Merge branches 'tracing/kmemtrace2' and 'tracing/ftrace' into tracing/urgent
[deliverable/linux.git] / arch / x86 / include / asm / bitops.h
CommitLineData
1965aae3
PA
1#ifndef _ASM_X86_BITOPS_H
2#define _ASM_X86_BITOPS_H
1c54d770
JF
3
4/*
5 * Copyright 1992, Linus Torvalds.
6 */
7
8#ifndef _LINUX_BITOPS_H
9#error only <linux/bitops.h> can be included directly
10#endif
11
12#include <linux/compiler.h>
13#include <asm/alternative.h>
14
15/*
16 * These have to be done with inline assembly: that way the bit-setting
17 * is guaranteed to be atomic. All bit operations return 0 if the bit
18 * was cleared before the operation and != 0 if it was not.
19 *
20 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
21 */
22
23#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
24/* Technically wrong, but this avoids compilation errors on some gcc
25 versions. */
1a750e0c 26#define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
1c54d770 27#else
1a750e0c 28#define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
1c54d770
JF
29#endif
30
7dbceaf9 31#define ADDR BITOP_ADDR(addr)
1a750e0c
LT
32
33/*
34 * We do the locked ops that don't return the old value as
35 * a mask operation on a byte.
36 */
7dbceaf9
IM
37#define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
38#define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
39#define CONST_MASK(nr) (1 << ((nr) & 7))
1a750e0c 40
1c54d770
JF
41/**
42 * set_bit - Atomically set a bit in memory
43 * @nr: the bit to set
44 * @addr: the address to start counting from
45 *
46 * This function is atomic and may not be reordered. See __set_bit()
47 * if you do not require the atomic guarantees.
48 *
49 * Note: there are no guarantees that this function will not be reordered
50 * on non x86 architectures, so if you are writing portable code,
51 * make sure not to rely on its reordering guarantees.
52 *
53 * Note that @nr may be almost arbitrarily large; this function is not
54 * restricted to acting on a single-word quantity.
55 */
1a750e0c 56static inline void set_bit(unsigned int nr, volatile unsigned long *addr)
1c54d770 57{
7dbceaf9
IM
58 if (IS_IMMEDIATE(nr)) {
59 asm volatile(LOCK_PREFIX "orb %1,%0"
60 : CONST_MASK_ADDR(nr, addr)
437a0a54 61 : "iq" ((u8)CONST_MASK(nr))
7dbceaf9
IM
62 : "memory");
63 } else {
64 asm volatile(LOCK_PREFIX "bts %1,%0"
65 : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
66 }
1c54d770
JF
67}
68
69/**
70 * __set_bit - Set a bit in memory
71 * @nr: the bit to set
72 * @addr: the address to start counting from
73 *
74 * Unlike set_bit(), this function is non-atomic and may be reordered.
75 * If it's called on the same region of memory simultaneously, the effect
76 * may be that only one operation succeeds.
77 */
5136dea5 78static inline void __set_bit(int nr, volatile unsigned long *addr)
1c54d770 79{
f19dcf4a 80 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
1c54d770
JF
81}
82
1c54d770
JF
83/**
84 * clear_bit - Clears a bit in memory
85 * @nr: Bit to clear
86 * @addr: Address to start counting from
87 *
88 * clear_bit() is atomic and may not be reordered. However, it does
89 * not contain a memory barrier, so if it is used for locking purposes,
90 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
91 * in order to ensure changes are visible on other processors.
92 */
5136dea5 93static inline void clear_bit(int nr, volatile unsigned long *addr)
1c54d770 94{
7dbceaf9
IM
95 if (IS_IMMEDIATE(nr)) {
96 asm volatile(LOCK_PREFIX "andb %1,%0"
97 : CONST_MASK_ADDR(nr, addr)
437a0a54 98 : "iq" ((u8)~CONST_MASK(nr)));
7dbceaf9
IM
99 } else {
100 asm volatile(LOCK_PREFIX "btr %1,%0"
101 : BITOP_ADDR(addr)
102 : "Ir" (nr));
103 }
1c54d770
JF
104}
105
106/*
107 * clear_bit_unlock - Clears a bit in memory
108 * @nr: Bit to clear
109 * @addr: Address to start counting from
110 *
111 * clear_bit() is atomic and implies release semantics before the memory
112 * operation. It can be used for an unlock.
