perf/x86/intel/rapl: Add proper error handling
[deliverable/linux.git] / arch / x86 / events / core.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
90eec103 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
4ac13294 20#include <linux/module.h>
241771ef
IM
21#include <linux/kdebug.h>
22#include <linux/sched.h>
d7d59fb3 23#include <linux/uaccess.h>
5a0e3ad6 24#include <linux/slab.h>
30dd568c 25#include <linux/cpu.h>
272d30be 26#include <linux/bitops.h>
0c9d42ed 27#include <linux/device.h>
241771ef 28
241771ef 29#include <asm/apic.h>
d7d59fb3 30#include <asm/stacktrace.h>
4e935e47 31#include <asm/nmi.h>
69092624 32#include <asm/smp.h>
c8e5910e 33#include <asm/alternative.h>
7911d3f7 34#include <asm/mmu_context.h>
375074cc 35#include <asm/tlbflush.h>
e3f3541c 36#include <asm/timer.h>
d07bdfd3
PZ
37#include <asm/desc.h>
38#include <asm/ldt.h>
241771ef 39
27f6d22b 40#include "perf_event.h"
de0428a7 41
de0428a7 42struct x86_pmu x86_pmu __read_mostly;
efc9f05d 43
de0428a7 44DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
45 .enabled = 1,
46};
241771ef 47
a6673429
AL
48struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
de0428a7 50u64 __read_mostly hw_cache_event_ids
8326f44d
IM
51 [PERF_COUNT_HW_CACHE_MAX]
52 [PERF_COUNT_HW_CACHE_OP_MAX]
53 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 54u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 58
ee06094f 59/*
cdd6c482
IM
60 * Propagate event elapsed time into the generic event.
61 * Can only be executed on the CPU where the event is active.
ee06094f
IM
62 * Returns the delta events processed.
63 */
de0428a7 64u64 x86_perf_event_update(struct perf_event *event)
ee06094f 65{
cc2ad4ba 66 struct hw_perf_event *hwc = &event->hw;
948b1bb8 67 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 68 u64 prev_raw_count, new_raw_count;
cc2ad4ba 69 int idx = hwc->idx;
ec3232bd 70 s64 delta;
ee06094f 71
15c7ad51 72 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
73 return 0;
74
ee06094f 75 /*
cdd6c482 76 * Careful: an NMI might modify the previous event value.
ee06094f
IM
77 *
78 * Our tactic to handle this is to first atomically read and
79 * exchange a new raw count - then add that new-prev delta
cdd6c482 80 * count to the generic event atomically:
ee06094f
IM
81 */
82again:
e7850595 83 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 84 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 85
e7850595 86 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
87 new_raw_count) != prev_raw_count)
88 goto again;
89
90 /*
91 * Now we have the new raw value and have updated the prev
92 * timestamp already. We can now calculate the elapsed delta
cdd6c482 93 * (event-)time and add that to the generic event.
ee06094f
IM
94 *
95 * Careful, not all hw sign-extends above the physical width
ec3232bd 96 * of the count.
ee06094f 97 */
ec3232bd
PZ
98 delta = (new_raw_count << shift) - (prev_raw_count << shift);
99 delta >>= shift;
ee06094f 100
e7850595
PZ
101 local64_add(delta, &event->count);
102 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
103
104 return new_raw_count;
ee06094f
IM
105}
106
a7e3ed1e
AK
107/*
108 * Find and validate any extra registers to set up.
109 */
110static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111{
efc9f05d 112 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
113 struct extra_reg *er;
114
efc9f05d 115 reg = &event->hw.extra_reg;
a7e3ed1e
AK
116
117 if (!x86_pmu.extra_regs)
118 return 0;
119
120 for (er = x86_pmu.extra_regs; er->msr; er++) {
121 if (er->event != (config & er->config_mask))
122 continue;
123 if (event->attr.config1 & ~er->valid_mask)
124 return -EINVAL;
338b522c
KL
125 /* Check if the extra msrs can be safely accessed*/
126 if (!er->extra_msr_access)
127 return -ENXIO;
efc9f05d
SE
128
129 reg->idx = er->idx;
130 reg->config = event->attr.config1;
131 reg->reg = er->msr;
a7e3ed1e
AK
132 break;
133 }
134 return 0;
135}
136
cdd6c482 137static atomic_t active_events;
1b7b938f 138static atomic_t pmc_refcount;
4e935e47
PZ
139static DEFINE_MUTEX(pmc_reserve_mutex);
140
b27ea29c
RR
141#ifdef CONFIG_X86_LOCAL_APIC
142
4e935e47
PZ
143static bool reserve_pmc_hardware(void)
144{
145 int i;
146
948b1bb8 147 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
149 goto perfctr_fail;
150 }
151
948b1bb8 152 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
154 goto eventsel_fail;
155 }
156
157 return true;
158
159eventsel_fail:
160 for (i--; i >= 0; i--)
41bf4989 161 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 162
948b1bb8 163 i = x86_pmu.num_counters;
4e935e47
PZ
164
165perfctr_fail:
166 for (i--; i >= 0; i--)
41bf4989 167 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 168
4e935e47
PZ
169 return false;
170}
171
172static void release_pmc_hardware(void)
173{
174 int i;
175
948b1bb8 176 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
177 release_perfctr_nmi(x86_pmu_event_addr(i));
178 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 179 }
4e935e47
PZ
180}
181
b27ea29c
RR
182#else
183
184static bool reserve_pmc_hardware(void) { return true; }
185static void release_pmc_hardware(void) {}
186
187#endif
188
33c6d6a7
DZ
189static bool check_hw_exists(void)
190{
a5ebe0ba
GD
191 u64 val, val_fail, val_new= ~0;
192 int i, reg, reg_fail, ret = 0;
193 int bios_fail = 0;
68ab7476 194 int reg_safe = -1;
33c6d6a7 195
4407204c
PZ
196 /*
197 * Check to see if the BIOS enabled any of the counters, if so
198 * complain and bail.
199 */
200 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 201 reg = x86_pmu_config_addr(i);
4407204c
PZ
202 ret = rdmsrl_safe(reg, &val);
203 if (ret)
204 goto msr_fail;
a5ebe0ba
GD
205 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206 bios_fail = 1;
207 val_fail = val;
208 reg_fail = reg;
68ab7476
DZ
209 } else {
210 reg_safe = i;
a5ebe0ba 211 }
4407204c
PZ
212 }
213
214 if (x86_pmu.num_counters_fixed) {
215 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216 ret = rdmsrl_safe(reg, &val);
217 if (ret)
218 goto msr_fail;
219 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
220 if (val & (0x03 << i*4)) {
221 bios_fail = 1;
222 val_fail = val;
223 reg_fail = reg;
224 }
4407204c
PZ
225 }
226 }
227
68ab7476
DZ
228 /*
229 * If all the counters are enabled, the below test will always
230 * fail. The tools will also become useless in this scenario.
231 * Just fail and disable the hardware counters.
232 */
233
234 if (reg_safe == -1) {
235 reg = reg_safe;
236 goto msr_fail;
237 }
238
4407204c 239 /*
bffd5fc2
AP
240 * Read the current value, change it and read it back to see if it
241 * matches, this is needed to detect certain hardware emulators
242 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 243 */
68ab7476 244 reg = x86_pmu_event_addr(reg_safe);
bffd5fc2
AP
245 if (rdmsrl_safe(reg, &val))
246 goto msr_fail;
247 val ^= 0xffffUL;
f285f92f
RR
248 ret = wrmsrl_safe(reg, val);
249 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 250 if (ret || val != val_new)
4407204c 251 goto msr_fail;
33c6d6a7 252
45daae57
IM
253 /*
254 * We still allow the PMU driver to operate:
255 */
a5ebe0ba 256 if (bios_fail) {
1b74dde7
CY
257 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
258 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
259 reg_fail, val_fail);
a5ebe0ba 260 }
45daae57
IM
261
262 return true;
4407204c
PZ
263
264msr_fail:
1b74dde7
CY
265 pr_cont("Broken PMU hardware detected, using software events only.\n");
266 pr_info("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
65d71fe1
PZI
267 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
268 reg, val_new);
45daae57 269
4407204c 270 return false;
33c6d6a7
DZ
271}
272
cdd6c482 273static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 274{
6b099d9b 275 x86_release_hardware();
1b7b938f 276 atomic_dec(&active_events);
4e935e47
PZ
277}
278
48070342
AS
279void hw_perf_lbr_event_destroy(struct perf_event *event)
280{
281 hw_perf_event_destroy(event);
282
283 /* undo the lbr/bts event accounting */
284 x86_del_exclusive(x86_lbr_exclusive_lbr);
285}
286
85cf9dba
RR
287static inline int x86_pmu_initialized(void)
288{
289 return x86_pmu.handle_irq != NULL;
290}
291
8326f44d 292static inline int
e994d7d2 293set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 294{
e994d7d2 295 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
296 unsigned int cache_type, cache_op, cache_result;
297 u64 config, val;
298
299 config = attr->config;
300
301 cache_type = (config >> 0) & 0xff;
302 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
303 return -EINVAL;
304
305 cache_op = (config >> 8) & 0xff;
306 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
307 return -EINVAL;
308
309 cache_result = (config >> 16) & 0xff;
310 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
311 return -EINVAL;
312
313 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
314
315 if (val == 0)
316 return -ENOENT;
317
318 if (val == -1)
319 return -EINVAL;
320
321 hwc->config |= val;
e994d7d2
AK
322 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
323 return x86_pmu_extra_regs(val, event);
8326f44d
IM
324}
325
6b099d9b
AS
326int x86_reserve_hardware(void)
327{
328 int err = 0;
329
1b7b938f 330 if (!atomic_inc_not_zero(&pmc_refcount)) {
6b099d9b 331 mutex_lock(&pmc_reserve_mutex);
1b7b938f 332 if (atomic_read(&pmc_refcount) == 0) {
6b099d9b
AS
333 if (!reserve_pmc_hardware())
334 err = -EBUSY;
335 else
336 reserve_ds_buffers();
337 }
338 if (!err)
1b7b938f 339 atomic_inc(&pmc_refcount);
6b099d9b
AS
340 mutex_unlock(&pmc_reserve_mutex);
341 }
342
343 return err;
344}
345
346void x86_release_hardware(void)
347{
1b7b938f 348 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
6b099d9b
AS
349 release_pmc_hardware();
350 release_ds_buffers();
351 mutex_unlock(&pmc_reserve_mutex);
352 }
353}
354
48070342
AS
355/*
356 * Check if we can create event of a certain type (that no conflicting events
357 * are present).
