1. Fault while reloading DS, ES, FS or GS
917 * 2. Fault while executing IRET
918 * Category 1 we do not need to fix up as Xen has already reloaded all segment
919 * registers that could be reloaded and zeroed the others.
920 * Category 2 we fix up by killing the current process. We cannot use the
921 * normal Linux return path in this case because if we use the IRET hypercall
922 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
923 * We distinguish between categories by comparing each saved segment register
924 * with its current contents: any discrepancy means we in category 1.
925 */
3d75e1b8 926ENTRY(xen_failsafe_callback)
4d732138
IM
927 movl %ds, %ecx
928 cmpw %cx, 0x10(%rsp)
929 jne 1f
930 movl %es, %ecx
931 cmpw %cx, 0x18(%rsp)
932 jne 1f
933 movl %fs, %ecx
934 cmpw %cx, 0x20(%rsp)
935 jne 1f
936 movl %gs, %ecx
937 cmpw %cx, 0x28(%rsp)
938 jne 1f
3d75e1b8 939 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
940 movq (%rsp), %rcx
941 movq 8(%rsp), %r11
942 addq $0x30, %rsp
943 pushq $0 /* RIP */
944 pushq %r11
945 pushq %rcx
946 jmp general_protection
3d75e1b8 9471: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
948 movq (%rsp), %rcx
949 movq 8(%rsp), %r11
950 addq $0x30, %rsp
951 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
952 ALLOC_PT_GPREGS_ON_STACK
953 SAVE_C_REGS
954 SAVE_EXTRA_REGS
4d732138 955 jmp error_exit
3d75e1b8
JF
956END(xen_failsafe_callback)
957
cf910e83 958apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
959 xen_hvm_callback_vector xen_evtchn_do_upcall
960
3d75e1b8 961#endif /* CONFIG_XEN */
ddeb8f21 962
bc2b0331 963#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 964apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
965 hyperv_callback_vector hyperv_vector_handler
966#endif /* CONFIG_HYPERV */
967
4d732138
IM
968idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
969idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
970idtentry stack_segment do_stack_segment has_error_code=1
971
6cac5a92 972#ifdef CONFIG_XEN
4d732138
IM
973idtentry xen_debug do_debug has_error_code=0
974idtentry xen_int3 do_int3 has_error_code=0
975idtentry xen_stack_segment do_stack_segment has_error_code=1
6cac5a92 976#endif
4d732138
IM
977
978idtentry general_protection do_general_protection has_error_code=1
979trace_idtentry page_fault do_page_fault has_error_code=1
980
631bc487 981#ifdef CONFIG_KVM_GUEST
4d732138 982idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 983#endif
4d732138 984
ddeb8f21 985#ifdef CONFIG_X86_MCE
4d732138 986idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
987#endif
988
ebfc453e
DV
989/*
990 * Save all registers in pt_regs, and switch gs if needed.
991 * Use slow, but surefire "are we in kernel?" check.
992 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
993 */
994ENTRY(paranoid_entry)
1eeb207f
DV
995 cld
996 SAVE_C_REGS 8
997 SAVE_EXTRA_REGS 8
4d732138
IM
998 movl $1, %ebx
999 movl $MSR_GS_BASE, %ecx
1eeb207f 1000 rdmsr
4d732138
IM
1001 testl %edx, %edx
1002 js 1f /* negative -> in kernel */
1eeb207f 1003 SWAPGS
4d732138 1004 xorl %ebx, %ebx
1eeb207f 10051: ret
ebfc453e 1006END(paranoid_entry)
ddeb8f21 1007
ebfc453e
DV
1008/*
1009 * "Paranoid" exit path from exception stack. This is invoked
1010 * only on return from non-NMI IST interrupts that came
1011 * from kernel space.
1012 *
1013 * We may be returning to very strange contexts (e.g. very early
1014 * in syscall entry), so checking for preemption here would
1015 * be complicated. Fortunately, we there's no good reason
1016 * to try to handle preemption here.