113 */
5136dea5 114static inline void clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
1c54d770
JF
115{
116 barrier();
117 clear_bit(nr, addr);
118}
119
5136dea5 120static inline void __clear_bit(int nr, volatile unsigned long *addr)
1c54d770 121{
eb2b4e68 122 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
1c54d770
JF
123}
124
125/*
126 * __clear_bit_unlock - Clears a bit in memory
127 * @nr: Bit to clear
128 * @addr: Address to start counting from
129 *
130 * __clear_bit() is non-atomic and implies release semantics before the memory
131 * operation. It can be used for an unlock if no other CPUs can concurrently
132 * modify other bits in the word.
133 *
134 * No memory barrier is required here, because x86 cannot reorder stores past
135 * older loads. Same principle as spin_unlock.
136 */
5136dea5 137static inline void __clear_bit_unlock(unsigned nr, volatile unsigned long *addr)
1c54d770
JF
138{
139 barrier();
140 __clear_bit(nr, addr);
141}
142
143#define smp_mb__before_clear_bit() barrier()
144#define smp_mb__after_clear_bit() barrier()
145
146/**
147 * __change_bit - Toggle a bit in memory
148 * @nr: the bit to change
149 * @addr: the address to start counting from
150 *
151 * Unlike change_bit(), this function is non-atomic and may be reordered.
152 * If it's called on the same region of memory simultaneously, the effect
153 * may be that only one operation succeeds.
154 */
5136dea5 155static inline void __change_bit(int nr, volatile unsigned long *addr)
1c54d770 156{
eb2b4e68 157 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
1c54d770
JF
158}
159
160/**
161 * change_bit - Toggle a bit in memory
162 * @nr: Bit to change
163 * @addr: Address to start counting from
164 *
165 * change_bit() is atomic and may not be reordered.
166 * Note that @nr may be almost arbitrarily large; this function is not
167 * restricted to acting on a single-word quantity.
168 */
5136dea5 169static inline void change_bit(int nr, volatile unsigned long *addr)
1c54d770 170{
838e8bb7
UB
171 if (IS_IMMEDIATE(nr)) {
172 asm volatile(LOCK_PREFIX "xorb %1,%0"
173 : CONST_MASK_ADDR(nr, addr)
174 : "iq" ((u8)CONST_MASK(nr)));
175 } else {
176 asm volatile(LOCK_PREFIX "btc %1,%0"
177 : BITOP_ADDR(addr)
178 : "Ir" (nr));
179 }
1c54d770
JF
180}
181
182/**
183 * test_and_set_bit - Set a bit and return its old value
184 * @nr: Bit to set
185 * @addr: Address to count from
186 *
187 * This operation is atomic and cannot be reordered.
188 * It also implies a memory barrier.
189 */
5136dea5 190static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
191{
192 int oldbit;
193
194 asm volatile(LOCK_PREFIX "bts %2,%1\n\t"
286275c9 195 "sbb %0,%0" : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
1c54d770
JF
196
197 return oldbit;
198}
199
200/**
201 * test_and_set_bit_lock - Set a bit and return its old value for lock
202 * @nr: Bit to set
203 * @addr: Address to count from
204 *
205 * This is the same as test_and_set_bit on x86.
206 */
5136dea5 207static inline int test_and_set_bit_lock(int nr, volatile unsigned long *addr)
1c54d770
JF
208{
209 return test_and_set_bit(nr, addr);
210}
211
212/**
213 * __test_and_set_bit - Set a bit and return its old value
214 * @nr: Bit to set
215 * @addr: Address to count from
216 *
217 * This operation is non-atomic and can be reordered.
218 * If two examples of this operation race, one can appear to succeed
219 * but actually fail. You must protect multiple accesses with a lock.