358 */
359int x86_add_exclusive(unsigned int what)
360{
93472aff 361 int i;
48070342 362
93472aff
PZ
363 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
364 mutex_lock(&pmc_reserve_mutex);
365 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
366 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
367 goto fail_unlock;
368 }
369 atomic_inc(&x86_pmu.lbr_exclusive[what]);
370 mutex_unlock(&pmc_reserve_mutex);
6b099d9b 371 }
48070342 372
93472aff
PZ
373 atomic_inc(&active_events);
374 return 0;
48070342 375
93472aff 376fail_unlock:
48070342 377 mutex_unlock(&pmc_reserve_mutex);
93472aff 378 return -EBUSY;
48070342
AS
379}
380
381void x86_del_exclusive(unsigned int what)
382{
383 atomic_dec(&x86_pmu.lbr_exclusive[what]);
1b7b938f 384 atomic_dec(&active_events);
48070342
AS
385}
386
de0428a7 387int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
388{
389 struct perf_event_attr *attr = &event->attr;
390 struct hw_perf_event *hwc = &event->hw;
391 u64 config;
392
6c7e550f 393 if (!is_sampling_event(event)) {
c1726f34
RR
394 hwc->sample_period = x86_pmu.max_period;
395 hwc->last_period = hwc->sample_period;
e7850595 396 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
397 }
398
399 if (attr->type == PERF_TYPE_RAW)
ed13ec58 400 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
401
402 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 403 return set_ext_hw_attr(hwc, event);
c1726f34
RR
404
405 if (attr->config >= x86_pmu.max_events)
406 return -EINVAL;
407
408 /*
409 * The generic map:
410 */
411 config = x86_pmu.event_map(attr->config);
412
413 if (config == 0)
414 return -ENOENT;
415
416 if (config == -1LL)
417 return -EINVAL;
418
419 /*
420 * Branch tracing:
421 */
18a073a3
PZ
422 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
423 !attr->freq && hwc->sample_period == 1) {
c1726f34 424 /* BTS is not supported by this architecture. */
6809b6ea 425 if (!x86_pmu.bts_active)
c1726f34
RR
426 return -EOPNOTSUPP;
427
428 /* BTS is currently only allowed for user-mode. */
429 if (!attr->exclude_kernel)
430 return -EOPNOTSUPP;
48070342
AS
431
432 /* disallow bts if conflicting events are present */
433 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
434 return -EBUSY;
435
436 event->destroy = hw_perf_lbr_event_destroy;
c1726f34
RR
437 }
438
439 hwc->config |= config;
440
441 return 0;
442}
4261e0e0 443
ff3fb511
SE
444/*
445 * check that branch_sample_type is compatible with
446 * settings needed for precise_ip > 1 which implies
447 * using the LBR to capture ALL taken branches at the
448 * priv levels of the measurement
449 */
450static inline int precise_br_compat(struct perf_event *event)
451{
452 u64 m = event->attr.branch_sample_type;
453 u64 b = 0;
454
455 /* must capture all branches */
456 if (!(m & PERF_SAMPLE_BRANCH_ANY))
457 return 0;
458
459 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
460
461 if (!event->attr.exclude_user)
462 b |= PERF_SAMPLE_BRANCH_USER;
463
464 if (!event->attr.exclude_kernel)
465 b |= PERF_SAMPLE_BRANCH_KERNEL;
466
467 /*
468 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
469 */
470
471 return m == b;
472}
473
de0428a7 474int x86_pmu_hw_config(struct perf_event *event)
a072738e 475{
ab608344
PZ
476 if (event->attr.precise_ip) {
477 int precise = 0;
478
479 /* Support for constant skid */
c93dc84c 480 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
ab608344
PZ
481 precise++;
482
5553be26 483 /* Support for IP fixup */
03de874a 484 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
5553be26 485 precise++;
72469764
AK
486
487 if (x86_pmu.pebs_prec_dist)
488 precise++;
5553be26 489 }
ab608344
PZ
490
491 if (event->attr.precise_ip > precise)
492 return -EOPNOTSUPP;
4b854900
YZ
493 }
494 /*
495 * check that PEBS LBR correction does not conflict with
496 * whatever the user is asking with attr->branch_sample_type
497 */
498 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
499 u64 *br_type = &event->attr.branch_sample_type;
500
501 if (has_branch_stack(event)) {
502 if (!precise_br_compat(event))
503 return -EOPNOTSUPP;
504
505 /* branch_sample_type is compatible */
506
507 } else {
508 /*
509 * user did not specify branch_sample_type
510 *
511 * For PEBS fixups, we capture all
512 * the branches at the priv level of the
513 * event.
514 */
515 *br_type = PERF_SAMPLE_BRANCH_ANY;
516
517 if (!event->attr.exclude_user)
518 *br_type |= PERF_SAMPLE_BRANCH_USER;
519
520 if (!event->attr.exclude_kernel)
521 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 522 }
ab608344
PZ
523 }
524
e18bf526
YZ
525 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
526 event->attach_state |= PERF_ATTACH_TASK_DATA;
527
a072738e
CG
528 /*
529 * Generate PMC IRQs:
530 * (keep 'enabled' bit clear for now)
531 */
b4cdc5c2 532 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
533
534 /*
535 * Count user and OS events unless requested not to
536 */
b4cdc5c2
PZ
537 if (!event->attr.exclude_user)
538 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
539 if (!event->attr.exclude_kernel)
540 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 541
b4cdc5c2
PZ
542 if (event->attr.type == PERF_TYPE_RAW)
543 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 544
294fe0f5
AK
545 if (event->attr.sample_period && x86_pmu.limit_period) {
546 if (x86_pmu.limit_period(event, event->attr.sample_period) >
547 event->attr.sample_period)
548 return -EINVAL;
549 }
550
9d0fcba6 551 return x86_setup_perfctr(event);
a098f448
RR
552}
553
241771ef 554/*
0d48696f 555 * Setup the hardware configuration for a given attr_type
241771ef 556 */
b0a873eb 557static int __x86_pmu_event_init(struct perf_event *event)
241771ef 558{
4e935e47 559 int err;
241771ef 560
85cf9dba
RR
561 if (!x86_pmu_initialized())
562 return -ENODEV;
241771ef 563
6b099d9b 564 err = x86_reserve_hardware();
4e935e47
PZ
565 if (err)
566 return err;
567
1b7b938f 568 atomic_inc(&active_events);
cdd6c482 569 event->destroy = hw_perf_event_destroy;
a1792cda 570
4261e0e0
RR
571 event->hw.idx = -1;
572 event->hw.last_cpu = -1;
573 event->hw.last_tag = ~0ULL;
b690081d 574
efc9f05d
SE
575 /* mark unused */
576 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
577 event->hw.branch_reg.idx = EXTRA_REG_NONE;
578
9d0fcba6 579 return x86_pmu.hw_config(event);
4261e0e0
RR
580}
581
de0428a7 582void x86_pmu_disable_all(void)
f87ad35d 583{
89cbc767 584 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
585 int idx;
586
948b1bb8 587 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
588 u64 val;
589
43f6201a 590 if (!test_bit(idx, cpuc->active_mask))
4295ee62 591 continue;
41bf4989 592 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 593 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 594 continue;
bb1165d6 595 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 596 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 597 }
f87ad35d
JSR
598}
599
a4eaf7f1 600static void x86_pmu_disable(struct pmu *pmu)
b56a3802 601{
89cbc767 602 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 603
85cf9dba 604 if (!x86_pmu_initialized())
9e35ad38 605 return;
1da53e02 606
1a6e21f7
PZ
607 if (!cpuc->enabled)
608 return;
609
610 cpuc->n_added = 0;
611 cpuc->enabled = 0;
612 barrier();
1da53e02
SE
613
614 x86_pmu.disable_all();
b56a3802 615}
241771ef 616
de0428a7 617void x86_pmu_enable_all(int added)
f87ad35d 618{
89cbc767 619 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
620 int idx;
621
948b1bb8 622 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 623 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 624
43f6201a 625 if (!test_bit(idx, cpuc->active_mask))
4295ee62 626 continue;
984b838c 627
d45dd923 628 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
629 }
630}
631
51b0fe39 632static struct pmu pmu;
1da53e02
SE
633
634static inline int is_x86_event(struct perf_event *event)
635{
636 return event->pmu == &pmu;
637}
638
1e2ad28f
RR
639/*
640 * Event scheduler state:
641 *
642 * Assign events iterating over all events and counters, beginning
643 * with events with least weights first. Keep the current iterator
644 * state in struct sched_state.