4d732138
IM
1017 *
1018 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 1019 */
ddeb8f21 1020ENTRY(paranoid_exit)
ddeb8f21 1021 DISABLE_INTERRUPTS(CLBR_NONE)
5963e317 1022 TRACE_IRQS_OFF_DEBUG
4d732138
IM
1023 testl %ebx, %ebx /* swapgs needed? */
1024 jnz paranoid_exit_no_swapgs
f2db9382 1025 TRACE_IRQS_IRETQ
ddeb8f21 1026 SWAPGS_UNSAFE_STACK
4d732138 1027 jmp paranoid_exit_restore
0d550836 1028paranoid_exit_no_swapgs:
f2db9382 1029 TRACE_IRQS_IRETQ_DEBUG
0d550836 1030paranoid_exit_restore:
76f5df43
DV
1031 RESTORE_EXTRA_REGS
1032 RESTORE_C_REGS
1033 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 1034 INTERRUPT_RETURN
ddeb8f21
AH
1035END(paranoid_exit)
1036
1037/*
ebfc453e 1038 * Save all registers in pt_regs, and switch gs if needed.
539f5113 1039 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
1040 */
1041ENTRY(error_entry)
ddeb8f21 1042 cld
76f5df43
DV
1043 SAVE_C_REGS 8
1044 SAVE_EXTRA_REGS 8
4d732138 1045 xorl %ebx, %ebx
03335e95 1046 testb $3, CS+8(%rsp)
cb6f64ed 1047 jz .Lerror_kernelspace
539f5113 1048
cb6f64ed
AL
1049.Lerror_entry_from_usermode_swapgs:
1050 /*
1051 * We entered from user mode or we're pretending to have entered
1052 * from user mode due to an IRET fault.
1053 */
ddeb8f21 1054 SWAPGS
539f5113 1055
cb6f64ed 1056.Lerror_entry_from_usermode_after_swapgs:
02bc7768
AL
1057#ifdef CONFIG_CONTEXT_TRACKING
1058 call enter_from_user_mode
1059#endif
1060
cb6f64ed 1061.Lerror_entry_done:
02bc7768 1062
ddeb8f21
AH
1063 TRACE_IRQS_OFF
1064 ret
ddeb8f21 1065
ebfc453e
DV
1066 /*
1067 * There are two places in the kernel that can potentially fault with
1068 * usergs. Handle them here. B stepping K8s sometimes report a
1069 * truncated RIP for IRET exceptions returning to compat mode. Check
1070 * for these here too.
1071 */
cb6f64ed 1072.Lerror_kernelspace:
4d732138
IM
1073 incl %ebx
1074 leaq native_irq_return_iret(%rip), %rcx
1075 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1076 je .Lerror_bad_iret
4d732138
IM
1077 movl %ecx, %eax /* zero extend */
1078 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1079 je .Lbstep_iret
4d732138 1080 cmpq $gs_change, RIP+8(%rsp)
cb6f64ed 1081 jne .Lerror_entry_done
539f5113
AL
1082
1083 /*
1084 * hack: gs_change can fail with user gsbase. If this happens, fix up
1085 * gsbase and proceed. We'll fix up the exception and land in
1086 * gs_change's error handler with kernel gsbase.
1087 */
cb6f64ed 1088 jmp .Lerror_entry_from_usermode_swapgs
ae24ffe5 1089
cb6f64ed 1090.Lbstep_iret:
ae24ffe5 1091 /* Fix truncated RIP */
4d732138 1092 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1093 /* fall through */
1094
cb6f64ed 1095.Lerror_bad_iret:
539f5113
AL
1096 /*
1097 * We came from an IRET to user mode, so we have user gsbase.
1098 * Switch to kernel gsbase:
1099 */
b645af2d 1100 SWAPGS
539f5113
AL
1101
1102 /*
1103 * Pretend that the exception came from user mode: set up pt_regs
1104 * as if we faulted immediately after IRET and clear EBX so that
1105 * error_exit knows that we will be returning to user mode.