220 */
5136dea5 221static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
222{
223 int oldbit;
224
eb2b4e68
SHT
225 asm("bts %2,%1\n\t"
226 "sbb %0,%0"
227 : "=r" (oldbit), ADDR
228 : "Ir" (nr));
1c54d770
JF
229 return oldbit;
230}
231
232/**
233 * test_and_clear_bit - Clear a bit and return its old value
234 * @nr: Bit to clear
235 * @addr: Address to count from
236 *
237 * This operation is atomic and cannot be reordered.
238 * It also implies a memory barrier.
239 */
5136dea5 240static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
241{
242 int oldbit;
243
244 asm volatile(LOCK_PREFIX "btr %2,%1\n\t"
245 "sbb %0,%0"
286275c9 246 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
1c54d770
JF
247
248 return oldbit;
249}
250
251/**
252 * __test_and_clear_bit - Clear a bit and return its old value
253 * @nr: Bit to clear
254 * @addr: Address to count from
255 *
256 * This operation is non-atomic and can be reordered.
257 * If two examples of this operation race, one can appear to succeed
258 * but actually fail. You must protect multiple accesses with a lock.
259 */
5136dea5 260static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
261{
262 int oldbit;
263
eb2b4e68 264 asm volatile("btr %2,%1\n\t"
1c54d770 265 "sbb %0,%0"
eb2b4e68
SHT
266 : "=r" (oldbit), ADDR
267 : "Ir" (nr));
1c54d770
JF
268 return oldbit;
269}
270
271/* WARNING: non atomic and it can be reordered! */
5136dea5 272static inline int __test_and_change_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
273{
274 int oldbit;
275
eb2b4e68 276 asm volatile("btc %2,%1\n\t"
1c54d770 277 "sbb %0,%0"
eb2b4e68
SHT
278 : "=r" (oldbit), ADDR
279 : "Ir" (nr) : "memory");
1c54d770
JF
280
281 return oldbit;
282}
283
284/**
285 * test_and_change_bit - Change a bit and return its old value
286 * @nr: Bit to change
287 * @addr: Address to count from
288 *
289 * This operation is atomic and cannot be reordered.
290 * It also implies a memory barrier.
291 */
5136dea5 292static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
1c54d770
JF
293{
294 int oldbit;
295
296 asm volatile(LOCK_PREFIX "btc %2,%1\n\t"
297 "sbb %0,%0"
286275c9 298 : "=r" (oldbit), ADDR : "Ir" (nr) : "memory");
1c54d770
JF
299
300 return oldbit;
301}
302
5136dea5 303static inline int constant_test_bit(int nr, const volatile unsigned long *addr)
1c54d770 304{
26996dd2
GOC
305 return ((1UL << (nr % BITS_PER_LONG)) &
306 (((unsigned long *)addr)[nr / BITS_PER_LONG])) != 0;
1c54d770
JF
307}
308
5136dea5 309static inline int variable_test_bit(int nr, volatile const unsigned long *addr)
1c54d770
JF
310{
311 int oldbit;
312
eb2b4e68 313 asm volatile("bt %2,%1\n\t"
1c54d770
JF
314 "sbb %0,%0"
315 : "=r" (oldbit)
eb2b4e68 316 : "m" (*(unsigned long *)addr), "Ir" (nr));
1c54d770
JF
317
318 return oldbit;
319}
320
321#if 0 /* Fool kernel-doc since it doesn't do macros yet */
322/**
323 * test_bit - Determine whether a bit is set
324 * @nr: bit number to test
325 * @addr: Address to start counting from
326 */
327static int test_bit(int nr, const volatile unsigned long *addr);
328#endif
329
f19dcf4a
JP
330#define test_bit(nr, addr) \
331 (__builtin_constant_p((nr)) \
332 ? constant_test_bit((nr), (addr)) \
333 : variable_test_bit((nr), (addr)))
1c54d770 334
12d9c842
AH
335/**
336 * __ffs - find first set bit in word
337 * @word: The word to search
338 *
339 * Undefined if no bit exists, so code should check against 0 first.