645 */
646struct sched_state {
647 int weight;
648 int event; /* event index */
649 int counter; /* counter index */
650 int unassigned; /* number of events to be assigned left */
cc1790cf 651 int nr_gp; /* number of GP counters used */
1e2ad28f
RR
652 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
653};
654
bc1738f6
RR
655/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
656#define SCHED_STATES_MAX 2
657
1e2ad28f
RR
658struct perf_sched {
659 int max_weight;
660 int max_events;
cc1790cf
PZ
661 int max_gp;
662 int saved_states;
b371b594 663 struct event_constraint **constraints;
1e2ad28f 664 struct sched_state state;
bc1738f6 665 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
666};
667
668/*
669 * Initialize interator that runs through all events and counters.
670 */
b371b594 671static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
cc1790cf 672 int num, int wmin, int wmax, int gpmax)
1e2ad28f
RR
673{
674 int idx;
675
676 memset(sched, 0, sizeof(*sched));
677 sched->max_events = num;
678 sched->max_weight = wmax;
cc1790cf 679 sched->max_gp = gpmax;
b371b594 680 sched->constraints = constraints;
1e2ad28f
RR
681
682 for (idx = 0; idx < num; idx++) {
b371b594 683 if (constraints[idx]->weight == wmin)
1e2ad28f
RR
684 break;
685 }
686
687 sched->state.event = idx; /* start with min weight */
688 sched->state.weight = wmin;
689 sched->state.unassigned = num;
690}
691
bc1738f6
RR
692static void perf_sched_save_state(struct perf_sched *sched)
693{
694 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
695 return;
696
697 sched->saved[sched->saved_states] = sched->state;
698 sched->saved_states++;
699}
700
701static bool perf_sched_restore_state(struct perf_sched *sched)
702{
703 if (!sched->saved_states)
704 return false;
705
706 sched->saved_states--;
707 sched->state = sched->saved[sched->saved_states];
708
709 /* continue with next counter: */
710 clear_bit(sched->state.counter++, sched->state.used);
711
712 return true;
713}
714
1e2ad28f
RR
715/*
716 * Select a counter for the current event to schedule. Return true on
717 * success.
718 */
bc1738f6 719static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
720{
721 struct event_constraint *c;
722 int idx;
723
724 if (!sched->state.unassigned)
725 return false;
726
727 if (sched->state.event >= sched->max_events)
728 return false;
729
b371b594 730 c = sched->constraints[sched->state.event];
4defea85 731 /* Prefer fixed purpose counters */
15c7ad51
RR
732 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
733 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 734 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
735 if (!__test_and_set_bit(idx, sched->state.used))
736 goto done;
737 }
738 }
cc1790cf 739
1e2ad28f
RR
740 /* Grab the first unused counter starting with idx */
741 idx = sched->state.counter;
15c7ad51 742 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
cc1790cf
PZ
743 if (!__test_and_set_bit(idx, sched->state.used)) {
744 if (sched->state.nr_gp++ >= sched->max_gp)
745 return false;
746
4defea85 747 goto done;
cc1790cf 748 }
1e2ad28f 749 }
1e2ad28f 750
4defea85
PZ
751 return false;
752
753done:
754 sched->state.counter = idx;
1e2ad28f 755
bc1738f6
RR
756 if (c->overlap)
757 perf_sched_save_state(sched);
758
759 return true;
760}
761
762static bool perf_sched_find_counter(struct perf_sched *sched)
763{
764 while (!__perf_sched_find_counter(sched)) {
765 if (!perf_sched_restore_state(sched))
766 return false;
767 }
768
1e2ad28f
RR
769 return true;
770}
771
772/*
773 * Go through all unassigned events and find the next one to schedule.
774 * Take events with the least weight first. Return true on success.
775 */
776static bool perf_sched_next_event(struct perf_sched *sched)
777{
778 struct event_constraint *c;
779
780 if (!sched->state.unassigned || !--sched->state.unassigned)
781 return false;
782
783 do {
784 /* next event */
785 sched->state.event++;
786 if (sched->state.event >= sched->max_events) {
787 /* next weight */
788 sched->state.event = 0;
789 sched->state.weight++;
790 if (sched->state.weight > sched->max_weight)
791 return false;
792 }
b371b594 793 c = sched->constraints[sched->state.event];
1e2ad28f
RR
794 } while (c->weight != sched->state.weight);
795
796 sched->state.counter = 0; /* start with first counter */
797
798 return true;
799}
800
801/*
802 * Assign a counter for each event.
803 */
b371b594 804int perf_assign_events(struct event_constraint **constraints, int n,
cc1790cf 805 int wmin, int wmax, int gpmax, int *assign)
1e2ad28f
RR
806{
807 struct perf_sched sched;
808
cc1790cf 809 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
1e2ad28f
RR
810
811 do {
812 if (!perf_sched_find_counter(&sched))
813 break; /* failed */
814 if (assign)
815 assign[sched.state.event] = sched.state.counter;
816 } while (perf_sched_next_event(&sched));
817
818 return sched.state.unassigned;
819}
4a3dc121 820EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 821
de0428a7 822int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 823{
43b45780 824 struct event_constraint *c;
1da53e02 825 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 826 struct perf_event *e;
e979121b 827 int i, wmin, wmax, unsched = 0;
1da53e02
SE
828 struct hw_perf_event *hwc;
829
830 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
831
c5362c0c
MD
832 if (x86_pmu.start_scheduling)
833 x86_pmu.start_scheduling(cpuc);
834
1e2ad28f 835 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
b371b594 836 cpuc->event_constraint[i] = NULL;
79cba822 837 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
b371b594 838 cpuc->event_constraint[i] = c;
43b45780 839
1e2ad28f
RR
840 wmin = min(wmin, c->weight);
841 wmax = max(wmax, c->weight);
1da53e02
SE
842 }
843
8113070d
SE
844 /*
845 * fastpath, try to reuse previous register
846 */
c933c1a6 847 for (i = 0; i < n; i++) {
8113070d 848 hwc = &cpuc->event_list[i]->hw;
b371b594 849 c = cpuc->event_constraint[i];
8113070d
SE
850
851 /* never assigned */
852 if (hwc->idx == -1)
853 break;
854
855 /* constraint still honored */
63b14649 856 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
857 break;
858
859 /* not already used */
860 if (test_bit(hwc->idx, used_mask))
861 break;
862
34538ee7 863 __set_bit(hwc->idx, used_mask);
8113070d
SE
864 if (assign)
865 assign[i] = hwc->idx;
866 }
8113070d 867
1e2ad28f 868 /* slow path */
b371b594 869 if (i != n) {
cc1790cf
PZ
870 int gpmax = x86_pmu.num_counters;
871
872 /*
873 * Do not allow scheduling of more than half the available
874 * generic counters.
875 *
876 * This helps avoid counter starvation of sibling thread by
877 * ensuring at most half the counters cannot be in exclusive
878 * mode. There is no designated counters for the limits. Any
879 * N/2 counters can be used. This helps with events with
880 * specific counter constraints.
881 */
882 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
883 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
884 gpmax /= 2;
885
b371b594 886 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
cc1790cf 887 wmax, gpmax, assign);
b371b594 888 }
8113070d 889
2f7f73a5 890 /*
e979121b
MD
891 * In case of success (unsched = 0), mark events as committed,
892 * so we do not put_constraint() in case new events are added
893 * and fail to be scheduled
894 *
895 * We invoke the lower level commit callback to lock the resource
896 *
897 * We do not need to do all of this in case we are called to
898 * validate an event group (assign == NULL)
2f7f73a5 899 */
e979121b 900 if (!unsched && assign) {
2f7f73a5
SE
901 for (i = 0; i < n; i++) {
902 e = cpuc->event_list[i];
903 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
c5362c0c 904 if (x86_pmu.commit_scheduling)
b371b594 905 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
2f7f73a5 906 }
8736e548 907 } else {
1da53e02 908 for (i = 0; i < n; i++) {
2f7f73a5
SE
909 e = cpuc->event_list[i];
910 /*
911 * do not put_constraint() on comitted events,
912 * because they are good to go
913 */
914 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
915 continue;
916
e979121b
MD
917 /*
918 * release events that failed scheduling
919 */
1da53e02 920 if (x86_pmu.put_event_constraints)
2f7f73a5 921 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
922 }
923 }
c5362c0c
MD
924
925 if (x86_pmu.stop_scheduling)
926 x86_pmu.stop_scheduling(cpuc);
927
e979121b 928 return unsched ? -EINVAL : 0;
1da53e02
SE
929}
930
931/*
932 * dogrp: true if must collect siblings events (group)
933 * returns total number of events and error code
934 */
935static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
936{
937 struct perf_event *event;
938 int n, max_count;
939
948b1bb8 940 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
941
942 /* current number of events already accepted */
943 n = cpuc->n_events;
944
945 if (is_x86_event(leader)) {
946 if (n >= max_count)
aa2bc1ad 947 return -EINVAL;
1da53e02
SE
948 cpuc->event_list[n] = leader;
949 n++;
950 }
951 if (!dogrp)
952 return n;
953
954 list_for_each_entry(event, &leader->sibling_list, group_entry) {
955 if (!is_x86_event(event) ||
8113070d 956 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
957 continue;
958
959 if (n >= max_count)
aa2bc1ad 960 return -EINVAL;
1da53e02
SE
961
962 cpuc->event_list[n] = event;
963 n++;
964 }
965 return n;
966}
967
1da53e02 968static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 969 struct cpu_hw_events *cpuc, int i)
1da53e02 970{
447a194b
SE
971 struct hw_perf_event *hwc = &event->hw;
972
973 hwc->idx = cpuc->assign[i];
974 hwc->last_cpu = smp_processor_id();
975 hwc->last_tag = ++cpuc->tags[i];
1da53e02 976
15c7ad51 977 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
978 hwc->config_base = 0;
979 hwc->event_base = 0;
15c7ad51 980 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 981 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
982 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
983 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 984 } else {
73d6e522
RR
985 hwc->config_base = x86_pmu_config_addr(hwc->idx);
986 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 987 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
988 }
989}
990
447a194b
SE
991static inline int match_prev_assignment(struct hw_perf_event *hwc,
992 struct cpu_hw_events *cpuc,
993 int i)
994{
995 return hwc->idx == cpuc->assign[i] &&
996 hwc->last_cpu == smp_processor_id() &&
997 hwc->last_tag == cpuc->tags[i];
998}
999
a4eaf7f1 1000static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 1001
a4eaf7f1 1002static void x86_pmu_enable(struct pmu *pmu)
ee06094f 1003{
89cbc767 1004 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1005 struct perf_event *event;
1006 struct hw_perf_event *hwc;
11164cd4 1007 int i, added = cpuc->n_added;
1da53e02 1008
85cf9dba 1009 if (!x86_pmu_initialized())
2b9ff0db 1010 return;
1a6e21f7
PZ
1011
1012 if (cpuc->enabled)
1013 return;
1014
1da53e02 1015 if (cpuc->n_added) {
19925ce7 1016 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
1017 /*
1018 * apply assignment obtained either from
1019 * hw_perf_group_sched_in() or x86_pmu_enable()
1020 *
1021 * step1: save events moving to new counters
1da53e02 1022 */
19925ce7 1023 for (i = 0; i < n_running; i++) {
1da53e02
SE
1024 event = cpuc->event_list[i];
1025 hwc = &event->hw;
1026
447a194b
SE
1027 /*
1028 * we can avoid reprogramming counter if:
1029 * - assigned same counter as last time
1030 * - running on same CPU as last time
1031 * - no other event has used the counter since
1032 */
1033 if (hwc->idx == -1 ||
1034 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
1035 continue;
1036
a4eaf7f1
PZ
1037 /*
1038 * Ensure we don't accidentally enable a stopped
1039 * counter simply because we rescheduled.