1106 */
4d732138
IM
1107 mov %rsp, %rdi
1108 call fixup_bad_iret
1109 mov %rax, %rsp
539f5113 1110 decl %ebx
cb6f64ed 1111 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1112END(error_entry)
1113
1114
539f5113
AL
1115/*
1116 * On entry, EBS is a "return to kernel mode" flag:
1117 * 1: already in kernel mode, don't need SWAPGS
1118 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1119 */
ddeb8f21 1120ENTRY(error_exit)
4d732138 1121 movl %ebx, %eax
ddeb8f21
AH
1122 DISABLE_INTERRUPTS(CLBR_NONE)
1123 TRACE_IRQS_OFF
4d732138
IM
1124 testl %eax, %eax
1125 jnz retint_kernel
1126 jmp retint_user
ddeb8f21
AH
1127END(error_exit)
1128
0784b364 1129/* Runs on exception stack */
ddeb8f21 1130ENTRY(nmi)
fc57a7c6
AL
1131 /*
1132 * Fix up the exception frame if we're on Xen.
1133 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1134 * one value to the stack on native, so it may clobber the rdx
1135 * scratch slot, but it won't clobber any of the important
1136 * slots past it.
1137 *
1138 * Xen is a different story, because the Xen frame itself overlaps
1139 * the "NMI executing" variable.
1140 */
ddeb8f21 1141 PARAVIRT_ADJUST_EXCEPTION_FRAME
fc57a7c6 1142
3f3c8b8c
SR
1143 /*
1144 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1145 * the iretq it performs will take us out of NMI context.
1146 * This means that we can have nested NMIs where the next
1147 * NMI is using the top of the stack of the previous NMI. We
1148 * can't let it execute because the nested NMI will corrupt the
1149 * stack of the previous NMI. NMI handlers are not re-entrant
1150 * anyway.
1151 *
1152 * To handle this case we do the following:
1153 * Check the a special location on the stack that contains
1154 * a variable that is set when NMIs are executing.
1155 * The interrupted task's stack is also checked to see if it
1156 * is an NMI stack.
1157 * If the variable is not set and the stack is not the NMI
1158 * stack then:
1159 * o Set the special variable on the stack
0b22930e
AL
1160 * o Copy the interrupt frame into an "outermost" location on the
1161 * stack
1162 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1163 * o Continue processing the NMI
1164 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1165 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1166 * o return back to the first NMI
1167 *
1168 * Now on exit of the first NMI, we first clear the stack variable
1169 * The NMI stack will tell any nested NMIs at that point that it is
1170 * nested. Then we pop the stack normally with iret, and if there was
1171 * a nested NMI that updated the copy interrupt stack frame, a
1172 * jump will be made to the repeat_nmi code that will handle the second
1173 * NMI.
9b6e6a83
AL
1174 *
1175 * However, espfix prevents us from directly returning to userspace
1176 * with a single IRET instruction. Similarly, IRET to user mode
1177 * can fault. We therefore handle NMIs from user space like
1178 * other IST entries.
3f3c8b8c
SR
1179 */
1180
146b2b09 1181 /* Use %rdx as our temp variable throughout */
4d732138 1182 pushq %rdx
3f3c8b8c 1183
9b6e6a83
AL
1184 testb $3, CS-RIP+8(%rsp)
1185 jz .Lnmi_from_kernel
1186
1187 /*
1188 * NMI from user mode. We need to run on the thread stack, but we
1189 * can't go through the normal entry paths: NMIs are masked, and
1190 * we don't want to enable interrupts, because then we'll end
1191 * up in an awkward situation in which IRQs are on but NMIs
1192 * are off.