340 */
341static inline unsigned long __ffs(unsigned long word)
342{
f19dcf4a
JP
343 asm("bsf %1,%0"
344 : "=r" (word)
345 : "rm" (word));
12d9c842
AH
346 return word;
347}
348
349/**
350 * ffz - find first zero bit in word
351 * @word: The word to search
352 *
353 * Undefined if no zero exists, so code should check against ~0UL first.
354 */
355static inline unsigned long ffz(unsigned long word)
356{
f19dcf4a
JP
357 asm("bsf %1,%0"
358 : "=r" (word)
359 : "r" (~word));
12d9c842
AH
360 return word;
361}
362
363/*
364 * __fls: find last set bit in word
365 * @word: The word to search
366 *
8450e853 367 * Undefined if no set bit exists, so code should check against 0 first.
12d9c842
AH
368 */
369static inline unsigned long __fls(unsigned long word)
370{
f19dcf4a
JP
371 asm("bsr %1,%0"
372 : "=r" (word)
373 : "rm" (word));
12d9c842
AH
374 return word;
375}
376
377#ifdef __KERNEL__
378/**
379 * ffs - find first set bit in word
380 * @x: the word to search
381 *
382 * This is defined the same way as the libc and compiler builtin ffs
383 * routines, therefore differs in spirit from the other bitops.
384 *
385 * ffs(value) returns 0 if value is 0 or the position of the first
386 * set bit if value is nonzero. The first (least significant) bit
387 * is at position 1.
388 */
389static inline int ffs(int x)
390{
391 int r;
392#ifdef CONFIG_X86_CMOV
f19dcf4a
JP
393 asm("bsfl %1,%0\n\t"
394 "cmovzl %2,%0"
395 : "=r" (r) : "rm" (x), "r" (-1));
12d9c842 396#else
f19dcf4a
JP
397 asm("bsfl %1,%0\n\t"
398 "jnz 1f\n\t"
399 "movl $-1,%0\n"
400 "1:" : "=r" (r) : "rm" (x));
12d9c842
AH
401#endif
402 return r + 1;
403}
404
405/**
406 * fls - find last set bit in word
407 * @x: the word to search
408 *
409 * This is defined in a similar way as the libc and compiler builtin
410 * ffs, but returns the position of the most significant set bit.
411 *
412 * fls(value) returns 0 if value is 0 or the position of the last
413 * set bit if value is nonzero. The last (most significant) bit is
414 * at position 32.
415 */
416static inline int fls(int x)
417{
418 int r;
419#ifdef CONFIG_X86_CMOV
f19dcf4a
JP
420 asm("bsrl %1,%0\n\t"
421 "cmovzl %2,%0"
422 : "=&r" (r) : "rm" (x), "rm" (-1));
12d9c842 423#else
f19dcf4a
JP
424 asm("bsrl %1,%0\n\t"
425 "jnz 1f\n\t"
426 "movl $-1,%0\n"
427 "1:" : "=r" (r) : "rm" (x));
12d9c842
AH
428#endif
429 return r + 1;
430}
431#endif /* __KERNEL__ */
432
1c54d770
JF
433#undef ADDR
434
d66462f5
AH
435#ifdef __KERNEL__
436
437#include <asm-generic/bitops/sched.h>
438
439#define ARCH_HAS_FAST_MULTIPLIER 1
440
441#include <asm-generic/bitops/hweight.h>
1c54d770 442
d66462f5
AH
443#endif /* __KERNEL__ */
444
445#include <asm-generic/bitops/fls64.h>
446
447#ifdef __KERNEL__
448
449#include <asm-generic/bitops/ext2-non-atomic.h>
450
451#define ext2_set_bit_atomic(lock, nr, addr) \
452 test_and_set_bit((nr), (unsigned long *)(addr))
453#define ext2_clear_bit_atomic(lock, nr, addr) \
454 test_and_clear_bit((nr), (unsigned long *)(addr))
455
456#include <asm-generic/bitops/minix.h>
457
458#endif /* __KERNEL__ */
1965aae3 459#endif /* _ASM_X86_BITOPS_H */
This page took 0.145104 seconds and 5 git commands to generate.