1040 */
1041 if (hwc->state & PERF_HES_STOPPED)
1042 hwc->state |= PERF_HES_ARCH;
1043
1044 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
1045 }
1046
c347a2f1
PZ
1047 /*
1048 * step2: reprogram moved events into new counters
1049 */
1da53e02 1050 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
1051 event = cpuc->event_list[i];
1052 hwc = &event->hw;
1053
45e16a68 1054 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 1055 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
1056 else if (i < n_running)
1057 continue;
1da53e02 1058
a4eaf7f1
PZ
1059 if (hwc->state & PERF_HES_ARCH)
1060 continue;
1061
1062 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
1063 }
1064 cpuc->n_added = 0;
1065 perf_events_lapic_init();
1066 }
1a6e21f7
PZ
1067
1068 cpuc->enabled = 1;
1069 barrier();
1070
11164cd4 1071 x86_pmu.enable_all(added);
ee06094f 1072}
ee06094f 1073
245b2e70 1074static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1075
ee06094f
IM
1076/*
1077 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1078 * To be called with the event disabled in hw:
ee06094f 1079 */
de0428a7 1080int x86_perf_event_set_period(struct perf_event *event)
241771ef 1081{
07088edb 1082 struct hw_perf_event *hwc = &event->hw;
e7850595 1083 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1084 s64 period = hwc->sample_period;
7645a24c 1085 int ret = 0, idx = hwc->idx;
ee06094f 1086
15c7ad51 1087 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1088 return 0;
1089
ee06094f 1090 /*
af901ca1 1091 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1092 */
1093 if (unlikely(left <= -period)) {
1094 left = period;
e7850595 1095 local64_set(&hwc->period_left, left);
9e350de3 1096 hwc->last_period = period;
e4abb5d4 1097 ret = 1;
ee06094f
IM
1098 }
1099
1100 if (unlikely(left <= 0)) {
1101 left += period;
e7850595 1102 local64_set(&hwc->period_left, left);
9e350de3 1103 hwc->last_period = period;
e4abb5d4 1104 ret = 1;
ee06094f 1105 }
1c80f4b5 1106 /*
dfc65094 1107 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1108 */
1109 if (unlikely(left < 2))
1110 left = 2;
241771ef 1111
e4abb5d4
PZ
1112 if (left > x86_pmu.max_period)
1113 left = x86_pmu.max_period;
1114
294fe0f5
AK
1115 if (x86_pmu.limit_period)
1116 left = x86_pmu.limit_period(event, left);
1117
245b2e70 1118 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f 1119
851559e3
YZ
1120 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1121 local64_read(&hwc->prev_count) != (u64)-left) {
1122 /*
1123 * The hw event starts counting from this event offset,
1124 * mark it to be able to extra future deltas:
1125 */
1126 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1127
851559e3
YZ
1128 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1129 }
68aa00ac
CG
1130
1131 /*
1132 * Due to erratum on certan cpu we need
1133 * a second write to be sure the register
1134 * is updated properly
1135 */
1136 if (x86_pmu.perfctr_second_write) {
73d6e522 1137 wrmsrl(hwc->event_base,
948b1bb8 1138 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1139 }
e4abb5d4 1140
cdd6c482 1141 perf_event_update_userpage(event);
194002b2 1142
e4abb5d4 1143 return ret;
2f18d1e8
IM
1144}
1145
de0428a7 1146void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1147{
0a3aee0d 1148 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1149 __x86_pmu_enable_event(&event->hw,
1150 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1151}
1152
b690081d 1153/*
a4eaf7f1 1154 * Add a single event to the PMU.
1da53e02
SE
1155 *
1156 * The event is added to the group of enabled events
1157 * but only if it can be scehduled with existing events.
fe9081cc 1158 */
a4eaf7f1 1159static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1160{
89cbc767 1161 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1162 struct hw_perf_event *hwc;
1163 int assign[X86_PMC_IDX_MAX];
1164 int n, n0, ret;
fe9081cc 1165
1da53e02 1166 hwc = &event->hw;
fe9081cc 1167
1da53e02 1168 n0 = cpuc->n_events;
24cd7f54
PZ
1169 ret = n = collect_events(cpuc, event, false);
1170 if (ret < 0)
1171 goto out;
53b441a5 1172
a4eaf7f1
PZ
1173 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1174 if (!(flags & PERF_EF_START))
1175 hwc->state |= PERF_HES_ARCH;
1176
4d1c52b0
LM
1177 /*
1178 * If group events scheduling transaction was started,
0d2eb44f 1179 * skip the schedulability test here, it will be performed
c347a2f1 1180 * at commit time (->commit_txn) as a whole.
4d1c52b0 1181 */
8f3e5684 1182 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
24cd7f54 1183 goto done_collect;
4d1c52b0 1184
a072738e 1185 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1186 if (ret)
24cd7f54 1187 goto out;
1da53e02
SE
1188 /*
1189 * copy new assignment, now we know it is possible
1190 * will be used by hw_perf_enable()
1191 */
1192 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1193
24cd7f54 1194done_collect:
c347a2f1
PZ
1195 /*
1196 * Commit the collect_events() state. See x86_pmu_del() and
1197 * x86_pmu_*_txn().
1198 */
1da53e02 1199 cpuc->n_events = n;
356e1f2e 1200 cpuc->n_added += n - n0;
90151c35 1201 cpuc->n_txn += n - n0;
95cdd2e7 1202
24cd7f54
PZ
1203 ret = 0;
1204out:
24cd7f54 1205 return ret;
241771ef
IM
1206}
1207
a4eaf7f1 1208static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1209{
89cbc767 1210 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1211 int idx = event->hw.idx;
1212
a4eaf7f1
PZ
1213 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1214 return;
1215
1216 if (WARN_ON_ONCE(idx == -1))
1217 return;
1218
1219 if (flags & PERF_EF_RELOAD) {
1220 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1221 x86_perf_event_set_period(event);
1222 }
1223
1224 event->hw.state = 0;
d76a0812 1225
c08053e6
PZ
1226 cpuc->events[idx] = event;
1227 __set_bit(idx, cpuc->active_mask);
63e6be6d 1228 __set_bit(idx, cpuc->running);
aff3d91a 1229 x86_pmu.enable(event);
c08053e6 1230 perf_event_update_userpage(event);
a78ac325
PZ
1231}
1232
cdd6c482 1233void perf_event_print_debug(void)
241771ef 1234{
2f18d1e8 1235 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
da3e606d 1236 u64 pebs, debugctl;
cdd6c482 1237 struct cpu_hw_events *cpuc;
5bb9efe3 1238 unsigned long flags;
1e125676
IM
1239 int cpu, idx;
1240
948b1bb8 1241 if (!x86_pmu.num_counters)
1e125676 1242 return;
241771ef 1243
5bb9efe3 1244 local_irq_save(flags);
241771ef
IM
1245
1246 cpu = smp_processor_id();
cdd6c482 1247 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1248
faa28ae0 1249 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1250 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1251 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1252 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1253 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1254
1255 pr_info("\n");
1256 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1257 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1258 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1259 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
15fde110
AK
1260 if (x86_pmu.pebs_constraints) {
1261 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1262 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1263 }
da3e606d
AK
1264 if (x86_pmu.lbr_nr) {
1265 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1266 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1267 }
f87ad35d 1268 }
7645a24c 1269 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1270
948b1bb8 1271 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1272 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1273 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1274
245b2e70 1275 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1276
a1ef58f4 1277 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1278 cpu, idx, pmc_ctrl);
a1ef58f4 1279 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1280 cpu, idx, pmc_count);
a1ef58f4 1281 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1282 cpu, idx, prev_left);
241771ef 1283 }
948b1bb8 1284 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1285 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1286
a1ef58f4 1287 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1288 cpu, idx, pmc_count);
1289 }
5bb9efe3 1290 local_irq_restore(flags);
241771ef
IM
1291}
1292
de0428a7 1293void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1294{
89cbc767 1295 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1296 struct hw_perf_event *hwc = &event->hw;
241771ef 1297
a4eaf7f1
PZ
1298 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1299 x86_pmu.disable(event);
1300 cpuc->events[hwc->idx] = NULL;
1301 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1302 hwc->state |= PERF_HES_STOPPED;
1303 }
30dd568c 1304
a4eaf7f1
PZ
1305 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1306 /*
1307 * Drain the remaining delta count out of a event
1308 * that we are disabling:
1309 */
1310 x86_perf_event_update(event);
1311 hwc->state |= PERF_HES_UPTODATE;
1312 }
2e841873
PZ
1313}
1314
a4eaf7f1 1315static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1316{
89cbc767 1317 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1318 int i;
1319
2f7f73a5
SE
1320 /*
1321 * event is descheduled
1322 */
1323 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1324
90151c35
SE
1325 /*
1326 * If we're called during a txn, we don't need to do anything.