83c133cf
AL
1193 *
1194 * We also must not push anything to the stack before switching
1195 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1196 */
1197
83c133cf 1198 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1199 cld
1200 movq %rsp, %rdx
1201 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1202 pushq 5*8(%rdx) /* pt_regs->ss */
1203 pushq 4*8(%rdx) /* pt_regs->rsp */
1204 pushq 3*8(%rdx) /* pt_regs->flags */
1205 pushq 2*8(%rdx) /* pt_regs->cs */
1206 pushq 1*8(%rdx) /* pt_regs->rip */
1207 pushq $-1 /* pt_regs->orig_ax */
1208 pushq %rdi /* pt_regs->di */
1209 pushq %rsi /* pt_regs->si */
1210 pushq (%rdx) /* pt_regs->dx */
1211 pushq %rcx /* pt_regs->cx */
1212 pushq %rax /* pt_regs->ax */
1213 pushq %r8 /* pt_regs->r8 */
1214 pushq %r9 /* pt_regs->r9 */
1215 pushq %r10 /* pt_regs->r10 */
1216 pushq %r11 /* pt_regs->r11 */
1217 pushq %rbx /* pt_regs->rbx */
1218 pushq %rbp /* pt_regs->rbp */
1219 pushq %r12 /* pt_regs->r12 */
1220 pushq %r13 /* pt_regs->r13 */
1221 pushq %r14 /* pt_regs->r14 */
1222 pushq %r15 /* pt_regs->r15 */
1223
1224 /*
1225 * At this point we no longer need to worry about stack damage
1226 * due to nesting -- we're on the normal thread stack and we're
1227 * done with the NMI stack.
1228 */
1229
1230 movq %rsp, %rdi
1231 movq $-1, %rsi
1232 call do_nmi
1233
45d5a168 1234 /*
9b6e6a83
AL
1235 * Return back to user mode. We must *not* do the normal exit
1236 * work, because we don't want to enable interrupts. Fortunately,
1237 * do_nmi doesn't modify pt_regs.
45d5a168 1238 */
9b6e6a83
AL
1239 SWAPGS
1240 jmp restore_c_regs_and_iret
45d5a168 1241
9b6e6a83 1242.Lnmi_from_kernel:
3f3c8b8c 1243 /*
0b22930e
AL
1244 * Here's what our stack frame will look like:
1245 * +---------------------------------------------------------+
1246 * | original SS |
1247 * | original Return RSP |
1248 * | original RFLAGS |
1249 * | original CS |
1250 * | original RIP |
1251 * +---------------------------------------------------------+
1252 * | temp storage for rdx |
1253 * +---------------------------------------------------------+
1254 * | "NMI executing" variable |
1255 * +---------------------------------------------------------+
1256 * | iret SS } Copied from "outermost" frame |
1257 * | iret Return RSP } on each loop iteration; overwritten |
1258 * | iret RFLAGS } by a nested NMI to force another |
1259 * | iret CS } iteration if needed. |
1260 * | iret RIP } |
1261 * +---------------------------------------------------------+
1262 * | outermost SS } initialized in first_nmi; |
1263 * | outermost Return RSP } will not be changed before |
1264 * | outermost RFLAGS } NMI processing is done. |
1265 * | outermost CS } Copied to "iret" frame on each |
1266 * | outermost RIP } iteration. |
1267 * +---------------------------------------------------------+
1268 * | pt_regs |
1269 * +---------------------------------------------------------+
1270 *
1271 * The "original" frame is used by hardware. Before re-enabling
1272 * NMIs, we need to be done with it, and we need to leave enough
1273 * space for the asm code here.
1274 *
1275 * We return by executing IRET while RSP points to the "iret" frame.
1276 * That will either return for real or it will loop back into NMI
1277 * processing.
1278 *
1279 * The "outermost" frame is copied to the "iret" frame on each
1280 * iteration of the loop, so each iteration starts with the "iret"
1281 * frame pointing to the final return target.
1282 */
1283
45d5a168 1284 /*
0b22930e
AL
1285 * Determine whether we're a nested NMI.