1327 * The events never got scheduled and ->cancel_txn will truncate
1328 * the event_list.
c347a2f1
PZ
1329 *
1330 * XXX assumes any ->del() called during a TXN will only be on
1331 * an event added during that same TXN.
90151c35 1332 */
8f3e5684 1333 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
90151c35
SE
1334 return;
1335
c347a2f1
PZ
1336 /*
1337 * Not a TXN, therefore cleanup properly.
1338 */
a4eaf7f1 1339 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1340
1da53e02 1341 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1342 if (event == cpuc->event_list[i])
1343 break;
1344 }
1da53e02 1345
c347a2f1
PZ
1346 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1347 return;
26e61e89 1348
c347a2f1
PZ
1349 /* If we have a newly added event; make sure to decrease n_added. */
1350 if (i >= cpuc->n_events - cpuc->n_added)
1351 --cpuc->n_added;
1da53e02 1352
c347a2f1
PZ
1353 if (x86_pmu.put_event_constraints)
1354 x86_pmu.put_event_constraints(cpuc, event);
1355
1356 /* Delete the array entry. */
b371b594 1357 while (++i < cpuc->n_events) {
c347a2f1 1358 cpuc->event_list[i-1] = cpuc->event_list[i];
b371b594
PZ
1359 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1360 }
c347a2f1 1361 --cpuc->n_events;
1da53e02 1362
cdd6c482 1363 perf_event_update_userpage(event);
241771ef
IM
1364}
1365
de0428a7 1366int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1367{
df1a132b 1368 struct perf_sample_data data;
cdd6c482
IM
1369 struct cpu_hw_events *cpuc;
1370 struct perf_event *event;
11d1578f 1371 int idx, handled = 0;
9029a5e3
IM
1372 u64 val;
1373
89cbc767 1374 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1375
2bce5dac
DZ
1376 /*
1377 * Some chipsets need to unmask the LVTPC in a particular spot
1378 * inside the nmi handler. As a result, the unmasking was pushed
1379 * into all the nmi handlers.
1380 *
1381 * This generic handler doesn't seem to have any issues where the
1382 * unmasking occurs so it was left at the top.
1383 */
1384 apic_write(APIC_LVTPC, APIC_DM_NMI);
1385
948b1bb8 1386 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1387 if (!test_bit(idx, cpuc->active_mask)) {
1388 /*
1389 * Though we deactivated the counter some cpus
1390 * might still deliver spurious interrupts still
1391 * in flight. Catch them:
1392 */
1393 if (__test_and_clear_bit(idx, cpuc->running))
1394 handled++;
a29aa8a7 1395 continue;
63e6be6d 1396 }
962bf7a6 1397
cdd6c482 1398 event = cpuc->events[idx];
a4016a79 1399
cc2ad4ba 1400 val = x86_perf_event_update(event);
948b1bb8 1401 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1402 continue;
962bf7a6 1403
9e350de3 1404 /*
cdd6c482 1405 * event overflow
9e350de3 1406 */
4177c42a 1407 handled++;
fd0d000b 1408 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1409
07088edb 1410 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1411 continue;
1412
a8b0ca17 1413 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1414 x86_pmu_stop(event, 0);
a29aa8a7 1415 }
962bf7a6 1416
9e350de3
PZ
1417 if (handled)
1418 inc_irq_stat(apic_perf_irqs);
1419
a29aa8a7
RR
1420 return handled;
1421}
39d81eab 1422
cdd6c482 1423void perf_events_lapic_init(void)
241771ef 1424{
04da8a43 1425 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1426 return;
85cf9dba 1427
241771ef 1428 /*
c323d95f 1429 * Always use NMI for PMU
241771ef 1430 */
c323d95f 1431 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1432}
1433
9326638c 1434static int
9c48f1c6 1435perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1436{
14c63f17
DH
1437 u64 start_clock;
1438 u64 finish_clock;
e8a923cc 1439 int ret;
14c63f17 1440
1b7b938f
AS
1441 /*
1442 * All PMUs/events that share this PMI handler should make sure to
1443 * increment active_events for their events.
1444 */
cdd6c482 1445 if (!atomic_read(&active_events))
9c48f1c6 1446 return NMI_DONE;
4177c42a 1447
e8a923cc 1448 start_clock = sched_clock();
14c63f17 1449 ret = x86_pmu.handle_irq(regs);
e8a923cc 1450 finish_clock = sched_clock();
14c63f17
DH
1451
1452 perf_sample_event_took(finish_clock - start_clock);
1453
1454 return ret;
241771ef 1455}
9326638c 1456NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1457
de0428a7
KW
1458struct event_constraint emptyconstraint;
1459struct event_constraint unconstrained;
f87ad35d 1460
148f9bb8 1461static int
3f6da390
PZ
1462x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1463{
1464 unsigned int cpu = (long)hcpu;
7fdba1ca 1465 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
90413464 1466 int i, ret = NOTIFY_OK;
3f6da390
PZ
1467
1468 switch (action & ~CPU_TASKS_FROZEN) {
1469 case CPU_UP_PREPARE:
90413464
SE
1470 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1471 cpuc->kfree_on_online[i] = NULL;
3f6da390 1472 if (x86_pmu.cpu_prepare)
b38b24ea 1473 ret = x86_pmu.cpu_prepare(cpu);
3f6da390
PZ
1474 break;
1475
1476 case CPU_STARTING:
1477 if (x86_pmu.cpu_starting)
1478 x86_pmu.cpu_starting(cpu);
1479 break;
1480
7fdba1ca 1481 case CPU_ONLINE:
90413464
SE
1482 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1483 kfree(cpuc->kfree_on_online[i]);
1484 cpuc->kfree_on_online[i] = NULL;
1485 }
7fdba1ca
PZ
1486 break;
1487
3f6da390
PZ
1488 case CPU_DYING:
1489 if (x86_pmu.cpu_dying)
1490 x86_pmu.cpu_dying(cpu);
1491 break;
1492
b38b24ea 1493 case CPU_UP_CANCELED:
3f6da390
PZ
1494 case CPU_DEAD:
1495 if (x86_pmu.cpu_dead)
1496 x86_pmu.cpu_dead(cpu);
1497 break;
1498
1499 default:
1500 break;
1501 }
1502
b38b24ea 1503 return ret;
3f6da390
PZ
1504}
1505
12558038
CG
1506static void __init pmu_check_apic(void)
1507{
1508 if (cpu_has_apic)
1509 return;
1510
1511 x86_pmu.apic = 0;
1512 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1513 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1514
1515 /*
1516 * If we have a PMU initialized but no APIC
1517 * interrupts, we cannot sample hardware
1518 * events (user-space has to fall back and
1519 * sample via a hrtimer based software event):
1520 */
1521 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1522
12558038
CG
1523}
1524
641cc938
JO
1525static struct attribute_group x86_pmu_format_group = {
1526 .name = "format",
1527 .attrs = NULL,
1528};
1529
8300daa2
JO
1530/*
1531 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1532 * out of events_attr attributes.