1286 *
a27507ca
AL
1287 * If we interrupted kernel code between repeat_nmi and
1288 * end_repeat_nmi, then we are a nested NMI. We must not
1289 * modify the "iret" frame because it's being written by
1290 * the outer NMI. That's okay; the outer NMI handler is
1291 * about to about to call do_nmi anyway, so we can just
1292 * resume the outer NMI.
45d5a168 1293 */
a27507ca
AL
1294
1295 movq $repeat_nmi, %rdx
1296 cmpq 8(%rsp), %rdx
1297 ja 1f
1298 movq $end_repeat_nmi, %rdx
1299 cmpq 8(%rsp), %rdx
1300 ja nested_nmi_out
13011:
45d5a168 1302
3f3c8b8c 1303 /*
a27507ca 1304 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1305 * This will not detect if we interrupted an outer NMI just
1306 * before IRET.
3f3c8b8c 1307 */
4d732138
IM
1308 cmpl $1, -8(%rsp)
1309 je nested_nmi
3f3c8b8c
SR
1310
1311 /*
0b22930e
AL
1312 * Now test if the previous stack was an NMI stack. This covers
1313 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1314 * "NMI executing" but before IRET. We need to be careful, though:
1315 * there is one case in which RSP could point to the NMI stack
1316 * despite there being no NMI active: naughty userspace controls
1317 * RSP at the very beginning of the SYSCALL targets. We can
1318 * pull a fast one on naughty userspace, though: we program
1319 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1320 * if it controls the kernel's RSP. We set DF before we clear
1321 * "NMI executing".
3f3c8b8c 1322 */
0784b364
DV
1323 lea 6*8(%rsp), %rdx
1324 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1325 cmpq %rdx, 4*8(%rsp)
1326 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1327 ja first_nmi
4d732138 1328
0784b364
DV
1329 subq $EXCEPTION_STKSZ, %rdx
1330 cmpq %rdx, 4*8(%rsp)
1331 /* If it is below the NMI stack, it is a normal NMI */
1332 jb first_nmi
810bc075
AL
1333
1334 /* Ah, it is within the NMI stack. */
1335
1336 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1337 jz first_nmi /* RSP was user controlled. */
1338
1339 /* This is a nested NMI. */
0784b364 1340
3f3c8b8c
SR
1341nested_nmi:
1342 /*
0b22930e
AL
1343 * Modify the "iret" frame to point to repeat_nmi, forcing another
1344 * iteration of NMI handling.
3f3c8b8c 1345 */
23a781e9 1346 subq $8, %rsp
4d732138
IM
1347 leaq -10*8(%rsp), %rdx
1348 pushq $__KERNEL_DS
1349 pushq %rdx
131484c8 1350 pushfq
4d732138
IM
1351 pushq $__KERNEL_CS
1352 pushq $repeat_nmi
3f3c8b8c
SR
1353
1354 /* Put stack back */
4d732138 1355 addq $(6*8), %rsp
3f3c8b8c
SR
1356
1357nested_nmi_out:
4d732138 1358 popq %rdx
3f3c8b8c 1359
0b22930e 1360 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1361 INTERRUPT_RETURN
1362
1363first_nmi:
0b22930e 1364 /* Restore rdx. */
4d732138 1365 movq (%rsp), %rdx
62610913 1366
36f1a77b
AL
1367 /* Make room for "NMI executing". */
1368 pushq $0
3f3c8b8c 1369
0b22930e 1370 /* Leave room for the "iret" frame */
4d732138 1371 subq $(5*8), %rsp
28696f43 1372
0b22930e 1373 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1374 .rept 5
4d732138 1375 pushq 11*8(%rsp)
3f3c8b8c 1376 .endr
62610913 1377
79fb4ad6
SR
1378 /* Everything up to here is safe from nested NMIs */
1379
a97439aa
AL
1380#ifdef CONFIG_DEBUG_ENTRY
1381 /*
1382 * For ease of testing, unmask NMIs right away. Disabled by
1383 * default because IRET is very expensive.
1384 */
1385 pushq $0 /* SS */
1386 pushq %rsp /* RSP (minus 8 because of the previous push) */
1387 addq $8, (%rsp) /* Fix up RSP */
1388 pushfq /* RFLAGS */
1389 pushq $__KERNEL_CS /* CS */
1390 pushq $1f /* RIP */
1391 INTERRUPT_RETURN /* continues at repeat_nmi below */
13921:
1393#endif
1394
0b22930e 1395repeat_nmi:
62610913
JB
1396 /*
1397 * If there was a nested NMI, the first NMI's iret will return
1398 * here. But NMIs are still enabled and we can take another
1399 * nested NMI. The nested NMI checks the interrupted RIP to see
1400 * if it is between repeat_nmi and end_repeat_nmi, and if so
1401 * it will just return, as we are about to repeat an NMI anyway.
1402 * This makes it safe to copy to the stack frame that a nested
1403 * NMI will update.
0b22930e
AL
1404 *
1405 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1406 * we're repeating an NMI, gsbase has the same value that it had on
1407 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1408 * gsbase if needed before we call do_nmi. "NMI executing"
1409 * is zero.
62610913 1410 */
36f1a77b 1411 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1412
62610913 1413 /*
0b22930e
AL
1414 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1415 * here must not modify the "iret" frame while we're writing to
1416 * it or it will end up containing garbage.
62610913 1417 */
4d732138 1418 addq $(10*8), %rsp
3f3c8b8c 1419 .rept 5
4d732138 1420 pushq -6*8(%rsp)
3f3c8b8c 1421 .endr
4d732138 1422 subq $(5*8), %rsp
62610913 1423end_repeat_nmi:
3f3c8b8c
SR
1424
1425 /*
0b22930e
AL
1426 * Everything below this point can be preempted by a nested NMI.
1427 * If this happens, then the inner NMI will change the "iret"
1428 * frame to point back to repeat_nmi.
3f3c8b8c 1429 */
4d732138 1430 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1431 ALLOC_PT_GPREGS_ON_STACK
1432
1fd466ef 1433 /*
ebfc453e 1434 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1435 * as we should not be calling schedule in NMI context.
1436 * Even with normal interrupts enabled. An NMI should not be
1437 * setting NEED_RESCHED or anything that normal interrupts and
1438 * exceptions might do.
1439 */
4d732138 1440 call paranoid_entry
7fbb98c5 1441
ddeb8f21 1442 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1443 movq %rsp, %rdi
1444 movq $-1, %rsi
1445 call do_nmi
7fbb98c5 1446
4d732138
IM
1447 testl %ebx, %ebx /* swapgs needed? */
1448 jnz nmi_restore
ddeb8f21
AH
1449nmi_swapgs:
1450 SWAPGS_UNSAFE_STACK
1451nmi_restore:
76f5df43
DV
1452 RESTORE_EXTRA_REGS
1453 RESTORE_C_REGS
0b22930e
AL
1454
1455 /* Point RSP at the "iret" frame. */
76f5df43 1456 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1457
810bc075
AL
1458 /*
1459 * Clear "NMI executing". Set DF first so that we can easily
1460 * distinguish the remaining code between here and IRET from
1461 * the SYSCALL entry and exit paths. On a native kernel, we
1462 * could just inspect RIP, but, on paravirt kernels,
1463 * INTERRUPT_RETURN can translate into a jump into a
1464 * hypercall page.
1465 */
1466 std
1467 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1468
1469 /*
1470 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1471 * stack in a single instruction. We are returning to kernel
1472 * mode, so this cannot result in a fault.
1473 */
5ca6f70f 1474 INTERRUPT_RETURN
ddeb8f21
AH
1475END(nmi)
1476
1477ENTRY(ignore_sysret)
4d732138 1478 mov $-ENOSYS, %eax
ddeb8f21 1479 sysret
ddeb8f21 1480END(ignore_sysret)
This page took 1.061558 seconds and 5 git commands to generate.