1533 */
1534static void __init filter_events(struct attribute **attrs)
1535{
3a54aaa0
SE
1536 struct device_attribute *d;
1537 struct perf_pmu_events_attr *pmu_attr;
61b87cae 1538 int offset = 0;
8300daa2
JO
1539 int i, j;
1540
1541 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1542 d = (struct device_attribute *)attrs[i];
1543 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1544 /* str trumps id */
1545 if (pmu_attr->event_str)
1546 continue;
61b87cae 1547 if (x86_pmu.event_map(i + offset))
8300daa2
JO
1548 continue;
1549
1550 for (j = i; attrs[j]; j++)
1551 attrs[j] = attrs[j + 1];
1552
1553 /* Check the shifted attr. */
1554 i--;
61b87cae
SE
1555
1556 /*
1557 * event_map() is index based, the attrs array is organized
1558 * by increasing event index. If we shift the events, then
1559 * we need to compensate for the event_map(), otherwise
1560 * we are looking up the wrong event in the map
1561 */
1562 offset++;
8300daa2
JO
1563 }
1564}
1565
1a6461b1 1566/* Merge two pointer arrays */
47732d88 1567__init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1a6461b1
AK
1568{
1569 struct attribute **new;
1570 int j, i;
1571
1572 for (j = 0; a[j]; j++)
1573 ;
1574 for (i = 0; b[i]; i++)
1575 j++;
1576 j++;
1577
1578 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1579 if (!new)
1580 return NULL;
1581
1582 j = 0;
1583 for (i = 0; a[i]; i++)
1584 new[j++] = a[i];
1585 for (i = 0; b[i]; i++)
1586 new[j++] = b[i];
1587 new[j] = NULL;
1588
1589 return new;
1590}
1591
f20093ee 1592ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
a4747393
JO
1593 char *page)
1594{
1595 struct perf_pmu_events_attr *pmu_attr = \
1596 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1597 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1598
3a54aaa0
SE
1599 /* string trumps id */
1600 if (pmu_attr->event_str)
1601 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1602
3a54aaa0
SE
1603 return x86_pmu.events_sysfs_show(page, config);
1604}
a4747393
JO
1605
1606EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1607EVENT_ATTR(instructions, INSTRUCTIONS );
1608EVENT_ATTR(cache-references, CACHE_REFERENCES );
1609EVENT_ATTR(cache-misses, CACHE_MISSES );
1610EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1611EVENT_ATTR(branch-misses, BRANCH_MISSES );
1612EVENT_ATTR(bus-cycles, BUS_CYCLES );
1613EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1614EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1615EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1616
1617static struct attribute *empty_attrs;
1618
95d18aa2 1619static struct attribute *events_attr[] = {
a4747393
JO
1620 EVENT_PTR(CPU_CYCLES),
1621 EVENT_PTR(INSTRUCTIONS),
1622 EVENT_PTR(CACHE_REFERENCES),
1623 EVENT_PTR(CACHE_MISSES),
1624 EVENT_PTR(BRANCH_INSTRUCTIONS),
1625 EVENT_PTR(BRANCH_MISSES),
1626 EVENT_PTR(BUS_CYCLES),
1627 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1628 EVENT_PTR(STALLED_CYCLES_BACKEND),
1629 EVENT_PTR(REF_CPU_CYCLES),
1630 NULL,
1631};
1632
1633static struct attribute_group x86_pmu_events_group = {
1634 .name = "events",
1635 .attrs = events_attr,
1636};
1637
0bf79d44 1638ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1639{
43c032fe
JO
1640 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1641 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1642 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1643 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1644 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1645 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1646 ssize_t ret;
1647
1648 /*
1649 * We have whole page size to spend and just little data
1650 * to write, so we can safely use sprintf.
1651 */
1652 ret = sprintf(page, "event=0x%02llx", event);
1653
1654 if (umask)
1655 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1656
1657 if (edge)
1658 ret += sprintf(page + ret, ",edge");
1659
1660 if (pc)
1661 ret += sprintf(page + ret, ",pc");
1662
1663 if (any)
1664 ret += sprintf(page + ret, ",any");
1665
1666 if (inv)
1667 ret += sprintf(page + ret, ",inv");
1668
1669 if (cmask)
1670 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1671
1672 ret += sprintf(page + ret, "\n");
1673
1674 return ret;
1675}
1676
dda99116 1677static int __init init_hw_perf_events(void)
b56a3802 1678{
c1d6f42f 1679 struct x86_pmu_quirk *quirk;
72eae04d
RR
1680 int err;
1681
cdd6c482 1682 pr_info("Performance Events: ");
1123e3ad 1683
b56a3802
JSR
1684 switch (boot_cpu_data.x86_vendor) {
1685 case X86_VENDOR_INTEL:
72eae04d 1686 err = intel_pmu_init();
b56a3802 1687 break;
f87ad35d 1688 case X86_VENDOR_AMD:
72eae04d 1689 err = amd_pmu_init();
f87ad35d 1690 break;
4138960a 1691 default:
8a3da6c7 1692 err = -ENOTSUPP;
b56a3802 1693 }
1123e3ad 1694 if (err != 0) {
cdd6c482 1695 pr_cont("no PMU driver, software events only.\n");
004417a6 1696 return 0;
1123e3ad 1697 }
b56a3802 1698
12558038
CG
1699 pmu_check_apic();
1700
33c6d6a7 1701 /* sanity check that the hardware exists or is emulated */
4407204c 1702 if (!check_hw_exists())
004417a6 1703 return 0;
33c6d6a7 1704
1123e3ad 1705 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1706
e97df763
PZ
1707 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1708
c1d6f42f
PZ
1709 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1710 quirk->func();
3c44780b 1711
a1eac7ac
RR
1712 if (!x86_pmu.intel_ctrl)
1713 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1714
cdd6c482 1715 perf_events_lapic_init();
9c48f1c6 1716 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1717
63b14649 1718 unconstrained = (struct event_constraint)
948b1bb8 1719 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1720 0, x86_pmu.num_counters, 0, 0);
63b14649 1721
641cc938 1722 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1723
f20093ee
SE
1724 if (x86_pmu.event_attrs)
1725 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1726
a4747393
JO
1727 if (!x86_pmu.events_sysfs_show)
1728 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1729 else
1730 filter_events(x86_pmu_events_group.attrs);
a4747393 1731
1a6461b1
AK
1732 if (x86_pmu.cpu_events) {
1733 struct attribute **tmp;
1734
1735 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1736 if (!WARN_ON(!tmp))
1737 x86_pmu_events_group.attrs = tmp;
1738 }
1739
57c0c15b 1740 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1741 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1742 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1743 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1744 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1745 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1746 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1747
2e80a82a 1748 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
3f6da390 1749 perf_cpu_notifier(x86_pmu_notifier);
004417a6
PZ
1750
1751 return 0;
241771ef 1752}
004417a6 1753early_initcall(init_hw_perf_events);
621a01ea 1754
cdd6c482 1755static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1756{
cc2ad4ba 1757 x86_perf_event_update(event);
ee06094f
IM
1758}
1759
4d1c52b0
LM
1760/*
1761 * Start group events scheduling transaction
1762 * Set the flag to make pmu::enable() not perform the
1763 * schedulability test, it will be performed at commit time
fbbe0701
SB
1764 *
1765 * We only support PERF_PMU_TXN_ADD transactions. Save the
1766 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1767 * transactions.
4d1c52b0 1768 */
fbbe0701 1769static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
4d1c52b0 1770{
fbbe0701
SB
1771 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1772
1773 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1774
1775 cpuc->txn_flags = txn_flags;
1776 if (txn_flags & ~PERF_PMU_TXN_ADD)
1777 return;
1778
33696fc0 1779 perf_pmu_disable(pmu);
0a3aee0d 1780 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1781}
1782
1783/*
1784 * Stop group events scheduling transaction
1785 * Clear the flag and pmu::enable() will perform the
1786 * schedulability test.
1787 */
51b0fe39 1788static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1789{
fbbe0701
SB
1790 unsigned int txn_flags;
1791 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1792
1793 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1794
1795 txn_flags = cpuc->txn_flags;
1796 cpuc->txn_flags = 0;
1797 if (txn_flags & ~PERF_PMU_TXN_ADD)
1798 return;
1799
90151c35 1800 /*
c347a2f1
PZ
1801 * Truncate collected array by the number of events added in this
1802 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1803 */
0a3aee0d
TH
1804 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1805 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1806 perf_pmu_enable(pmu);
4d1c52b0
LM
1807}
1808
1809/*
1810 * Commit group events scheduling transaction
1811 * Perform the group schedulability test as a whole
1812 * Return 0 if success
c347a2f1
PZ
1813 *
1814 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1815 */
51b0fe39 1816static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1817{
89cbc767 1818 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1819 int assign[X86_PMC_IDX_MAX];
1820 int n, ret;
1821
fbbe0701
SB
1822 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1823
1824 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1825 cpuc->txn_flags = 0;
1826 return 0;
1827 }
1828
4d1c52b0
LM
1829 n = cpuc->n_events;
1830
1831 if (!x86_pmu_initialized())
1832 return -EAGAIN;
1833
1834 ret = x86_pmu.schedule_events(cpuc, n, assign);
1835 if (ret)
1836 return ret;
1837
1838 /*
1839 * copy new assignment, now we know it is possible
1840 * will be used by hw_perf_enable()
1841 */
1842 memcpy(cpuc->assign, assign, n*sizeof(int));
1843
fbbe0701 1844 cpuc->txn_flags = 0;
33696fc0 1845 perf_pmu_enable(pmu);
4d1c52b0
LM
1846 return 0;
1847}
cd8a38d3
SE
1848/*
1849 * a fake_cpuc is used to validate event groups. Due to
1850 * the extra reg logic, we need to also allocate a fake
1851 * per_core and per_cpu structure. Otherwise, group events
1852 * using extra reg may conflict without the kernel being
1853 * able to catch this when the last event gets added to
1854 * the group.
1855 */
1856static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1857{
1858 kfree(cpuc->shared_regs);
1859 kfree(cpuc);
1860}
1861
1862static struct cpu_hw_events *allocate_fake_cpuc(void)
1863{
1864 struct cpu_hw_events *cpuc;
1865 int cpu = raw_smp_processor_id();
1866
1867 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1868 if (!cpuc)
1869 return ERR_PTR(-ENOMEM);
1870
1871 /* only needed, if we have extra_regs */
1872 if (x86_pmu.extra_regs) {
1873 cpuc->shared_regs = allocate_shared_regs(cpu);
1874 if (!cpuc->shared_regs)
1875 goto error;
1876 }
b430f7c4 1877 cpuc->is_fake = 1;
cd8a38d3
SE
1878 return cpuc;
1879error:
1880 free_fake_cpuc(cpuc);
1881 return ERR_PTR(-ENOMEM);
1882}
4d1c52b0 1883
ca037701
PZ
1884/*
1885 * validate that we can schedule this event
1886 */
1887static int validate_event(struct perf_event *event)
1888{
1889 struct cpu_hw_events *fake_cpuc;
1890 struct event_constraint *c;
1891 int ret = 0;
1892
cd8a38d3
SE
1893 fake_cpuc = allocate_fake_cpuc();
1894 if (IS_ERR(fake_cpuc))
1895 return PTR_ERR(fake_cpuc);
ca037701 1896
79cba822 1897 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
ca037701
PZ
1898
1899 if (!c || !c->weight)
aa2bc1ad 1900 ret = -EINVAL;
ca037701
PZ
1901
1902 if (x86_pmu.put_event_constraints)
1903 x86_pmu.put_event_constraints(fake_cpuc, event);
1904
cd8a38d3 1905 free_fake_cpuc(fake_cpuc);
ca037701
PZ
1906
1907 return ret;
1908}
1909
1da53e02
SE
1910/*
1911 * validate a single event group
1912 *
1913 * validation include:
184f412c
IM
1914 * - check events are compatible which each other
1915 * - events do not compete for the same counter
1916 * - number of events <= number of counters
1da53e02
SE
1917 *
1918 * validation ensures the group can be loaded onto the
1919 * PMU if it was the only group available.
1920 */
fe9081cc
PZ
1921static int validate_group(struct perf_event *event)
1922{
1da53e02 1923 struct perf_event *leader = event->group_leader;
502568d5 1924 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 1925 int ret = -EINVAL, n;
fe9081cc 1926
cd8a38d3
SE
1927 fake_cpuc = allocate_fake_cpuc();
1928 if (IS_ERR(fake_cpuc))
1929 return PTR_ERR(fake_cpuc);
1da53e02
SE
1930 /*
1931 * the event is not yet connected with its
1932 * siblings therefore we must first collect
1933 * existing siblings, then add the new event
1934 * before we can simulate the scheduling
1935 */
502568d5 1936 n = collect_events(fake_cpuc, leader, true);
1da53e02 1937 if (n < 0)
cd8a38d3 1938 goto out;
fe9081cc 1939
502568d5
PZ
1940 fake_cpuc->n_events = n;
1941 n = collect_events(fake_cpuc, event, false);
1da53e02 1942 if (n < 0)
cd8a38d3 1943 goto out;
fe9081cc 1944
502568d5 1945 fake_cpuc->n_events = n;
1da53e02 1946
a072738e 1947 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 1948
502568d5 1949out:
cd8a38d3 1950 free_fake_cpuc(fake_cpuc);
502568d5 1951 return ret;
fe9081cc
PZ
1952}
1953
dda99116 1954static int x86_pmu_event_init(struct perf_event *event)
621a01ea 1955{
51b0fe39 1956 struct pmu *tmp;
621a01ea
IM
1957 int err;
1958
b0a873eb
PZ
1959 switch (event->attr.type) {
1960 case PERF_TYPE_RAW:
1961 case PERF_TYPE_HARDWARE:
1962 case PERF_TYPE_HW_CACHE:
1963 break;
1964
1965 default:
1966 return -ENOENT;
1967 }
1968
1969 err = __x86_pmu_event_init(event);
fe9081cc 1970 if (!err) {
8113070d
SE
1971 /*
1972 * we temporarily connect event to its pmu
1973 * such that validate_group() can classify
1974 * it as an x86 event using is_x86_event()
1975 */
1976 tmp = event->pmu;
1977 event->pmu = &pmu;
1978
fe9081cc
PZ
1979 if (event->group_leader != event)
1980 err = validate_group(event);
ca037701
PZ
1981 else
1982 err = validate_event(event);
8113070d
SE
1983
1984 event->pmu = tmp;
fe9081cc 1985 }
a1792cda 1986 if (err) {
cdd6c482
IM
1987 if (event->destroy)
1988 event->destroy(event);
a1792cda 1989 }
621a01ea 1990
7911d3f7
AL
1991 if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1992 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1993
b0a873eb 1994 return err;
621a01ea 1995}
d7d59fb3 1996
7911d3f7
AL
1997static void refresh_pce(void *ignored)
1998{
1999 if (current->mm)
2000 load_mm_cr4(current->mm);
2001}
2002
2003static void x86_pmu_event_mapped(struct perf_event *event)
2004{
2005 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2006 return;
2007
2008 if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2009 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2010}
2011
2012static void x86_pmu_event_unmapped(struct perf_event *event)
2013{
2014 if (!current->mm)
2015 return;
2016
2017 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2018 return;
2019
2020 if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2021 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2022}
2023
fe4a3308
PZ
2024static int x86_pmu_event_idx(struct perf_event *event)
2025{
2026 int idx = event->hw.idx;
2027
7911d3f7 2028 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
2029 return 0;
2030
15c7ad51
RR
2031 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2032 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
2033 idx |= 1 << 30;
2034 }
2035
2036 return idx + 1;
2037}
2038
0c9d42ed
PZ
2039static ssize_t get_attr_rdpmc(struct device *cdev,
2040 struct device_attribute *attr,
2041 char *buf)
2042{
2043 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2044}
2045
0c9d42ed
PZ
2046static ssize_t set_attr_rdpmc(struct device *cdev,
2047 struct device_attribute *attr,
2048 const char *buf, size_t count)
2049{
e2b297fc
SK
2050 unsigned long val;
2051 ssize_t ret;
2052
2053 ret = kstrtoul(buf, 0, &val);
2054 if (ret)
2055 return ret;
e97df763 2056
a6673429
AL
2057 if (val > 2)
2058 return -EINVAL;
2059
e97df763
PZ
2060 if (x86_pmu.attr_rdpmc_broken)
2061 return -ENOTSUPP;
0c9d42ed 2062
a6673429
AL
2063 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2064 /*
2065 * Changing into or out of always available, aka
2066 * perf-event-bypassing mode. This path is extremely slow,
2067 * but only root can trigger it, so it's okay.
2068 */
2069 if (val == 2)
2070 static_key_slow_inc(&rdpmc_always_available);
2071 else
2072 static_key_slow_dec(&rdpmc_always_available);
2073 on_each_cpu(refresh_pce, NULL, 1);
2074 }
2075
2076 x86_pmu.attr_rdpmc = val;
2077
0c9d42ed
PZ
2078 return count;
2079}
2080
2081static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2082
2083static struct attribute *x86_pmu_attrs[] = {
2084 &dev_attr_rdpmc.attr,
2085 NULL,
2086};
2087
2088static struct attribute_group x86_pmu_attr_group = {
2089 .attrs = x86_pmu_attrs,
2090};
2091
2092static const struct attribute_group *x86_pmu_attr_groups[] = {
2093 &x86_pmu_attr_group,
641cc938 2094 &x86_pmu_format_group,
a4747393 2095 &x86_pmu_events_group,
0c9d42ed
PZ
2096 NULL,
2097};
2098
ba532500 2099static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d010b332 2100{
ba532500
YZ
2101 if (x86_pmu.sched_task)
2102 x86_pmu.sched_task(ctx, sched_in);
d010b332
SE
2103}
2104
c93dc84c
PZ
2105void perf_check_microcode(void)
2106{
2107 if (x86_pmu.check_microcode)
2108 x86_pmu.check_microcode();
2109}
2110EXPORT_SYMBOL_GPL(perf_check_microcode);
2111
b0a873eb 2112static struct pmu pmu = {
d010b332
SE
2113 .pmu_enable = x86_pmu_enable,
2114 .pmu_disable = x86_pmu_disable,
a4eaf7f1 2115
c93dc84c 2116 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2117
c93dc84c 2118 .event_init = x86_pmu_event_init,
a4eaf7f1 2119
7911d3f7
AL
2120 .event_mapped = x86_pmu_event_mapped,
2121 .event_unmapped = x86_pmu_event_unmapped,
2122
d010b332
SE
2123 .add = x86_pmu_add,
2124 .del = x86_pmu_del,
2125 .start = x86_pmu_start,
2126 .stop = x86_pmu_stop,
2127 .read = x86_pmu_read,
a4eaf7f1 2128
c93dc84c
PZ
2129 .start_txn = x86_pmu_start_txn,
2130 .cancel_txn = x86_pmu_cancel_txn,
2131 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2132
c93dc84c 2133 .event_idx = x86_pmu_event_idx,
ba532500 2134 .sched_task = x86_pmu_sched_task,
e18bf526 2135 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
2136};
2137
c1317ec2
AL
2138void arch_perf_update_userpage(struct perf_event *event,
2139 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2140{
20d1c86a
PZ
2141 struct cyc2ns_data *data;
2142
fa731587
PZ
2143 userpg->cap_user_time = 0;
2144 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2145 userpg->cap_user_rdpmc =
2146 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2147 userpg->pmc_width = x86_pmu.cntval_bits;
2148
35af99e6 2149 if (!sched_clock_stable())
e3f3541c
PZ
2150 return;
2151
20d1c86a
PZ
2152 data = cyc2ns_read_begin();
2153
34f43927
PZ
2154 /*
2155 * Internal timekeeping for enabled/running/stopped times
2156 * is always in the local_clock domain.
2157 */
fa731587 2158 userpg->cap_user_time = 1;
20d1c86a
PZ
2159 userpg->time_mult = data->cyc2ns_mul;
2160 userpg->time_shift = data->cyc2ns_shift;
2161 userpg->time_offset = data->cyc2ns_offset - now;
c73deb6a 2162
34f43927
PZ
2163 /*
2164 * cap_user_time_zero doesn't make sense when we're using a different
2165 * time base for the records.
2166 */
2167 if (event->clock == &local_clock) {
2168 userpg->cap_user_time_zero = 1;
2169 userpg->time_zero = data->cyc2ns_offset;
2170 }
20d1c86a
PZ
2171
2172 cyc2ns_read_end(data);
e3f3541c
PZ
2173}
2174
d7d59fb3
PZ
2175/*
2176 * callchain support
2177 */
2178
d7d59fb3
PZ
2179static int backtrace_stack(void *data, char *name)
2180{
038e836e 2181 return 0;
d7d59fb3
PZ
2182}
2183
2184static void backtrace_address(void *data, unsigned long addr, int reliable)
2185{
2186 struct perf_callchain_entry *entry = data;
2187
70791ce9 2188 perf_callchain_store(entry, addr);
d7d59fb3
PZ
2189}
2190
2191static const struct stacktrace_ops backtrace_ops = {
d7d59fb3
PZ
2192 .stack = backtrace_stack,
2193 .address = backtrace_address,
06d65bda 2194 .walk_stack = print_context_stack_bp,
d7d59fb3
PZ
2195};
2196
56962b44
FW
2197void
2198perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3 2199{
927c7a9e
FW
2200 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2201 /* TODO: We don't support guest os callchain now */
ed805261 2202 return;
927c7a9e
FW
2203 }
2204
70791ce9 2205 perf_callchain_store(entry, regs->ip);
d7d59fb3 2206
e8e999cf 2207 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
d7d59fb3
PZ
2208}
2209
bc6ca7b3
AS
2210static inline int
2211valid_user_frame(const void __user *fp, unsigned long size)
2212{
2213 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2214}
2215
d07bdfd3
PZ
2216static unsigned long get_segment_base(unsigned int segment)
2217{
2218 struct desc_struct *desc;
2219 int idx = segment >> 3;
2220
2221 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
a5b9e5a2 2222#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
2223 struct ldt_struct *ldt;
2224
d07bdfd3
PZ
2225 if (idx > LDT_ENTRIES)
2226 return 0;
2227
37868fe1
AL
2228 /* IRQs are off, so this synchronizes with smp_store_release */
2229 ldt = lockless_dereference(current->active_mm->context.ldt);
2230 if (!ldt || idx > ldt->size)
d07bdfd3
PZ
2231 return 0;
2232
37868fe1 2233 desc = &ldt->entries[idx];
a5b9e5a2
AL
2234#else
2235 return 0;
2236#endif
d07bdfd3
PZ
2237 } else {
2238 if (idx > GDT_ENTRIES)
2239 return 0;
2240
37868fe1 2241 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
d07bdfd3
PZ
2242 }
2243
37868fe1 2244 return get_desc_base(desc);
d07bdfd3
PZ
2245}
2246
10ed3493 2247#ifdef CONFIG_IA32_EMULATION
d1a797f3
PA
2248
2249#include <asm/compat.h>
2250
257ef9d2
TE
2251static inline int
2252perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
74193ef0 2253{
257ef9d2 2254 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2255 unsigned long ss_base, cs_base;
257ef9d2
TE
2256 struct stack_frame_ia32 frame;
2257 const void __user *fp;
74193ef0 2258
257ef9d2
TE
2259 if (!test_thread_flag(TIF_IA32))
2260 return 0;
2261
d07bdfd3
PZ
2262 cs_base = get_segment_base(regs->cs);
2263 ss_base = get_segment_base(regs->ss);
2264
2265 fp = compat_ptr(ss_base + regs->bp);
75925e1a 2266 pagefault_disable();
257ef9d2
TE
2267 while (entry->nr < PERF_MAX_STACK_DEPTH) {
2268 unsigned long bytes;
2269 frame.next_frame = 0;
2270 frame.return_address = 0;
2271
75925e1a
AK
2272 if (!access_ok(VERIFY_READ, fp, 8))
2273 break;
2274
2275 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2276 if (bytes != 0)
2277 break;
2278 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
0a196848 2279 if (bytes != 0)
257ef9d2 2280 break;
74193ef0 2281
bc6ca7b3
AS
2282 if (!valid_user_frame(fp, sizeof(frame)))
2283 break;
2284
d07bdfd3
PZ
2285 perf_callchain_store(entry, cs_base + frame.return_address);
2286 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2 2287 }
75925e1a 2288 pagefault_enable();
257ef9d2 2289 return 1;
d7d59fb3 2290}
257ef9d2
TE
2291#else
2292static inline int
2293perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2294{
2295 return 0;
2296}
2297#endif
d7d59fb3 2298
56962b44
FW
2299void
2300perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
d7d59fb3
PZ
2301{
2302 struct stack_frame frame;
2303 const void __user *fp;
2304
927c7a9e
FW
2305 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2306 /* TODO: We don't support guest os callchain now */
ed805261 2307 return;
927c7a9e 2308 }
5a6cec3a 2309
d07bdfd3
PZ
2310 /*
2311 * We don't know what to do with VM86 stacks.. ignore them for now.
2312 */
2313 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2314 return;
2315
74193ef0 2316 fp = (void __user *)regs->bp;
d7d59fb3 2317
70791ce9 2318 perf_callchain_store(entry, regs->ip);
d7d59fb3 2319
20afc60f
AV
2320 if (!current->mm)
2321 return;
2322
257ef9d2
TE
2323 if (perf_callchain_user32(regs, entry))
2324 return;
2325
75925e1a 2326 pagefault_disable();
f9188e02 2327 while (entry->nr < PERF_MAX_STACK_DEPTH) {
257ef9d2 2328 unsigned long bytes;
038e836e 2329 frame.next_frame = NULL;
d7d59fb3
PZ
2330 frame.return_address = 0;
2331
75925e1a
AK
2332 if (!access_ok(VERIFY_READ, fp, 16))
2333 break;
2334
2335 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 8);
2336 if (bytes != 0)
2337 break;
2338 bytes = __copy_from_user_nmi(&frame.return_address, fp+8, 8);
0a196848 2339 if (bytes != 0)
d7d59fb3
PZ
2340 break;
2341
bc6ca7b3
AS
2342 if (!valid_user_frame(fp, sizeof(frame)))
2343 break;
2344
70791ce9 2345 perf_callchain_store(entry, frame.return_address);
75925e1a 2346 fp = (void __user *)frame.next_frame;
d7d59fb3 2347 }
75925e1a 2348 pagefault_enable();
d7d59fb3
PZ
2349}
2350
d07bdfd3
PZ
2351/*
2352 * Deal with code segment offsets for the various execution modes:
2353 *
2354 * VM86 - the good olde 16 bit days, where the linear address is
2355 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2356 *
2357 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2358 * to figure out what the 32bit base address is.
2359 *
2360 * X32 - has TIF_X32 set, but is running in x86_64
2361 *
2362 * X86_64 - CS,DS,SS,ES are all zero based.
2363 */
2364static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2365{
383f3af3
AL
2366 /*
2367 * For IA32 we look at the GDT/LDT segment base to convert the
2368 * effective IP to a linear address.
2369 */
2370
2371#ifdef CONFIG_X86_32
d07bdfd3
PZ
2372 /*
2373 * If we are in VM86 mode, add the segment offset to convert to a
2374 * linear address.
2375 */
2376 if (regs->flags & X86_VM_MASK)
2377 return 0x10 * regs->cs;
2378
55474c48 2379 if (user_mode(regs) && regs->cs != __USER_CS)
d07bdfd3
PZ
2380 return get_segment_base(regs->cs);
2381#else
c56716af
AL
2382 if (user_mode(regs) && !user_64bit_mode(regs) &&
2383 regs->cs != __USER32_CS)
2384 return get_segment_base(regs->cs);
d07bdfd3
PZ
2385#endif
2386 return 0;
2387}
dcf46b94 2388
d07bdfd3
PZ
2389unsigned long perf_instruction_pointer(struct pt_regs *regs)
2390{
39447b38 2391 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2392 return perf_guest_cbs->get_guest_ip();
dcf46b94 2393
d07bdfd3 2394 return regs->ip + code_segment_base(regs);
39447b38
ZY
2395}
2396
2397unsigned long perf_misc_flags(struct pt_regs *regs)
2398{
2399 int misc = 0;
dcf46b94 2400
39447b38 2401 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2402 if (perf_guest_cbs->is_user_mode())
2403 misc |= PERF_RECORD_MISC_GUEST_USER;
2404 else
2405 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2406 } else {
d07bdfd3 2407 if (user_mode(regs))
dcf46b94
ZY
2408 misc |= PERF_RECORD_MISC_USER;
2409 else
2410 misc |= PERF_RECORD_MISC_KERNEL;
2411 }
2412
39447b38 2413 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2414 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2415
2416 return misc;
2417}
b3d9468a
GN
2418
2419void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2420{
2421 cap->version = x86_pmu.version;
2422 cap->num_counters_gp = x86_pmu.num_counters;
2423 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2424 cap->bit_width_gp = x86_pmu.cntval_bits;
2425 cap->bit_width_fixed = x86_pmu.cntval_bits;
2426 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2427 cap->events_mask_len = x86_pmu.events_mask_len;
2428}
2429EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
This page took 0.446994 seconds and 5 git commands to generate.